
Parallelization of Adaboost Algorithm on Intel MIC
Architecture

Haibiao Luo, Haojie Yuan, Shendong Cheng, Ying Li, Feng Yuan and Mingzhu Wei
Institute of Software Application Technology, Guangzhou & CAS, Guangzhou, China

Abstract—The Adaboost algorithm plays important role in many
machine learning applications. But the computation cost is real
expensive when the candidate features are in large amount. In
this paper, we introduce a parallel strategy of the Adaboost
algorithm on Intel CPU+MIC system, where Intel MIC works as
a coprocessor. Open MP directive was used to parallelize the
program in both CPU and MIC. The paper achieved a speedup of
5.2 on CPU+MIC with respect to CPU alone.

Keywords- Intel MIC; adaboost; parallel computation

I. INTRODUCTION

The Adaboost algorithm [1] is an important method in
ensemble learning. The idea behind it is to build an arbitrarily
strong classifier by combining multiple weak classifiers whose
accuracies are slightly better than random guessing. The
algorithm can be applied to almost all of the prevalent machine
learning algorithms to improve the accuracy of prediction.
However, it takes enormous computation power to achieve
reasonable precision from a large training dataset and a large
feature set.

Intel Many Integrated Core Architecture (Intel MIC) is
Intel’s latest effort of Intel toward exascale computing. Intel
MIC is a coprocessor of up to 61 processing cores and has been
used in the world’s fastest supercomputer Tianhe II. It is nature
to use Intel MIC architectures to speed up the Adaboost
algorithm. This paper studied the parallelization paradigm of
the Adaboost algorithm that best suited for Intel MIC.

II. RELATED WORK

Since its importance and enormous computing cost of the
Adaboost algorithm, there have been a number of researchers
investigating in its parallelization. Merler etc. [2] developed a
P-Adaboost algorithm based on weights dynamics. Lazarevic
and Obradovic [3] proposed a parallelized Adaboost algorithm
for distributed homogeneous database that cannot be merged at
a single location. These parallel algorithms changed the
structure of the Adaboost algorithm to make it compatible with
a parallel framework. The computing results changed slightly
as well. Some researchers parallelized the Adaboost algorithm
without modifying the original Adaboost training process.
Galtier etc. [4] developed a parallel framework based on MPJ
and the JavaSpace for PC clusters. Zeng etc. [5] proposed a
hybrid parallel framework by MPI/OpenMP on distributed
shared memory systems. Krpec etc. [6] trained the face dataset
of MIT CBCL by the Rank-Adaboost algorithm. It was

parallelized on CPU+GPU architecture and obtained up to 20
times speedup.

III. PARALLELIZATION OF THE ADABOOST ALGORITHM

A. The Sequential Adaboost Algorithms

The Adaboost training process is intrinsically sequential [3].
The weights of the training set are updated at each step. This
leads to strong dependency between iterations. The sequential
Adaboost algorithm is given as [1]:

Input: Given number of iteration T, weak classifier
algorithm hj, training set S={(xi, yi)}, where i = 1, …, n,
xi∈X and yi∈ {0, 1}, n is the number of positive
samples, m is the number of negative samples.

Initialize t = 1, weight vector Wt, i = 1/2m, 1/2l for yi
= 0, 1 respectively, i = 1 … m

while t ≤ T do

1) Normalize the weights: , , ,
1

/
m

t i t i t j
i

W W W


 

2) For each feature, j, train a weak classifier hj

3) Calculate error of hj: ()j i
i

j i ihW x y  

4) Choose the weak classifier ht, with the lowest
error j

5) Update the weights: 1
1, , ie

t i t i tW W  
  , where ei =

0 if example xi is classified correctly, ei = 1 otherwise,
and / (1)t t te e  

Output:

The final strong classifier is:

1

21 1
1, ()

()
0, otherwise

T T

t t tt t
h x

h x
 

 
  


  , where

1logt
t

 

FIGURE I. THE SEQUENTIAL ADABOOST ALGORITHM

In the above algorithm, step 2) the weak classifier is
designed to select a single feature which best separates the
positive and negative examples. The weak classifier determines
an optimal threshold classification function, such that the
minimum number of examples are misclassified. A weak

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 248

classifier hj (x) thus is a function of a feature fj, a threshold and
a parity pj indicating the direction of the inequality sign:

1 if ()
()

0 otherwise

j j j j

j

p f x p
h x

 


 (1)

The weak classifier training process of the Adaboost
algorithm counts about 80~90% of the whole computing time.
Because it is expensive to enumerate all the features possible.
Therefore, it is very necessary to parallelize the weak classifier
training process to make the Adaboost algorithm run faster on
modern computers.

