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Abstract—The Adaboost algorithm plays important role in many 
machine learning applications. But the computation cost is real 
expensive when the candidate features are in large amount. In 
this paper, we introduce a parallel strategy of the Adaboost 
algorithm on Intel CPU+MIC system, where Intel MIC works as 
a coprocessor. Open MP directive was used to parallelize the 
program in both CPU and MIC. The paper achieved a speedup of 
5.2 on CPU+MIC with respect to CPU alone. 
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I.  INTRODUCTION 

The Adaboost algorithm [1] is an important method in 
ensemble learning. The idea behind it is to build an arbitrarily 
strong classifier by combining multiple weak classifiers whose 
accuracies are slightly better than random guessing. The 
algorithm can be applied to almost all of the prevalent machine 
learning algorithms to improve the accuracy of prediction. 
However, it takes enormous computation power to achieve 
reasonable precision from a large training dataset and a large 
feature set.  

Intel Many Integrated Core Architecture (Intel MIC) is 
Intel’s latest effort of Intel toward exascale computing. Intel 
MIC is a coprocessor of up to 61 processing cores and has been 
used in the world’s fastest supercomputer Tianhe II. It is nature 
to use Intel MIC architectures to speed up the Adaboost 
algorithm. This paper studied the parallelization paradigm of 
the Adaboost algorithm that best suited for Intel MIC. 

II. RELATED WORK 

Since its importance and enormous computing cost of the 
Adaboost algorithm, there have been a number of researchers 
investigating in its parallelization. Merler etc. [2] developed a 
P-Adaboost algorithm based on weights dynamics. Lazarevic 
and Obradovic [3] proposed a parallelized Adaboost algorithm 
for distributed homogeneous database that cannot be merged at 
a single location. These parallel algorithms changed the 
structure of the Adaboost algorithm to make it compatible with 
a parallel framework. The computing results changed slightly 
as well. Some researchers parallelized the Adaboost algorithm 
without modifying the original Adaboost training process. 
Galtier etc. [4] developed a parallel framework based on MPJ 
and the JavaSpace for PC clusters. Zeng etc. [5] proposed a 
hybrid parallel framework by MPI/OpenMP on distributed 
shared memory systems. Krpec etc. [6] trained the face dataset 
of MIT CBCL by the Rank-Adaboost algorithm. It was 

parallelized on CPU+GPU architecture and obtained up to 20 
times speedup. 

III. PARALLELIZATION OF THE ADABOOST ALGORITHM 

A. The Sequential Adaboost Algorithms 

The Adaboost training process is intrinsically sequential [3]. 
The weights of the training set are updated at each step. This 
leads to strong dependency between iterations. The sequential 
Adaboost algorithm is given as [1]: 

Input: Given number of iteration T, weak classifier 
algorithm hj, training set S={(xi, yi)}, where i = 1, …, n, 
xi∈X and yi∈ {0, 1}, n is the number of positive 
samples, m is the number of negative samples. 

Initialize t = 1, weight vector Wt, i = 1/2m, 1/2l for yi 
= 0, 1 respectively, i = 1 … m 

while t ≤ T do 

1)   Normalize the weights: , , ,
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FIGURE I.  THE SEQUENTIAL ADABOOST ALGORITHM 

In the above algorithm, step 2) the weak classifier is 
designed to select a single feature which best separates the 
positive and negative examples. The weak classifier determines 
an optimal threshold classification function, such that the 
minimum number of examples are misclassified. A weak 
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classifier hj (x) thus is a function of a feature fj, a threshold and 
a parity pj indicating the direction of the inequality sign: 

1  if ( )
( )

0  otherwise

j j j j
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

                                (1) 

The weak classifier training process of the Adaboost 
algorithm counts about 80~90% of the whole computing time. 
Because it is expensive to enumerate all the features possible. 
Therefore, it is very necessary to parallelize the weak classifier 
training process to make the Adaboost algorithm run faster on 
modern computers. 

