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This research article is related to a multi-state stress-strength model proposed by Eryilmaz and İşçioǧlu (2011).
It deals with (i) demonstration of the use of EM algorithm for the estimation of parameters of distributions
of random variables representing strength and two stress levels. The numerical results are illustrated using
exponential distribution for each of the random variables under consideration, and (ii) comparison of results
under the assumption of the random variables representing two stress levels being independent vis-à-vis they
being positively quadrant dependent (PQD). The corresponding numerical results are based on Farlie-Gumbel-
Morgenstern PQD distribution having non-identical exponential distributions as marginal distributions, and the
distribution of strength variable is also an exponential distribution with a different parameter. As far as the EM
algorithm related exercise is concerned, the numerical results, by and large, show that the EM algorithm, the one
which makes clever use of data by pretending presence of missing observations, provides efficient estimators
of the parameters than those provided by direct use of maximum likelihood (ML) estimators. For the latter
exercise related to the PQD property, the numerical results highlight the fact that not only it is incorrect to
assume two random variables representing two stress levels to be independent when in fact they are dependent,
but the degree of dependence also can not be ignored.
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1. Introduction

If two random variables X and Y represent stress and strength of a component or a system then
stress-strength models involve studying different probabilistic and statistical, estimation and infer-
ential, aspects of P(Y > X) under various distributional assumptions for X and Y. Over the years,
these models in the binary set up (state space S = {0,1}) have been studied extensively in the
literature and a very good reference for the same is a book by Kotz et al. (2003). Eryilmaz and
İşçioǧlu(2011) deviated from binary level stress-strength models and proposed the following multi-
state level stress-strength model given in (1.1) below. See also Eryilmaz (2008a, 2008b).

∗Corresponding author.

Journal of Statistical Theory and Applications, Vol. 15, No.1 (March 2016), 36-46

Published by Atlantis Press
Copyright: the authors

36



S. Sabnis et al.

Consider a coherent system consisting of n components. Let Yi represent the strength of the
ith component, i = 1,2, . . . ,n. Assume that Y1,Y2, . . . ,Yn are independent and identically distributed
random variables with common cumulative distribution function F(x) = P(Yi ≤ x), i = 1,2, . . . ,n.
Assume that each component and, hence, the system which is made up of these components are
subjected to two stress levels. Let these two stress levels be denoted by random variables Z1 and Z2

with G1 and G2 being their respective cumulative distribution functions. Let

Xi =


0 if Yi < Z1:2

1 if Z1:2 < Yi < Z2:2 (1.1)
2 if Yi > Z2:2

where Z1:2 = min(Z1,Z2) and Z2:2 = max(Z1,Z2). It may be noted that the random variables
X1,X2, . . . ,Xn are not independent due to common random stresses.

Using various distributional assumptions and statistical independence between Z1 and Z2, max-
imum likelihood approach can be employed to estimate various system reliabilities of interest using
the invariance property of maximum likelihood principle. However, a closer look at this model pro-
posed by Eryilmaz and İşçioǧlu(2011) reveals that it has one limitation, namely, that the state of
the ith component Xi assumes value 1 when Z1:2 < Yi < Z2:2, for i = 1,2, . . . ,n, and thus it is not
exactly known as to which stress level is responsible for the ith component to be in state 1. This
can be regarded as a case of missing data and, in fact, one can invoke EM algorithm for estimat-
ing the unknown parameters of the distributions of random variables corresponding to strength and
two stress levels. Simulation results carried out by nonidentical exponential distributions show that
the estimators based on EM algorithm are, by and large, more efficient than the ones based on the
classical maximum likelihood estimation method.

Also, in this research article a deviation from the assumption of statistical independence between
random variables representing two stress levels has been made to gauge the effect of a particular
type of dependence on system reliabilities. Here it is assumed that these two random variables are
positively quadrant dependent as it is more realistic to obtain results for this very bivariate notion of
dependence. A PQD bivariate Farlie-Gumbel-Morgenstern distribution with exponential marginals
is used to illustrate results for the model proposed by Eryilmaz and İşçioǧlu(2011). The relevant
numerical results do bring out an important point that stringent assumption of dependence such as
PQD is more realistic and should not be replaced with that of statistical independence just for the
sake of algebraic simplification.

