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Abstract—This work review the applications of artificial 
intelligence in the field of mineral processing in the last decade. 
The mineral processing industry is characterized for the lack of 
reliable models and on-line information about key process 
variables. Therefore, heuristic methods have been extensively 
used to accommodate the plant operation looking for better 
metallurgical results. Applications to flotation plants are 
discussed.   
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I.  INTRODUCTION  
The aim is to concentrate a raw ore in a technically 

coherent sequence of processes for the subsequent metal 
extraction stage. Usually, the valuable minerals are first 
liberated from the ore matrix by comminution and size 
separation processes, and then separated from the gangue using 
processes capable of selecting the particles according to their 
physical or chemical properties [1]. 

The objective of this contribution is to make a survey of the 
progresses and challenges in the field of artificial intelligence 
of flotation processes. A more complete discussion of the 
general state of the art and challenges in mineral processing can 
be found in [1, 2]. Although the presentation scope is quite 
large, only some key references are proposed for further details. 

A. Flotation Process 
Froth flotation processes have been over a century in the 

mineral processing industry. However, despite numerous years 
of research and development, flotation is still not fully 
understood and remains relatively inefficient, opening 
opportunities to novel methodologies for its optimization.  

Information about the input disturbances, process operating 
parameters and final product quality is required before 
optimization and control can be performed. As it is well known, 
the quality of measured information largely determines the 
efficiency of any implemented control system. Instrumentation 
for the measurement of important parameters such as: ore 
composition, flow rates and some ore specific properties (e.g. 
density, pH, pulp levels, particle size) have been available, 
however, some essential properties such as liberation degree, 
surface chemistry, bubble size distribution, bubble loading 
remain difficult to measure and infer [2, 3]. 

B. Modeling and Control Difficulties 
The processes are inherently stochastic and difficult to 

model, and the measurements quite inaccurate, while the most 
important variables are not measurable on-line. 

A large number of different variables are important in 
flotation process, such as: feed characteristics (mass flow rate, 
mineral composition, liberation size, particle size distribution, 
specific gravity, etc.), physicochemical factors (water quality, 
temperature, reagent types and concentrations, interactions 
between reagents and particles, etc.) and hydrodynamics 
(flotation circuit design, cell type, aeration rate, spatial 
distribution of bubbles and particles, etc.). Process mechanics 
and dynamics are very complex and it is vastly difficult to take 
reliable, accurate or direct measurements of certain process 
variables. Therefore, reliable models for simulation or control 
of flotation processes are hard to obtain [4].  

Distributed control systems of local objectives (e.g. pulp 
level, flow rates) are not sufficient to accomplish appropriate 
criteria for concentrate grade, therefore supervisory control 
systems with different attributes are needed. These systems 
should be adaptable to different computation platforms and 
should at least consider modules for: validation and 
reconciliation of process data, detection of operation and 
instrumentation problems and co-ordination of local control 
loops under an overall strategy [5]. 

Despite much research into both empirical and 
phenomenological based modeling, several issues remain. 
Multivariate predictive control is ideally the solution for high 
quality control. However, to be applicable without losing its 
benefits, good measurements, acceptable regulatory control of 
local objectives, reliable dynamic models, explicitly stated 
process constraints and new methods to promote robustness are 
needed [3, 6]. Flotation processes have weaknesses in most of 
those aspects. 

Furthermore, design of control systems are insufficiently 
thought out during plant design stages and major control 
variables are often only identified once the plant is operational 
[7]. This may result in poorly designed ad-hoc control systems. 
Even more, a majority of operators, metallurgists and 
management do not have a background in control engineering, 
making more difficult to model and control non-linear, 
complex processes, in large ranges of operating conditions [2, 5, 
7]. 
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Some critical aspects of control strategies are [3]: 
measurement instrumentation, data reconciliation, pattern 
recognition, fault detection and diagnosis, soft sensors, process 
and controller performance monitoring. The successful 
utilization of knowledge-based control strategies related to 
flotation is mostly dependent on the quality of information and 
process knowledge. 

II. ARTIFICIAL INTELLIGENT APPLICATIONS 
Soft computing is a collection of techniques in the area of 

artificial intelligence, which exploit the tolerance for 
imprecision, uncertainty and partial truth to achieve tractability, 
robustness and low solution cost. Soft computing 
methodologies and tools can assist in the design, development 
and operation of intelligent systems that are capable of 
adaptation, learning and operating autonomously [8]. 

These techniques allow the model and control designer to 
take advantage of the knowledge accumulated, either in a 
linguistic form or in a form of other data, to continually learn 
from the operational experience and to utilize the possibilities 
of intelligent algorithms for process optimization [9]. 

