
An Improved Algorithm for Adaptive Streaming

Siming Zhang1, Xueshi Ge2 and Geng Wang1,*
1School of Software, Shanghai Jiao Tong University, Shanghai, China

2Naval Academy of Armament, Shanghai, China
*Corresponding author

Abstract—With the development of network facilities and the
wide spread of smart phones, traditional single bitrate video
streaming strategy is no longer able to satisfy people's growing
needs for high quality video streams. Most of today's adaptive
streaming strategies are based on bandwidth estimation such as
Smooth Streaming by Microsoft IIS and HDS by Adobe.
Bandwidth estimation is less accurate in network jitters which
may lead to too many unnecessary stream-switches. Some other
strategies are based on client-side metrics monitoring such as
dropped frames, average throughput, CPU usage, buffer level. In
this paper, we present a strategy that combines bandwidth
estimation and client-side metrics monitoring. The client-side
controller monitors the variation of the buffer level and triggers
the stream-switching event accordingly. When the level of the
buffer reaches to a relatively stable state, the bandwidth-
estimation event is triggered to estimate the available bandwidth.
If higher bitrate stream is available with the currently estimated
bandwidth provided, then the stream-switching event is triggered
to switch to a higher bitrate stream.

Keywords-adaptive streaming; bandwidth estimation; buffer
level variation

I. INTRODUCTION

With the continuous improvement of Internet facilities and
the growing popularity of video applications, the need for high
quality video streams are increasing dramatically. But the need
for high bitrate video streams usually conflicts with the need
for seamless experience due to the network jitter like
bandwidth fluctuation and packet loss. Adaptive video
streaming is a technique that dynamically switches the stream
that best fits the network bandwidth and at the same time
providing the most seamless playback experience.

To stream a video adaptively, the server transcodes the
video stream into multi-bitrate(resolution) streams, and
transports the stream according to clients' available bandwidth.
When bandwidth drops or increases, the stream is switched to
lower or higher level to make the best use of network resource.
The logic of stream-switching is usually implemented on client
side to meet their own demands so that the client side is more
flexible and the server side is decoupled from the detail of the
client side logic. Basically stream-switching strategy is based
on bandwidth estimation or client-side buffer level monitoring.

A. Bandwidth-Estimation Based Strategy

A client may estimate bandwidth based on its historical
throughput before it requests a new video segment from server.

Let estimatedB be the estimated bandwidth, curB be the bitrate of

current stream, 1curB be the bitrate of one level up/down of

current stream, and nextB be the bitrate of next segment to

request. The logic may seem like the following:

1 1

1

1

,

,

,

c u r e s t c u r

n e x t c u r c u r e s t c u r

c u r e s t c u r

B B B

B B B B B

B B B




 





  


   
 

where  is a user-defined factor to minimize the effect of
inaccurate bandwidth estimation.

B. Buffer-Level Based Strategy

This strategy decides when stream-switch will be triggered

by setting buffer thresholds
high
T and

low
T and monitoring the

buffer level
cur
T on client side.

1

1

,

,

,

c u r c u r h i g h

n e x t c u r l o w c u r h i g h

c u r c u r l o w

B T T

B B T T T

B T T





 
  
 

But the effectiveness of buffer-level based strategy is

strongly influenced by values of
low
T and

high
T . If

low
T is set

too low, it may not be able to avoid buffer outage, but if it is set
too high, it may cause unnecessary switches. The same goes for

high
T .

C. Buffer-Variation Based Strategy

This is a branch of buffer-level based strategy, only it uses
the buffer-level variation instead of buffer-level thresholds as
the basis for stream-switching. When it detects that the buffer-
level drops continuously, it switches to a lower level to avoid
buffer outage. The problem with this strategy is its inability of
switching to a higher level stream when the bandwidth is
improved. The client side player merely requests segment
aggressively, which means it would try to maintain a stable
buffer level. When the buffer level seems to outbound the
target buffer level, it may slow down its rate of requesting new
segments.

The strategy proposed in this paper combines the advantage
of buffer-variation and bandwidth-estimation based strategies.
When the network is unstable, it uses the buffer variation as its
basis to switch the stream to avoid buffer outage. When the

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 263

network is rather stable, it estimates the bandwidth to decide
whether it's available for a higher level stream.

The paper is organized as follows. Section II summarizes
the related work concerning video streaming techniques. In
Section III, an improved adaptive algorithm is proposed. And
Section IV describes the tests and results. Section V draws the
conclusion.