The organization of this paper is as follows: Section 2 contains the preliminaries. Section 3
provides details of the EM algorithm and the corresponding numerical results for the model in
(1.1), whereas Section 4 presents the relevant theory for PQD concepts along with numerical results
for the same model.

2. EM Algorithm application

The model proposed by Eryilmaz and İşçioǧlu(2011) has one limitation, namely, that it is not known
exactly as to which of the two stress levels is responsible for the ith, i = 1,2, . . . ,n, component to be
in state 1. All the model definition given in (1.1) says that the random variable representing strength
exceeds only one of the stress levels. In view of this, the information about as to which stress level
causes ith component to be in state 1 can be regarded as missing for each of the n components.
In EM algorithm parlance, observations y = {(Yi,Z(1:2)i,Z(2:2)i), i = 1,2, . . . ,n} would constitute an
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incomplete and observable data, whereas x= {(Yi,Z(1:2)i,Z(2:2)i),δi, i= 1,2, . . . ,n}would constitute
a complete and unobservable data. Here Z(1:2)i = min(Z1i,Z2i) and Z(2:2)i = max(Z1i,Z2i) and δi is
defined to be equal to 1 if Z1i < Yi < Z2i and it is zero otherwise for i = 1,2, . . . ,n. Under the
assumption that (i) Yi ∼ exp(λ ), Z1i ∼ exp(θ1) and Z2i ∼ exp(θ2) for i = 1,2, . . . ,n, and (ii) Yi’s are
independent, (iii) Z1i’s and Z2i’s are statistically independent, the E-step of the EM algorithm entails
computing

φ(ψ;ψ
(k)) = E

ψ(k) [logLc(ψ)/y].

Here

Lc(λ ,θ1,θ2/y) = (λ ne−λ∑
n
i=1 yi)(θ n

1 e−θ1∑
n
i=1[(z1i)

δi (z2i)
1−δi ])

(θ n
2 e−θ2∑

n
i=1[(z1i)

1−δi (z2i)
δi ])

and, thus

lnLc(λ ,θ1,θ2/y) = nlnλ −λ

n

∑
i=1

yi +nlnθ1−θ1

n

∑
i=1

[(z1i)
δi(z2i)

1−δi ]

+nlnθ2−θ2

n

∑
i=1

[(z1i)
1−δi(z2i)

δi

This involves unobservable data values, namely, δi’s. Using E-step, it follows using statistical inde-
pendence of Z1 and Z2 that

E[δi/y] = P[δi = 1/y]
= P[Z(1:2)i = Z1i,Z(2:2)i = Z2i/y]
= P[Z1i < yi < Z2i/y]
= P[Z1i < yi]P[yi < Z2i]

= [1− e−θ1yi ][e−θ2yi ]

The M-step of the EM algorithm on the (k + 1)th iteration chooses the values of the parameters
that maximize φ(ψ;ψ(k)). An excellent reference for EM algorithm is a book by McLachlan and
Krishnan (2008).

2.1. Simulations

Under the multi-state stress-strength model given in (1.1), a k-out-of-n system is said to be in state
i if at least k out of n components are in state i and Ri(k,n) is used to denote the probability that a
k-out-of-n system is in state i or above for i = 1,2. It may be noted that the expressions (2.1) and
(2.2) given below are appearing on page number 554 of Eryilmaz and İşçioǧlu(2011).