The most commonly used artificial intelligence methods in 
flotation plants are: fuzzy logic, artificial neural networks, 
genetic algorithms, support vector machines, decision trees and 
hybrids of these methods [8]. 

A. Application of Artificial Neural Networks  
Several authors have reach the conclusion that ANN 

models are superior in relation to statistical methods especially 
when applied to copper sulfide flotation concentration process. 
ANN modeling has also applied to describe the dependency of 
technological parameters of copper flotation process on the 
various process parameters, such as copper feed content, 
reagents dosage and feed size distribution [8]. 

ANN is used extensively within the areas of identification, 
categorization and interpretation of flotation froth images, 
within the computer vision systems [10]. One of the 
possibilities for neural network application within this area is 
the extraction of froth images features. However, neural 
networks with multiple hidden layers can be difficult to train 
and may not yield consistent or robust results [10]. Other 
application is found in the estimation of mean bubble diameter 
and bubble size distribution on the mineralized froth surface.  

B. Application of Fuzzy Logic  
Fuzzy logic is considered a suitable instrument for 

modeling complex and poorly-defined systems, since present 
capabilities to efficiently approximate reasoning rather than 
exact reasoning [8]. 

Fuzzy models have been used to characterize certain 
subsystems within flotation systems, such as: the pulp level, 
and air holdup. However, there are fuzzy logic models that can 
interpret the flotation processes as a whole, through the 
contents and recovery of valuable component in the concentrate 
and tailings. 

There are several fuzzy controllers already operating in the 
flotation plant, particularly for flotation columns. The main 
reason for this is the operational flexibility that exhibit flotation 
columns when compared to mechanical cell circuits. There are 
more variables available to shape its operation to the feed 
characteristics to meet the metallurgical targets [3, 5]. The level 
of detail with which some fuzzy models are developed, is 
reflective of a more developed approach. This is probably the 
consequence of easier, more comprehensive and approachable 
fuzzy logic tools, in comparison with ANN development tools 
[8].  

C. Application of Genetic Algorithms  
Genetic algorithms have the ability to initiate the search for 

an optimal solution from the series of possible solutions that 
represent a starting population of genetic algorithm. 

In the field of flotation system modeling, genetic algorithms 
are most commonly used for the optimization of flotation 
circuit configuration, competing with the expertise of 
practitioners [8]. However, it can be concluded that the 
majority of optimal solutions obtained by genetic algorithms 
only carry theoretical importance, since some practical aspects 
are not well defined. In practice, process complexity reduces 
the possibility of potential control and flotation process 
regulation. 

D. Application of Support Vector Machine  
Support vector machine (SVM) is a concept in machine 

learning, for a set of related supervised learning methods, that 
analyze data and recognize patterns used for classification and 
regression analysis [8]. 

SVM methods in flotation processes modeling are being 
increasingly accepted, however, the regression method is 
currently much more utilized than the classification method. 
The SVR is used in the prediction of concentrate grade and 
recovery, based on the features extracted from images of 
flotation froth. This method is often used in combination with 
other AI methods [8].  

E. Application of Decision Trees  
Decision trees are used in a form of predictive models 

which, based on the data collected about a specific problem, 
produce conclusions about the solution of the problem in 
question. There are only a few reports regarding the modeling 
of the flotation system by use of the inductive decision tree 
methods [8]. 

Regardless of the advantages with the application of 
decision trees in the modeling of flotation processes, some 
authors [10] have suggested the use of contemporary 
techniques such as the random forests method. 

F. Other Soft Computing Methods  
Other techniques can also be applied in the optimization of 

flotation models parameters, such as: particle swarm 
optimization, glowworm swarm optimization, gravitational 
search algorithm, differential evolution, artificial immune 
systems  and  cuckoo searching algorithm [8].  
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G. The Hybrid (Combined) Approach 
Some authors have suggested applying the hybrid approach 

to flotation system modeling, with the aim of providing a more 
accurate description of the flotation process performances. 
Hybrid modeling can encompass some of the soft computing 
methods, or a combination of those with classic mathematical 
modeling. 

For example, a fuzzy inference system as a part of the 
control strategy that was aimed to optimize the copper flotation 
process in a flotation column was discussed in [11]. Fuzzy 
model was structured through three logic tables (i.e. three sets 
of rules), where the errors in recovery and the concentrate 
grade were considered as the inputs, and the outputs were the 
desired froth depth, air flow rate and wash water flow rate. The 
authors concluded that the fuzzy system had provided smooth 
process dynamic responses (especially when constraints were 
imposed). The fuzzy system however required tuning of more 
parameters than the binary logic system and was 
consequentially, more time consuming in the initial stage when 
it was under supervised control. A hybrid approach reduces the 
dimensionality of the problem by combining expert and fuzzy 
systems. 

