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Abstract—For two vertices u  and v  in a graph G , we denote by 

( , )Gd u v   the distance between u  and v . If ( , ) Gd u v i , we say the 

vertex v  is  an i -neighbor of u . Let s , t  and k  be nonnegative 
integers. An ( , )s t -relaxed (2,1)k L -labeling f  of G  is an 
assignment of labels from {0,1, , } k  to the vertices of G  if each of 

the following three conditions is met: (1) ( ) ( )f u f v   if 

( , ) 1Gd u v ; (2) for any vertex u  of G , there are at most s  1-

neighbors of u  receiving labels from { ( ) 1, ( ) 1} f u f u ; (3) for 

any vertex u  of G , the number of 2-neighbors of u  assigned the 
label ( )f u  is at most t . The ( , )s t -relaxed (2,1)L  -labeling 

number ,
2,1 ( ) s t G   of G  is the minimum k  such that G  admits an 

( , )s t -relaxed k - (2,1)L -labeling. Huang and Wu in [IEEE 
Transactions on Computers 46 (1997) 484--490] introduced the 
balanced hypercube nBH  as an interconnection network topology 

for computing systems. In this paper, the values of the ( , )s t -

relaxed (2,1)L -labeling numbers of balanced hypercubes 2BH  

and 3BH  with different pairs ( , )s t  are given. 

Keywords-relaxed L(2,1)-labeling problem; balanced hypercube; 
channel assignment problem; graph labeling 

I. INTRODUCTION 

For two vertices u  and v  in a graph G , we denote by 
( , )Gd u v  the distance between u  and v . If ( , )Gd u v i , we say 

the vertex v  is  an i -neighbor of u . We denote by ( )G  the 

maximum degree of a graph G  and 2 ( )G  the maximum 

number of 2-neighbors of a vertex of G . Suppose ( , )s t  and 

( , )s t   are two pairs of nonnegative integers. If s s   and 

t t , then we say ( , )s t  is less than or equal to ( , )s t  , and we 

write ( , ) ( , )s t s t  .  

A kind of Channel Assignment Problem (CAP) asks for 
assigning frequencies to transmitters in a network with the aim 
of avoiding undesired interference. Suppose there are many 
radio transmitters in an area, transmitters that are close must 
receive frequencies that are sufficiently apart, for otherwise, 
they may interfere with each other so that they can not work 
normally. On the other hand, the spectrum of frequencies is a 
very important resource on which there are increasing demands, 

and they may be very limited. Therefore, we need an efficient 
management of the spectrum. 

As a theoretical model of the Channel Assignment Problem, 
the (2,1)L -labeling problem was proposed and studied. It has 
been attracted considerable attention in the literature [1], [3], 
[4], [5], [6], [7], and there are more than 200 papers to studied 
CAP as well as its related problems. A k - (2,1)L -labeling f  

of a graph G  is an assignment of labels from {0,1, , }k  to the 
vertices of G  such that vertices at distance two get different 
labels and adjacent vertices get labels that are at least two apart. 
We say the value k  to be the span of f . The  -number 

( )G   of G  is the minimum span k  such that G  admits a k -

(2,1)L -labeling. 

With the increasing demands of frequencies, the spectrum 
of frequencies may be a very limited. In such a case, there may 
be no optimal solution of the (2,1)L -labeling of a graph G , 

i.e., it is impossible to obtain an (2,1)L -labeling of G  with too 
smaller span  . This leads to the proposal of the concept of the  
( , )s t -relaxed (2,1)L -labeling which models CAP in this case 

[14]. Let s , t  and k  be nonnegative integers. An ( , )s t -

relaxed (2,1)k L -labeling f  of a graph G  is an assignment 

of labels from {0,1, , }k  to the vertices of G  if the following 

three conditions are met: (1) ( ) ( )f u f v   if ( , ) 1Gd u v  ; (2) 
for any vertex u  of G , there are at most s  1-neighbors of u  
receiving labels from { ( ) 1, ( ) 1}f u f u  ; (3) for any vertex u  

of G , the number of 2-neighbors of u  assigned the label ( )f u  

is at most t . The above conditions are called the ( , )s t -relaxed 

(2,1)L  conditions. 