Rk,n
1 =

n

∑
m=k

(
n
m

)
E[(F(Z1:2))

n−m(F(Z1:2))
m)]

=
n

∑
m=k

(
n
m

)∫
∞

0
(1− e−λ z)n−m(e−λ z)m(θ2e−θ2ze−θ1z +θ1e−θ1ze−θ2z)dz

=
n

∑
m=k

n−m

∑
i=0

(
n
m

)(
n−m

i

)
(−1)i θ1 +θ2

(m+ i)λ +θ1 +θ2
(2.1)
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Rk,n
2 =

n

∑
m=k

(
n
m

)
E[(F(Z2:2))

n−m(F(Z2:2))
m)]

=
n

∑
m=k

(
n
m

)∫
∞

0
(1− e−λ z)n−m(e−λ z)m(θ1e−θ1z(1− e−θ2z)+θ2(1− e−θ1z)e−θ2z)dz (2.2)

=
n

∑
m=k

n−m

∑
i=0

(
n
m

)(
n−m

i

)
(−1)i

[
θ1

(m+ i)λ +θ1
+

θ2

(m+ i)λ +θ2
− θ1 +θ2

(m+ i)λ +θ1 +θ2

]

eRi(k,n) =
MSE( ̂REM

i (k,n))

MSE( ̂RML
i (k,n))

(2.3)

where eRi(k,n) denotes the efficiency of EM based reliability of a k-out-of-n system being in state

i or above as compared to the one based on ML estimator. Here ̂REM
i (k,n) ( ̂RML

i (k,n)) is based on
parameter estimates obtained using EM algorithm (ML principle) for i = 1,2; k are 2 and 3 and the
corresponding values of n are 3 and 5.

Under the assumptions that for the ith component, i = 1,2, . . . ,n, (i) the strength variable
Yi ∼ exp(λ ), (ii) 1st stress level variable Z1i ∼ exp(θ1), (iii) 2nd stress level variable Z2i ∼ exp(θ2)

and (iv) Z1i and Z2i are statistically independent, 2-out-of-3 and 3-out-of-5 systems were simulated
65000 and 40000 times, respectively, for various values of λ , θ1, and θ2 and the values of efficien-
cies such as eR1(2,3), eR2(2,3), eR1(3,5) and eR2(3,5) were obtained using the estimates of the
expressions indicated in (2.1) and (2.2). The corresponding numerical results are given in Table 2.1.

Remark 2.1. It may be noted that this particular simulation exercise is repeated for fewer number
of times, namely, 7000 and 4000, respectively, for 2-out-of-3 and 3-out-of-5 systems and related
numerical results are reported in Table 2.2.

Remark 2.2. This idea of using EM algorithm can be employed for stress-strength models having
more than two stress levels as well.

Remark 2.3. Table 2.1 and Table 2.2, given on the next page, provide comparison between two
estimation procedures, namely, EM algorithm and maximum likelihood estimation. It may be noted
that the former one takes into account the missing data in terms of the stress level which is causing
the component to be in state 1, while the latter one does not use this information at all. This exer-
cise involves comparing the performance of the cumulative survival probabilities R1(2,3), R2(2,3)
corresponding to 2-out-of-3 system and R1(3,5), R2(3,5) of 3-out-of-5 system using the concept of
respective efficiencies. The numerical results show that, by and large, the estimator obtained using
EM algorithm tend to outperform those based on ML estimation procedure. This in a way reinforces
the fact that clever use of the data at hand does lead to better estimation results.
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Table 2.1: Efficiency of EM Algorithm based estimators vs ML Principle based estimators

λ θ1 θ2 eR1(2,3) eR2(2,3) eR1(3,5) eR2(3,5)
0.1 0.2 0.3 1.5291 1.2038 1.7657 1.2397
0.5 0.2 0.3 0.8571 0.8043 0.8370 0.7633
0.5 0.8 0.3 1.1107 1.0154 1.1303 0.9938
1 3 5 2.1993 1.1433 2.1692 1.1677
1 5 3 1.7699 1.1400 2.2038 1.1635
1 3 3 1.6823 1.1950 2.0259 1.2369
4 5 6 1.2517 1.1502 1.3224 1.1464
3 8 4 1.3889 1.1777 1.5250 1.1945

0.2 1 2 1.9185 1.0237 2.6003 0.9972
2 2 0.2 0.9701 0.8434 0.9653 0.8357

Table 2.2: Efficiency of EM Algorithm based estimators vs ML Principle based estimators