II. RELATED WORK

A great work of research has been made to improve the
multimedia Quality of Experience during the last few decades,
which we summarize as follows:

A. Video Encoding

H.264/SVC is an extension to the H.264/MPEG-4
Advanced Video Coding standard for video compression. It
standardizes the encoding of a high-quality video bitrate stream
that contains a base layer and one or more enhance layer(s). An
enhance layer is derived from original stream by dropping
packets or frames to reduce the bandwidth required for the
subset stream. The enhance layer can represent a lower spatial
resolution (smaller screen), lower temporal resolution (lower
frame rate), or lower video quality. This allows representing
different bitrate streams in different frame rate, resolution and
quality with only one single video stream. A study by Travis et
at [1] shows how we can improve video Quality of Service
(QoS) with SVC streams.

B. Stream Delivering

To deliver video streams, techniques like error concealment
and error recovery can be applied. And protocols like Real-time
Transport Protocol (RTP) [3] and Real-time Message Protocol
(RTMP) are proposed. RTP is used together with RTP Control
Protocol (RTCP). While RTP is used to transport the video data,
RTCP is used to transport statistics like packet loss rate or time
delay that can be used to support stream-switching decisions.
But RTP/RTCP based applications are more difficult to
develop and deploy and usually need firewall traversing.

Dynamic Adaptive Streaming over HTTP (DASH) [4] is
provided as another way. In DASH, a video stream is
transcoded into multiple different bitrate streams. Video
players on the client side can switch streams based on network
environment. Compared with traditional RTP/RTCP based
applications, DASH provides inherent firewall traversing, and
is easier to integrate into existing web services. These years,
different implementations based on DASH have been
developed such as HLS by Apple and Smooth Streaming by
Microsoft.

C. Client-Side Techniques

The most commonly used techniques on client side are data
buffering and bandwidth estimation.

With data buffering, the video player can combat network
jitter and avoid playback interruptions to some extent. By
monitoring the client side buffer level, the video player can
adjust the playback interval to meet the data receiving rate in
order to improve clients’ quality of experience [5]. But it could

not switch to higher bitrate streams when there is enough
bandwidth provided, especially in live streaming.

To switch to a higher stream, the client side video player
needs to estimate the available bandwidth. When the estimated
bandwidth is not enough for current video stream, it switches to
a stream with lower bitrate, and when the estimated bandwidth
is enough for next level stream with higher bitrate, it switches
to next level stream. To estimate the available bandwidth, the
client may trigger a traffic probing event every few seconds
and takes the throughput as an approximation of available
bandwidth [2]. The problem is that it wastes too much network
resources and may cause unnecessary network congestion. In
Dash, streams are spliced into segments and then sent to client.
Client can take the throughput of every segment as an
approximation of the available bandwidth, which is more
resource-friendly. But bandwidth estimation based techniques
may cause too many unnecessary switches due to the
inaccuracy of estimation when the network is unstable.

In this paper we dedicated to a new strategy that combines
the advantages of data buffering and bandwidth estimation
together.

III. AN IMPROVED ALGORITHM

Assume the video server has the original stream transcoded
into n streams with different bitrates:

 | 1,2,...,
i

L l i n  (1)

The information of available video stream
i
l and its

bitrate is listed in a manifest file. When the client video player
starts, it first requests the manifest file from the server and
parse it to get the video stream list and start to request video
stream from the lowest level. Client can only choose from
L in later requests for video streams.

In our strategy, there are three states: Adjust State, Network
Stable State, and Stream Switch State.

A. Adjust State

In Adjust state, network environment is considered unstable,
buffer-level on client’s side drops or increases dramatically. If
current bitrate of requested stream is beyond the available
bandwidth, the buffer-level drops continually and finally leads
to buffer outage. If the buffer level drops continuously, the
client switches to a lower level video stream that is available in
stream list L to avoid buffer outage. When the bandwidth fits
the video stream bitrate, the buffer-level would eventually get
stable, and client switches to Stable state.

However, when the buffer level increases continuously, it
indicates that the client has some trouble decoding current
video stream which would result in slower playback rate. In
this case, the client also needs to switch to a lower level to
avoid buffer overflow and so the bitrate of the stream fits the
client's ability of decoding.

264

FIGURE I. STATE TRANSFER

B. Stable State

In Stable state, the bandwidth is considered sufficient and
the buffer level is considered stable. However the problem is,
the buffer level variation in stable state would not reflect
bandwidth improvement. It is due to the shortcomings of
buffer-level variation strategy. As previous bandwidth is
sufficient, packet loss and retransmission has little influence on
buffer-level, the buffer-level would remain stable even
bandwidth is improved, which means stream-switching event
would not be triggered. So bandwidth and the opportunity for
better video quality is wasted when there is a higher video
stream available.