The ( , )s t -relaxed (2,1)L -labeling number ,
2,1 ( )s t G  of G  

is the minimum k  such that G  admits an ( , )s t -relaxed 

(2,1)k L -labeling. If ( , ) (0,0)s t   , the ( , )s t -relaxed 

(2,1)L -labeling is the standard (2,1)L -labeling, and we 

simply write 0,0
2,1 ( )G  as 2,1( )G . 

The ( , )s t -relaxed (2,1)L -labeling problem has been 
studied in the literature for many classes of graphs, including   
the hexagonal lattice[11], the triangular lattice[12], and the 
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square lattice[13]. It is of interest to investigate other classes of 
graphs. In this paper, we investigate the values of the ( , )s t -

relaxed (2,1)L -labeling numbers of balanced hypercubes 2BH  

and 3BH  with different pairs ( , )s t . 

II. COMPUTER SEARCH 

We developed a backtracking procedure labeling  which  is 
implemented in C++ language. The function check_labeling, 
called by labeling, will check if the current labeling satisfies 
the ( , )s t -relaxed (2,1)L  conditions. 

void labeling(int ip, char **g, int **dist, int nv, 
              int tot_c, int crs[], char **gc， int s, int t) 
{ 

int i; 
if(ip == nv){ 

g_cn++; 
for(i=0; i<nv; i++){ 
    printf("%d ", crs[i]); 
} 
printf("\n"); 
 
int *rs = new int[nv]; 
memcpy(rs, crs, nv*sizeof(int)); 
graph *p_graph = new graph[ng_sz]; 
memcpy(p_graph, ng_iso, ng_sz); 
kg.p_graph = p_graph; 
kg.g_sz = ng_sz; 
g_crs_map[kg] = rs; 
return ; 
} 
for(i=0; i<tot_c; i++) { 
     if(check_labeling(ip,i,crs,tot_c, dist,s,t))  { 
          crs[ip] = i; 
          labeling(ip+1,g,dist,nv,tot_c, crs,gc,s,t); 
     } 
} 
} 
The backtracking algorithm corresponds to a search tree. 

The meaning of the parameters are as follows. 

ip:    controls the level of this search tree; 

g:     the tested graph; 

dist:  distance matrix of the graph g; 

nv:    vertex number of g; 

tot_c: number of colors, i.e., tot_c=k+1 when testing (s,t) 
relaxed k-L(2,1)-labeling; 

crs:   an array to store colors of vertices of g; 

gc:  another graph needed to be compared with g; 

By using the above approach, we succeed to obtain some 
optimal ( , )s t -relaxed (2,1)L -labelings of balanced 

hypercubes 2BH  and 3BH . 

III. RESULTS 

Huang and Wu in [15] introduced the balanced hypercube 

nBH  as an interconnection network topology for computing 
systems as follows. 

Definition 1: For 1n  , nBH  has 4n  vertices, and each 

vertex has a unique n -component vector on {0,1, 2,3}  for an 

address, also called an n -bit string. A vertex 0 1 1( , , , )na a a   
connects to the following 2n  vertices: 

0 1 1

0 1 1

(( 1) mod 4, , , )

(( 1) mod 4, , , )
n

n

a a a

a a a





 




 

0

0

0 1 1

1 1

0 1 1

1 1

(( 1)mod4, , , , ( 1) mod4,

, , )

(( 1)mod4, , , , ( 1) mod4,

, , )

a
i i

i n
a

i i

i n

a a a a

a a

a a a a

a a



 



 

   




  








 

It can be seen that 2 4BH C  and 3 8 1[2 ]BH C K , where 

8 1[2 ]C K  is the lexicographic product of 8C  and 12K . The 

graphs 2BH  and 3BH  are presented in Fig. 2 and Fig. 3, 
respectively. 

By using procedure 1, we are able to compute the ,
2,1
s t -

numbers of 2BH  and 3BH . Before calling procedure 1, we set 
_ 0g cn  . After the procedure terminates, the tested graph has 

an ( , )s t -relaxed (2,1)k L -labeling if _ 0g cn   . 

We show an example to obtain the value of 0,0
2,1 2( ) 7BH   

as follows. 