λ θ1 θ2 eR1(2,3) eR2(2,3) eR1(3,5) eR2(3,5)
0.1 0.2 0.3 1.4738 1.1736 1.6423 1.2004
0.5 0.2 0.3 0.8988 0.8487 0.8823 0.8145
0.5 0.8 0.3 1.0923 1.0119 1.1102 0.9960
1 3 5 1.6546 1.1222 1.9534 1.1420
1 5 3 1.6400 1.1304 1.9375 1.1512
1 3 3 1.5773 1.1676 1.8135 1.1990
4 5 6 1.2308 1.1344 1.2857 1.1341
3 8 4 1.3219 1.1471 1.4219 1.1600

0.2 1 2 1.8214 1.0212 2.3005 1.0041
2 2 0.2 0.9723 0.8421 0.9682 0.8334

3. Positive Quadrant Dependent Stress Levels

We give below the definition of two random variables being positively quadrant dependent, its con-
sequence and an example.

Definition 3.1. Two random variables Z1 and Z2, with the joint cumulative distribution function
G(z1,z2) and the corresponding joint probability density function g(z1,z2), are said to be positively
quadrant dependent (PQD) if and only if

P(Z1 > z1,Z2 > z2)≥ P(Z1 > z1)P(Z2 > z2)

for all z1 and z2.

Remark 3.1. The above definition is equivalent to

P(Z1 ≤ z1,Z2 ≤ z2)≥ P(Z1 ≤ z1)P(Z2 ≤ z2)

for all z1 and z2.
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Remark 3.2. Let the marginal cumulative distribution functions of Z1 and Z2 be respectively
denoted by GZ1 and GZ2 . Let the respective marginal probability density functions be given by
gZ1 = G′Z1

and gZ2 = G′Z2
. Then, for a PQD bivariate distribution, the joint distribution function may

be written as

G(z1,z2) = GZ1(z1)GZ2(z2)+w(z1,z2)

where w(z1,z2) satisfies the following conditions: (i) w(z1,z2)≥ 0
(ii) w(z1,∞)→ 0, w(∞,z2)→ 0, w(z1,−∞) = 0, w(−∞,z2) = 0

(iii)
∂ 2w(z1,z2)

∂ z1∂ z2
+gZ1(z1)gZ2(z2)≥ 0.

Note that if both Z1 ≥ 0 and Z2 ≥ 0 then the condition in (ii) may be replaced by w(z1,∞)→ 0,
w(∞,z2)→ 0, w(z1,0) = 0, w(−∞,0) = 0.

Lai and Xie [2000, 2006] have used these conditions to construct a family of PQD distributions
with uniform marginals.

Example 3.1. Farlie-Gumbel-Morgenstern bivariate distribution is given by

G(z1,z2) = GZ1(z1)GZ2(z2)[1+α(1−GZ1(z1))(1−GZ2(z2))] (3.1)

where 0 < α ≤ 1. It is easy to verify that Z1 and Z2 are positively quadrant dependent if α > 0.
When both the marginals GZ1 and GZ2 are exponential the joint distribution given in Equation

3.1 acquires the following form:

G(z1,z2) = (1− e−θ1z1)(1− e−θ2z2)[1+αe−θ1z1−θ2z2 ], (3.2)

for 0 < α ≤ 1. Here

w(z1,z2) = G(z1,z2)−GZ1(z1)GZ2(z2)

= αe−θ1z1−θ2z2(1− e−θ1z1)(1− e−θ2z2) (3.3)

for 0 < α ≤ 1. This w(z1,z2) satisfies the conditions (i)-(iii) mentioned above in Remark 3.2 and
hence Z1 and Z2 are PQD. This distribution is denoted by FGM(θ1,θ2,α).