To overcome this, the client estimates the available
bandwidth. If the available bandwidth is larger than the bitrate
of current stream, the client switches to Switch state to switch
to a higher level, otherwise, it stays in Stable state and estimate
the bandwidth later. Because bandwidth estimation is triggered
in Stable state, the network condition is considered stable. So
without the effect of network fluctuation, the estimated
bandwidth is more accurate and thus would not cause many
unnecessary stream switches. When buffer level fluctuates, the
client switches back to Adjust state.

C. Switch State

In Switch state, the client checks if the available bandwidth
estimated in Stable state is sufficient for a higher level stream.
By comparing the estimated bandwidth with the bitrate of
streams in L, the client decides whether to switch to a higher
level. If a higher stream is available, the client switches to it,
otherwise, it switches back to Stable state.

When client starts, it start to request stream from the lowest
stream level, and switches to Adjust state. If the bandwidth is
sufficient for the lowest level stream, client would reach Stable
state a few cycles later. In Stable state, client estimates
bandwidth in T seconds. If estimated bandwidth is sufficient
for higher level stream, client switches to Switch state and starts
to request higher stream from next request on.

The flow of the algorithm is described in Figure 2.

FIGURE II. IMPROVED ALGORITHM

IV. EXPERIMENTS

We use iproute2 to control the network. Experiments are
conducted under the following indices:

1. estimated bandwidth and real bandwidth.

2. buffer level variation.

3. stream-switch.

In this paper we use dash.js as our client video player.
Original stream is transcoded into multiple streams with
different bitrate on the server side. We use the average
throughput of recently received segments as the estimated
bandwidth.

FIGURE III. ESTIMATED BANDWIDTH

265

As Figure 3 shows, the estimated bandwidth would slowly
converge to the real bandwidth. But bandwidth is not the only
factor that can influence the stream-switching decision, other
metrics like CPU load and memory usage should also be
considered.

Buffer level could effectively reflect bandwidth drop and
other metrics such as CPU load and memory usage, as shown
in Figure 4 and Figure 5. If bandwidth is sufficient, buffer level
would remain stable. If buffer level drops continuously, it can
be inferred that the network bandwidth is not sufficient.
However, if the buffer level grows continuously beyond the
target buffer level, the client should also switch down to a
lower level stream because of the client's inability of decoding
the stream in normal rate.

.

FIGURE IV. BUFFER LEVEL IN STABLE STATE

FIGURE V. BUFFER LEVEL VARIATION

By monitoring buffer level variation in Adjust state, the
client can decide when to switch down to a lower level. When
the client transfers to Stable state, it uses the estimated
bandwidth to decide if it can switch to a higher level, as shown
in Figure 6.

V. CONCLUSION

Traditional data buffering technique for adaptive video
streaming is easy to understand and implement, but it’s not able
to respond to better bandwidth. While bandwidth estimation
technique is able to respond to better bandwidth, its accuracy is
often affected by network fluctuation.

FIGURE VI. STREAM SWITCHING

Figure 7 shows the result of our new strategy combining
buffer level variation and bandwidth estimation together. From
these Figures we can see that our new strategy estimates the
bandwidth less frequent and is better in avoiding buffer outages.

FIGURE VII. STREAM SWITCHING

In this paper we propose a new strategy for adaptive video
streaming to combine data buffering technique and bandwidth
estimation technique together. The new strategy in this work
aims at providing clients with the best quality of video stream
and seamless quality of experience. Experiments in IV show
our new strategy effectively.

REFERENCES
[1] Travis Andelin, Vasu Chetty, Devon Harbaugh, Sean Warnick, and

Daniel Zappala. Quality selection for dynamic adaptive streaming over
http with scalable video coding. In Proceedings of the 3rd Multimedia
Systems Conference, pages 149–154. ACM, 2012.

[2] Luca De Cicco and Saverio Mascolo. An adaptive video streaming
control system: Modeling, validation, and performance evaluation.
Networking, IEEE/ACM Transactions on, 22(2):526–539, 2014.

[3] Henning Schulzrinne, Stephen Casner, Ron Frederick, and Van Jacobson.
Rtp: A transport protocol for real-time applications. Technical report,
2003.

[4] Thomas Stockhammer. Dynamic adaptive streaming over http–:
standards and design principles. In Proceedings of the second annual
ACM conference on Multimedia systems, pages 133–144. ACM, 2011.

[5] Ya-Fan Su, Yi-Hsuan Yang, Meng-Ting Lu, and Homer H Chen.
Smooth control of adaptive media playout for video streaming.
Multimedia, IEEE Transactions on, 11(7):1331–1339, 2009.

266