III. DISCUSSION 
Some aspects discussed here have been taken from the 

experience of many authors, among them [2, 3, 4, 7, 8, 9, 10 
and 12]. The discussion is organized in three sections regarding 
the constraints imposed by the process, those inherent to the 
artificial intelligent methods and finally a summary of the 
actual criticisms of practitioners and future expectations.  

A. On the Process Constraints 
The complexity of the flotation process, as well as the 

availability of quality industrial data and expert knowledge in 
flotation and soft computing have largely dictated the model 
development conditions. 

The multidimensional complexity of the mineral raw 
material and the flotation process explains why artificial 
intelligence methods are often considered suitable for 
interpretation and optimization of flotation systems. 

The stochastic nature of disturbances coming into a 
flotation process poses mathematical modeling and control 
problems difficult to standardize or look for a global solution. 
Usually, plant differences require adaptation of solutions 
according to its nature and constraints. 

Even when the mineral raw material properties were 
completely known, it still does not guarantee optimal process 
performance. In any case, a control system will have only 
limited capabilities for controlling the whole flotation system, 
since some phenomena such as, attachment, detachment, and 
entrainment, will always occur with a significant degree of 
unpredictability. On the other hand, all resources, that can be 
used to accommodate the operation of a unit, can become 
saturated as well. 

In flotation plants the first target will be to adjust the 
operating conditions looking for a solution that is close enough 

to optimal. This will be satisfactory accordingly to the actual 
process knowledge and constraints. 

B. On the AI Constraints 
A common characteristic of these applied ideas is that all of 

them are unique and can be implemented on an individual basis, 
and thus, have not yet been developed into a more generalized 
approach, or general model of the flotation process. It is 
evident that the application of artificial intelligence methods in 
flotation systems research is still in its preliminary phase [8].  

For control and management people in flotation plants, the 
application of fuzzy logic and neural networks can be aid for 
commercial software packages. Other artificial intelligence 
methods are less understood and therefore also the adequacy of 
application with the method properties. 

All the methods presented here are considered suitable 
enough to be the basis of an intelligent system, but the methods 
used are very different when we consider their characteristics. 
In the cases discussed in the literature, there is an attempt to 
cover various sorts of problems that researchers and engineers 
encounter on a daily basis, with the same tools. 

From experience, it is difficult to reason that different 
artificial intelligence methods can cover or solve all of the 
same problems. It is more logical to assume that the answer to 
the optimal application of these methods lies within a certain 
combination or even synthesis of these methods leading to 
hybrid approaches. 

The true hybrid approach would mean that the artificial 
intelligence methods are mutually supplementing each other, 
but there have only been a few examples of this in practice. 
The main reason for this could be the lack of knowledge of 
potential outcomes and results. A hybrid approach may 
improve the results in flotation process optimization.  

C. Today Criticism 
Artificial neural networks have shown effective results in in 

predicting process parameters of flotation processes. The 
results obtained by the use of a single method are often better 
in comparison to other regression methods. Fuzzy logic models 
are also considered to be an applicable tool for the creation of 
expert systems. It can be reasoned that both genetic algorithms 
and decision trees are still yet to be developed in a more 
practical sense. It seems, however, that the hybrid types are the 
most promising and reliable soft computing methods thus far. 

The majority of published papers have been written on the 
topics of improvements, good or positive results, and even the 
successes in flotation process modeling. Some important facts, 
however, should be taken into account [8]: 

• Many studies include only laboratory or pilot plant tests, 
with only a limited number of experiments, some of which are 
developed only on the grounds of a two-phase system (without 
the solid phase that basically dictates the flotation process), or 
purely on theoretical considerations. 

• Many studies shown advantages of artificial intelligence 
methods over more conventional and known methods based on 
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idealized simulations (not including all constraints and variety 
of real problems). 

• Industrial data-based research is commonly taken into 
account only for a short period of time during plant operation, 
and it is therefore arguable as to whether the same model is 
able to describe the process as effectively when applied for a 
longer period of time. 

• Nearly all the research is related only to a single stage of 
flotation (the most common is rougher flotation), therefore it 
completely disregards the events in other flotation stages, 
which are certainly still important to the characterization of the 
flotation process as a whole. 

In particular in froth image attributes interpretation there 
are some issues to consider [2010]:  

• It is commonly observed that the surface bubbles of 
flowing froths are significantly larger than those in the layers 
immediately below; the lower layers forming the predominant 
portion of the volume overflowing into the launder. This cannot 
be corrected for readily. 

• The surface film size distribution is not necessarily 
representative of the bubble size distribution in the underlying 
froth layer.  

• The watershed method often over-segments larger bubbles 
and under-segments smaller bubble sizes. 

In general, unfortunately these techniques are quite 
complex and the proposed modeling and control architecture is 
so difficult to be implemented in a robust form. 
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