In the context of Stress-Strength model proposed by Erylmaz and İşçioǧlu(2011), assume that
Y ∼ exp(λ ) and (Z1,Z2)∼ FGM(θ1,θ2,α). With these assumptions, it follows that

P[Z1:2 ≤ z] = 1−G(z,z) = G1(z)+G2(z)−G(z,z)

Here

G(z,z) = (1− e−θ1z)(1− e−θ2z)(1+αe−θ1z−θ2z)

G1(z) = 1− e−θ1z

G2(z) = 1− e−θ2z

P[Z1:2 ≤ z] = 1− e−θ1z +1− e−θ2z +(1− e−θ1z)(1− e−θ2z)(1+αe−θ1z−θ2z

= 1− e−(θ1+θ2)z−αe−(θ1+θ2)z(1− e−θ1z)(1− e−θ2z)
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pi,0 = P[Xi = 0]

= P[Yi < Z1:2]

=
∫

F(z)dP[Z1:2 ≤ z]

=

[
1+α(θ1 +θ2){

1
θ1 +θ2

− 1
2θ1 +θ2

− 1
θ1 +2θ2

+
1

2(θ1 +θ2)
}− αθ1

2θ1 +θ2
+

α(θ1 +θ2)

2(θ1 +θ2)

− αθ2

θ1 +θ2

]
−
[

θ1 +θ2

λ +θ1 +θ2
+α(θ1 +θ2){

1
λ +θ1 +θ2

− 1
λ +2θ1 +θ2

− 1
λ +θ1 +2θ2

+
1

λ +2(θ1 +θ2)
}− αθ1

λ +2θ1 +θ2
+

α(θ1 +θ2)

λ +2(θ1 +θ2)
− αθ2

λ +θ1 +θ2

]
Next,

P[Z1:2 ≤ z1,Z2:2 ≤ z2] = G(z1,z2)+G(z2,z1)−G(z1,z1)

= (1− e−θ1z1)(1− e−θ2z2)(1+αe−θ1z1−θ2z2)

+(1− e−θ1z2)(1− e−θ2z1)(1+αe−θ1z2−θ2z1)

−(1− e−θ1z1)(1− e−θ2z1)(1+αe−θ1z1−θ2z1)

pi,1 = P[Xi = 1]

= P[Z1:2 < Yi < Z2:2]

=
∫ ∫

z1<z2

(F(z2)−F(z1))dP{Z1:2 ≤ z1,Z2:2 ≤ z2}

=
∫

∞

0

∫ z2

0
(e−λ z1− e−λ z2)dP{Z1:2 ≤ z1,Z2:2 ≤ z2}

=
(1+α)(θ1 +θ2)

λ +θ1 +θ2
+

2α(θ1 +θ2)

λ +2θ1 +2θ2
− α(2θ1 +θ2)

λ +2θ1 +θ2
− α(θ1 +2θ2)

λ +(θ1 +2θ2)

−
[

(1+α)θ1θ2(2λ +θ1 +θ2)

(λ +θ1 +θ2)(λ +θ1)(λ +θ2)
+

(8α)θ1θ2(λ +θ1 +θ2)

(λ +2θ1 +2θ2)(λ +2θ1)(λ +2θ2)

−2αθ1θ2

{
(2λ +2θ1 +θ2)

(λ +2θ1 +θ2)(λ +2θ1)(λ +θ2)
+

(2λ +θ1 +2θ2)

(λ +θ1 +2θ2)(λ +θ1)(λ +2θ2)

}]

pi,2 = P[Xi = 2]

= P[Yi > Z2:2

=
∫

∞

0
F(z)dP{Z2:2 ≤ z}

=
∫

∞

0
e−λ zdP{Z2:2 ≤ z}

=
θ1

λ +θ1
+

θ2

λ +θ2
− θ1 +θ2

λ +θ1 +θ2
− α(θ1 +θ2)

λ +θ1 +θ2
+

α(2θ1 +θ2)

λ +2θ1 +θ2

+
α(θ1 +2θ2)

λ +θ1 +2θ2
− 2α(θ1 +θ2)

λ +2θ1 +2θ2
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Rk,n
1 =

n

∑
m=k

(
n
m

)
E[(F(Z1:2))

n−m(F(Z1:2))
m)]

=
n

∑
m=k

(
n
m

)∫
∞

0
(1− e−λ z)n−m(e−λ z)mdP(Z1:2 ≤ z)