Example 1: 0,0
2,1 2( ) 7BH   

 

FIGURE I.  THE GRAPH 2BH  
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TABLE I. ,
2,1
s t -NUMBER OF 2BH  

t 
s 

0 1 2 3 4   5 

0 
1 
2 
3 
  4 

7 
7 
7 
7 
7 

4 
4 
3 
3 
3 

4 
4 
3 
3 
3 

4 
4 
3 
3 
2 

4 
3 
3 
3 
2 

4 
2 
2 
2 
1 

Proof: By setting the parameters in the procedure labeling  
that 0, 0, _ 7s t tot c    and the global variable _ 0gc n  , 
when the procedure terminates, we have that the variable 

_ 0gc n  . Therefore, 2BH  does not admit a (0,0) -relaxed 6-
(2,1)L -labeling, and so 0,0

22,1 ( ) 7BH  . The labeling depicted 
in Fig. 3 is a (0,0) -relaxed 7- (2,1)L -labeling of 2BH , and so 

0,0
22,1 ( ) 7BH  . 

 

FIGURE II. THE GRAPH 3BH  

In the following, we will use patterns to represent the 

labelings of  2BH  and 3BH . The pattern 

5 2 3 0

1 4 7 2

6 4 0 6

3 7 5 1

 
 
 
 
 
 

  is the 

labeling corresponding to Fig. 3. 

 

FIGURE III. THE GRAPH 2BH  

In [14], the following five lemmas were established. 

Lemma 1: Let G  be a graph and H  a subgraph of G . 
Then , ,

2,1 2,1( ) ( )s t s tH G    for any two nonnegative integers s  

and t . 

Lemma 2: Let ( , )s t  and ( , )s t   be two pairs of nonnegative 

integers. If ( , ) ( , )s t s t   , then , ,
2,1 2,1( ) ( )s t s tG G      

Lemma 3: If ( )s G   and 2 ( )t G   , then ,
2,1 ( )s t G   

( ) 1G  . 

It can be seen that 2( ) 4BH  , 2 2( ) 5BH  , 

3( ) 6BH  , and 2 3( ) 13BH  . With the above procedure, 

we are able to determine the ,
2,1
s t  -numbers of 2BH   for 

4, 5s t  , and of 3BH  for 6, 13s t  . Together with 

Lemmas 1-3, the results of ,
2,1
s t -numbers of 2BH  and 3BH  for 

all pairs of ( , )s t  can be determined, and they are shown in 

Table I and II, respectively. Let ,s tP  and ,s tQ  be the patterns of 

an ( , )s t -relaxed (2,1)L -labeling of 2BH  and 3BH , 
respectively. We provide some patterns (which give upper 
bounds of ,

2,1
s t -numbers) as follows. 

3,0

5 3 2 7

4 6 1 3

2 7 6 4

5 0 0 1

 
 
 
 
 
 

P  , 1,3

4 2 3 0

2 4 1 2

0 3 2 4

4 0 0 1

 
 
 
 
 
 

P  , 

0,5

2 4 2 0

4 2 4 2

0 3 0 4

4 0 4 1

 
 
 
 
 
 

P  , 3,4

3 1 3 2

1 0 1 0

3 2 0 1

1 0 1 0

 
 
 
 
 
 

P  , 
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3,5

2 0 2 0

0 2 0 2

2 0 2 0

0 2 0 2

 
 
 
 
 
 

P  , 4,2

2 3 2 1

3 0 1 3

2 3 1 0

0 1 0 1

 
 
 
 
 
 

P  , 

4,4

1 2 2 0

2 1 0 2

0 1 0 1

1 0 1 0

 
 
 
 
 
 

P  , 4,5

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 
 
 
 
 
 

P  . 

TABLE II. 
,

2,1
s t

-NUMBER OF 3BH
 

t 
s 

0 1 2 3 4 5 6 7 8 9 10 11 12 
13

0 
1 
2 
3 
4 
5 
 6 

10 
7 
7 
7 
7 
7 
7 

6 
6 
4 
4 
3 
3 
3 

6 
6 
4 
4 
3 
3 
3 

5 
5 
4 
4 
3 
3 
3 

5 
5 
4 
4 
3 
3 
3 

4 
4 
3 
3 
3 
3 
3 

4 
4 
3 
3 
3 
3 
3 

4 
4 
3 
3 
3 
3 
2 

4 
4 
3 
3 
3 
3 
2 

3 
3 
3 
3 
3 
3 
2 

3 
3 
3 
3 
3 
3 
2 

3
3
3
3
3
3
2

3
3
3
3
3
3
2

2
2
2
2
2
2
1

0,0

10 7 3 1 1 4 6 10

6 9 0 4 3 0 9 7

3 9 1 7 7 0 9 4

10 4 6 0 1 6 3 10

0 3 6 10 9 7 3 0

4 1 9 7 6 10 1 4

6 1 9 3 4 10 1 7

0 7 4 10 9 3 6 0

Q

 
 