IV. PARALLELIZATION OF THE ADABOOST ALGORITHM ON

INTEL MIC

The MIC architecture is an x86-based many-core processor
architecture based on small in-order cores that uniquely
combines full programmability of Intel CPU with compute-
throughput and memory bandwidth capabilities of modern
GPU architectures. Each core is a general-purpose processor,
which has a scalar unit based on the Pentium processor design,
as well as a vector unit that supports 16 32-bit float or integer
operations per clock. The MIC architecture has two levels of
cache: low latency L1 cache and larger globally coherent L2
cache that is partitioned among the cores. Cores are connected
through up to 16 GDDR5 transmission channels and can
support 5.5GT/s transmission speed theoretically. It has
extended vector processing units and larger memory bandwidth.
MIC uses Symmetric Multi-Processing architecture (SMP).
One main advantage of MIC is that programs on CPU can run
on MIC without changing the main body of the programs.

MIC and CPU can work together in different ways: naïve
mode of treating MIC as an equal partner of CPU, or offload
mode of treating CPU as host and offload heavy duty work to
MIC. Naïve mode requires delicate workload balance between
big cores and little cores. Currently the under development
topology-aware MPI interface MVAPICH2 works better in this
mode. Since the heaviest job of the Adaboost algorithm is the
weak classifier training and other jobs occupies only 10~20%
of the computing time. We used the offload mode so that weak
classifier training is throw to MIC and the other computing
steps remain in CPU.

After the data are input, the weights and image data are
transmitted to MIC to compute step 2) weak classifier training.
The transmission occurs during computation of normalization
of weights to overlap computation and communication. After
that the normalized weights are transmitted. The results will be
transmitted back to CPU to continue the next step.

A. Parallelization of Integral Images

Haar-like features are used in the Adaboost algorithm to
construct strong classifiers [1]. A haar-like feature is
represented by adjacent rectangular regions at a specific
location in a detection window of a image. Pixel intensities in
these regions are sum up and the difference between them is
calculated. This difference is then used to categorize
subsections of an image. In our study we used 4 types of haar-
like features (Fig. 2). Haar features can be calculated from
integral images through the integral values of the vertices of the

rectangular regions. Since there is no dependency between
different samples, integral images can be computed in parallel
by multithreading of OpenMP directive directly.

FIGURE II. EXAMPLES OF HAAR-LIKE FEATURES

B. Parallelization of Quick Sort of the Evaluated Features

After integral images are calculated, the second step is to
sort the features according to their value. Here we used Parallel
Sorting by Regular Sampling method (PSRS) [7] to sort the
features. Every image sample has tens of thousands features. It
is expected that it is very time consuming.

PSRS was parallelized by OpenMP on MIC. The parallel
algorithm can be summarized in the following:

It is assumed that the total number of sorted elements is n,
and total number of cores in the system is p. Firstly, n elements
are evenly divided into p groups. Then each core named pi
(i=0…p-1) sorts its own n/p elements using radix sort. In order
to divide evenly, the master core selects p-1 pivots from each
group. Then divide the array into p parts according to the pivots
and exchange globally the corresponding elements of every
group. Finally merge sort these p segments using p–way merge
and produce the sorted array.

In MIC, there is 61 cores and one will be chosen as the
master core. Open MP directive was used. Every core has its
own private memory and 2 threads were used in every core.
Auto vector compilation option was turned on in Intel C++
compiler to vectorize the loops in the code.

C. Parallelization of the Best Weak Classifier

The best weak classifier was chosen with the lowest
weighted error rate. The process can be parallelized by dividing
the feature set into a number of sub sets and distribute the sub
sets to threads of MIC. The winner of each sub set will
compete in the master thread and find out the best weak
classifier.