=
n

∑
m=k

(
n
m

)∫
∞

0
(

n−m

∑
i=0

(
n−m

i

)
(−e−λ z)i)(e−λ z)m

[
(θ1 +θ2)e−(θ1+θ2)z

+α(θ1 +θ2){e−(θ1+θ2)z− e−(2θ1+θ2)z− e−(θ1+2θ2)z + e−2(θ1+θ2)z}

−{αθ1e−(2θ1+θ2)z−α(θ1 +θ2)e−(2θ1+θ2)z +αθ2e−(θ1+2θ2)z}
]

dz

=
n

∑
m=k

(
n
m

)∫
∞

0
(

n−m

∑
i=0

(
n−m

i

)
(−1)i(e−λ iz))(e−λmz)

[
(α +1)(θ1 +θ2)e−(θ1+θ2)z

−α(2θ1 +θ2)e−(2θ1+θ2)z−α(θ1 +2θ2)e−(θ1+2θ2)z +2α(θ1 +θ2)e−2(θ1+θ2)z]dz

=
n

∑
m=k

n−m

∑
l=0

(
n
m

)(
n−m

l

)
(−1)l

[
(α +1)(θ1 +θ2)

λ l +λm+θ1 +θ2
− α(2θ1 +θ2)

λ l +λm+2θ1 +θ2

− α(θ1 +2θ2)

λ l +λm+θ1 +2θ2
+

2α(θ1 +θ2)

λ l +λm+2θ1 +2θ2

]

Rk,n
2 =

n

∑
m=k

(
n
m

)
E[(F(Z2:2))

n−m(F(Z2:2))
m)]

=
n

∑
m=k

(
n
m

)∫
∞

0
(1− e−λ z)n−m(e−λ z)mdP(Z2:2 ≤ z)

=
n

∑
m=k

(
n
m

)∫
∞

0

(
n−m

∑
i=0

(
n−m

i

)
(−e−λ z)i

)
(e−λ z)m[θ1e−θ1z +θ2e−θ2z

−(α +1)(θ1 +θ2)e−(θ1+θ2)z +α(2θ1 +θ2)e−(2θ1+θ2)z

+α(θ1 +2θ2)e−(θ1+2θ2)z−2α(θ1 +θ2)e−2(θ1+θ2)z

=
n

∑
m=k

n−m

∑
l=0

(
n
m

)(
n−m

l

)
(−1)l

[
θ1

λ l +λm+θ1
+

θ2

λ l +λm+θ2
− (α +1)(θ1 +θ2)

λ l +λm+θ1 +θ2

− α(2θ1 +θ2)

λ l +λm+2θ1 +θ2
− α(θ1 +2θ2)

λ l +λm+θ1 +2θ2
+

2α(θ1 +θ2)

λ l +λm+2θ1 +2θ2

]
A couple of remarks are in order corresponding to Table 3.1 through Table 3.4 given below.

Remark 3.3. The survival and state probabilities for both the systems, 2-out-of-3 and 3-out-of-5,
when α = 0 coincide with the values reported in Table 1 and Table 2 of Eryilmaz and İşçioǧlu(2011).

Remark 3.4. For both the systems 2-out-of-3 and 3-out-of-5 systems and for various values of λ ,
θ1, θ2, and α (which can be taken to represent the degree of positively quadrant dependence), sur-
vival probabilities in states 1, 2 and marginal probabilities corresponding to states 0,1, 2 have been
tabulated in Table 3.1 and Table 3.2. These values reveal that the survival as well as marginal proba-
bilities are significantly different for two extreme cases, namely, α = 0 (random variables Z1 and Z2
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representing two stress levels are stochastically independent) and α = 1 (they being positively quad-
rant dependent). This goes to show that it is improper to disregard dependence structure between Z1

and Z2 and pretend that they are stochastically independent even though it lends itself to mathemat-
ical simplification. This observation about marginal probabilities becomes more pronounced as the
value of α approaches 1 especially when one considers expected number of components being in
state j (j = 0,1,2) for a given large value of n, the number of components.