 
 
 
   
 
 
 
 
  

 , 

1,2

1 4 1 4 2 6 6 4

0 2 3 1 5 0 5 0

3 6 3 6 3 0 6 1

1 2 6 4 0 4 2 6

6 2 6 1 1 4 5 3

3 6 1 5 5 0 3 5

4 0 3 0 3 6 4 2

0 5 1 2 6 2 2 4

Q

 
 
 
 
 
   
 
 
 
 
  

 , 

1,4

2 4 3 5 5 0 4 0

4 2 5 3 0 5 1 4

1 5 3 1 3 5 3 1

5 2 5 3 0 2 1 4

0 3 0 5 5 3 3 0

3 1 4 0 2 5 0 2

0 2 0 2 5 1 4 1

2 0 2 4 0 4 0 4

 
 
 
 
 
   
 
 
 
 
  

Q  , 

1,8

2 0 2 0 4 1 4 0

0 3 4 2 0 3 0 4

4 2 0 4 4 2 4 2

2 4 4 0 1 4 2 0

3 0 2 0 3 1 4 0

1 4 0 2 1 3 0 4

4 2 0 4 4 2 0 2

2 4 4 0 2 4 2 0

 
 
 
 
 
   
 
 
 
 
  

Q  , 

3,4

3 2 4 0 4 0 0 3

2 4 0 4 0 1 3 1

0 2 4 1 3 4 2 3

3 1 1 0 4 3 3 2

4 1 1 3 0 2 1 2

3 0 3 1 3 0 2 1

4 2 0 3 0 1 2 4

2 4 4 0 1 4 0 2

 
 
 
 
 
   
 
 
 
 
  

Q  , 

5,12

3 1 0 2 3 1 0 1

1 0 1 0 1 0 1 0

0 2 3 1 0 2 3 1

1 3 1 0 1 0 1 0

3 2 3 1 3 2 0 2

1 3 1 0 1 0 1 0

3 1 0 2 3 1 0 1

1 0 1 0 1 0 1 0

 
 
 
 
 
   
 
 
 
 
  

Q  , 

6,6

3 1 0 2 3 2 2 1

2 0 2 3 1 0 1 0

0 3 0 2 3 2 3 1

3 0 2 0 1 3 1 3

0 3 3 2 0 2 3 1

3 0 1 3 2 0 1 3

2 3 1 0 1 0 1 0

0 1 0 1 0 1 0 1

 
 
 
 
 
   
 
 
 
 
  

Q  , 

6,12

1 2 1 2 2 0 2 0

2 1 2 1 0 2 0 2

0 2 1 2 2 1 2 0

2 0 2 1 1 2 0 2

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

 
 
 
 
 
   
 
 
 
 
  

Q  , 

6,13

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

 
 
 
 
 
   
 
 
 
 
  

Q  . 
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IV. CONCLUSION 

The proposal of the ( , )s t -relaxed (2,1)L -labeling problem 
is motivated with Channel Assignment Problem (CAP) with 
limited spectrum frequencies. In this paper, we applied a 
backtracking algorithm to study the ( , )s t -relaxed (2,1)L -
labeling for an interconnection network topology for 
computing systems:  the balanced hypercubes 2BH  and 3BH . 
We succeed to determine all the ( , )s t -relaxed (2,1)L -labeling 

numbers of 2BH  and 3BH  for all cases ( , )s t . Since the ( , )s t -

relaxed (2,1)L -labeling numbers of few classes of graphs are 
known (e.g., square lattice, triangular lattice, hexagonal lattice), 
it is still of interest to investigate the ( , )s t -relaxed (2,1)L -
labeling numbers of other classes of graphs. 
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