D. Performance Evaluation

We now evaluate the performance of the parallel algorithm
of the Adaboost algorithm on CPUs and an Intel MIC
architecture. The CPU is Intel i5-3470 of 3.20GHz; Intel MIC
is Intel Xeon Phi E5-2650 0 @2.00GHz, 7110P, 8GB GDDR5,
61 cores.

249

The training dataset used in our experiment is a car
repository collected from internet and real time road and
parking lot surveillance video in the city. It contains 2320
positive samples and 3450 negative samples of unified
resolution 18×18. There are 7550 negative samples randomly
taken from internet. To make up the insufficiency of the
samples, we did left and right mirror transformation to the
positive samples, and did left and right, up and down mirror
transformation to the negative samples. The tested feature set
contains 22710 haar-like features. The training loop was
executed 1000 times in total.

The sequential version of the Adaboost algorithm was run
on a CPU core while the MIC version was run on a CPU core +
a MIC. We developed the parallelized training program
carefully and made sure the parallel MIC version produced
exactly the same strong classifier as the sequential version did.

The following table illustrated the computing time and
speedup of the sequential version and parallel MIC version of
the Adaboost algorithm. The MIC version was slower than the
sequential version when the number of samples is 5120. This is
because the data transmission between CPU and MIC occupied
relatively large amount of time compared to the computing
time in MIC when the data is not large enough. As more
samples were input, MIC started to show better performance
than CPU. The MIC version achieved the best speedup of 5.2 at
the top of the sample size.

TABLE I. COMPUTING TIME OF DIFFERENT SAMPLES

Sample
Number.

Sequential
(S)

MIC
(S)

Speed
Up

5120 26.3 27.1 0.97

7680 39.2 32.7 1.2

10200 54.8 30.4 1.8

12800 72.1 28.8 2.5

15300 89.3 27.9 3.2

20480 134 31.2 4.3

25600 172 33.0 5.2

V. CONCLUSION

This paper analyzed the Adaboost algorithm and proposed a
parallel strategy on Intel MIC architecture. The experiment
result indicated that a CPU + a MIC coprocessor can increase
the computing speed by 5.2 times. From the trend of speedup,
one can see that the speedup of the MIC version still has
potential to increase. Our future work will be to increase
sample size to see where the speedup limit is.

ACKNOWLEDGEMENT

Authors acknowledge support from the international
cooperation project of Nansha District (NO. 2014GJ037), the
Industry-university-research Cooperative Innovation major
projects of Guangzhou (NO. 201508010009, NO.

201508030026), the Industry-university-research Cooperative
Project of Dongguan (NO. 2014509105105), National Science-
technology Support Plan Project (NO. 2015BAK36B06).

REFERENCES
[1] P. Viola, M. Jones. “Rapid Object Detection Using a Boosted Cascade of

Simple Features,” Proc of the Conf on Computer Vision and Pattern
Recognition, pp.511-518, 2001

[2] S. Merler, B. Caprile, C. Furlanello. “Parallelizing adaboost by weights
dynamics,” Computational Statistics & Data Analysis, 51(5):2487-2498,
2007.

[3] A. Lazarevic, Z. Obradovic. “Boosting algorithms for parallel and
distributed learning,” Distrib Parallel Databases 11(2):203–229, 2002.

[4] V. Galtier, S. Vialle, and S. Genaud. “Implementation of the adaboost
algorithm for large scale distributed environments,” Comparing
javaspace and mpj, International Conference on Parallel & Distribut
Systems, 655-662 Shenzhen, China, 2009.

[5] K. Zeng, Y. Tang, F. Liu. “Parallization of Adaboost Algorithm through
Hybrid MPI/OpenMP and Transactional Memory,” Parallel, Distributed
and Network-Based Processing , pp. 94-100, 2011.

[6] Jaromír Krpec, Martin Němec. “Face Detection CUDA Accelerating,”
The Fifth InternationalConference on Advances in Computer-Human
Interactions (ACHI), pp. 155-160, 2012.

[7] Shi H, Schaeffer J. “Parallel sorting by regular sampling,” Journal of
Parallel and Distributed Computing. Vol.14. 1992.

[8] N. Satish, C. Kim, etal. “Fast Sort on CPUs, GPUs and Intel MIC
Architectures,” Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010.

250