3.1. Numerical results

Table 3.1: Tabulated values for a 2-out-of-3 system: PQD stresses

α R23
1 R23

2 r23
0 r23

1 r23
2

λ 0 0.893 0.607 0.107 0.286 0.607
=0.1 0.1 0.890 0.610 0.110 0.281 0.610

0.2 0.888 0.612 0.112 0.276 0.612
0.3 0.886 0.614 0.114 0.271 0.614

θ1 0.4 0.883 0.617 0.117 0.266 0.617
=0.2 0.5 0.881 0.619 0.119 0.261 0.619

0.6 0.878 0.622 0.122 0.256 0.622
0.7 0.876 0.624 0.124 0.252 0.624

θ2 0.8 0.873 0.627 0.127 0.247 0.627
=0.3 0.9 0.871 0.629 0.129 0.242 0.629

1 0.868 0.632 0.132 0.237 0.632

Table 3.2: Tabulated values for a 2-out-of-3 system: PQD stresses

α R23
1 R23

2 r23
0 r23

1 r23
2

λ 0 0.933 0.660 0.067 0.274 0.660
=0.1 0.1 0.932 0.661 0.068 0.271 0.661

0.2 0.930 0.662 0.070 0.268 0.662
0.3 0.929 0.664 0.071 0.265 0.664

θ1 0.4 0.927 0.665 0.073 0.262 0.665
=0.2 0.5 0.926 0.667 0.074 0.259 0.667

0.6 0.925 0.668 0.075 0.256 0.668
0.7 0.923 0.670 0.077 0.253 0.670

θ2 0.8 0.922 0.671 0.078 0.250 0.671
=0.5 0.9 0.920 0.673 0.080 0.248 0.673

1 0.915 0.674 0.085 0.240 0.674

Published by Atlantis Press
Copyright: the authors

44



S. Sabnis et al.

Table 3.3: Tabulated values for a 3-out-of-5 system: PQD stresses

α R23
1 R23

2 r23
0 r23

1 r23
2

λ 0 0.917 0.619 0.083 0.298 0.619
=0.1 0.1 0.914 0.622 0.086 0.293 0.622

0.2 0.912 0.624 0.088 0.288 0.624
0.3 0.909 0.627 0.091 0.283 0.627

θ1 0.4 0.907 0.629 0.093 0.278 0.629
=0.2 0.5 0.904 0.631 0.096 0.273 0.631

0.6 0.902 0.634 0.098 0.268 0.634
0.7 0.899 0.636 0.101 0.263 0.636

θ2 0.8 0.897 0.639 0.103 0.258 0.639
=0.3 0.9 0.894 0.641 0.106 0.253 0.641

1 0.892 0.644 0.108 0.248 0.644

Table 3.4: Tabulated values for a 3-out-of-5 system: PQD stresses

α R23
1 R23

2 r23
0 r23

1 r23
2

λ 0 0.955 0.641 0.045 0.314 0.641
=0.1 0.1 0.953 0.678 0.047 0.275 0.678

0.2 0.952 0.679 0.048 0.273 0.679
0.3 0.950 0.680 0.050 0.270 0.680

θ1 0.4 0.949 0.682 0.051 0.267 0.682
=0.2 0.5 0.948 0.683 0.052 0.265 0.683

0.6 0.946 0.685 0.054 0.262 0.685
0.7 0.945 0.686 0.055 0.259 0.686

θ2 0.8 0.944 0.687 0.056 0.256 0.687
=0.5 0.9 0.942 0.689 0.058 0.254 0.689

1 0.941 0.690 0.059 0.251 0.690

Conclusions

In a multi-state stress-strength model, when the lack of knowledge of the stress level, that causes a
component to be in an intermediate state, is looked upon as missing data and an EM algorithm is
used to estimate the unknown parameters and their parameter estimates are, in turn, used to estimate
system reliabilities of interest, this study shows that these reliability estimates, by and large, turn
out to be more efficient than their estimates based on the classical method of estimation, namely,
maximum likelihood estimation. Another important point that this research article brings out is that
the notion of stochastic dependence between two random variables representing two stress levels is
more realistic than assuming statistical independence just for the sake mathematical simplification.
It may further be noted that results for weaker forms of bivariate dependence like totally positive
of order two (T P2), stochastically increasing (SI), right tail increasing (RTI) and left tail decreas-
ing(LTD) etc. can be obtained on similar lines.
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