IV. PARALLELIZATION OF THE ADABOOST ALGORITHM ON 

INTEL MIC 

The MIC architecture is an x86-based many-core processor 
architecture based on small in-order cores that uniquely 
combines full programmability of Intel CPU with compute-
throughput and memory bandwidth capabilities of modern 
GPU architectures. Each core is a general-purpose processor, 
which has a scalar unit based on the Pentium processor design, 
as well as a vector unit that supports 16 32-bit float or integer 
operations per clock. The MIC architecture has two levels of 
cache: low latency L1 cache and larger globally coherent L2 
cache that is partitioned among the cores. Cores are connected 
through up to 16 GDDR5 transmission channels and can 
support 5.5GT/s transmission speed theoretically. It has 
extended vector processing units and larger memory bandwidth. 
MIC uses Symmetric Multi-Processing architecture (SMP).  
One main advantage of MIC is that programs on CPU can run 
on MIC without changing the main body of the programs. 

MIC and CPU can work together in different ways: naïve 
mode of treating MIC as an equal partner of CPU, or offload 
mode of treating CPU as host and offload heavy duty work to 
MIC. Naïve mode requires delicate workload balance between 
big cores and little cores. Currently the under development 
topology-aware MPI interface MVAPICH2 works better in this 
mode. Since the heaviest job of the Adaboost algorithm is the 
weak classifier training and other jobs occupies only 10~20% 
of the computing time. We used the offload mode so that weak 
classifier training is throw to MIC and the other computing 
steps remain in CPU.  

After the data are input, the weights and image data are 
transmitted to MIC to compute step 2) weak classifier training. 
The transmission occurs during computation of normalization 
of weights to overlap computation and communication. After 
that the normalized weights are transmitted. The results will be 
transmitted back to CPU to continue the next step. 

A. Parallelization of Integral Images 

Haar-like features are used in the Adaboost algorithm to 
construct strong classifiers [1]. A haar-like feature is 
represented by adjacent rectangular regions at a specific 
location in a detection window of a image. Pixel intensities in 
these regions are sum up and the difference between them is 
calculated. This difference is then used to categorize 
subsections of an image. In our study we used 4 types of haar-
like features (Fig. 2). Haar features can be calculated from 
integral images through the integral values of the vertices of the 

rectangular regions. Since there is no dependency between 
different samples, integral images can be computed in parallel 
by multithreading of OpenMP directive directly. 

 
FIGURE II.  EXAMPLES OF HAAR-LIKE FEATURES 

B. Parallelization of Quick Sort of the Evaluated Features 

After integral images are calculated, the second step is to 
sort the features according to their value. Here we used Parallel 
Sorting by Regular Sampling method (PSRS) [7] to sort the 
features. Every image sample has tens of thousands features. It 
is expected that it is very time consuming.  

PSRS was parallelized by OpenMP on MIC. The parallel 
algorithm can be summarized in the following: 

It is assumed that the total number of sorted elements is n, 
and total number of cores in the system is p. Firstly, n elements 
are evenly divided into p groups. Then each core named pi 
(i=0…p-1) sorts its own n/p elements using radix sort. In order 
to divide evenly, the master core selects p-1 pivots from each 
group. Then divide the array into p parts according to the pivots 
and exchange globally the corresponding elements of every 
group. Finally merge sort these p segments using p–way merge 
and produce the sorted array. 

In MIC, there is 61 cores and one will be chosen as the 
master core. Open MP directive was used. Every core has its 
own private memory and 2 threads were used in every core.  
Auto vector compilation option was turned on in Intel C++ 
compiler to vectorize the loops in the code.  

C. Parallelization of the Best Weak Classifier 

The best weak classifier was chosen with the lowest 
weighted error rate. The process can be parallelized by dividing 
the feature set into a number of sub sets and distribute the sub 
sets to threads of MIC. The winner of each sub set will 
compete in the master thread and find out the best weak 
classifier. 

D. Performance Evaluation 

We now evaluate the performance of the parallel algorithm 
of the Adaboost algorithm on CPUs and an Intel MIC 
architecture. The CPU is Intel i5-3470 of 3.20GHz; Intel MIC 
is Intel Xeon Phi E5-2650 0 @2.00GHz, 7110P, 8GB GDDR5, 
61 cores. 
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The training dataset used in our experiment is a car 
repository collected from internet and real time road and 
parking lot surveillance video in the city. It contains 2320 
positive samples and 3450 negative samples of unified 
resolution 18×18. There are 7550 negative samples randomly 
taken from internet. To make up the insufficiency of the 
samples, we did left and right mirror transformation to the 
positive samples, and did left and right, up and down mirror 
transformation to the negative samples. The tested feature set 
contains 22710 haar-like features. The training loop was 
executed 1000 times in total. 

The sequential version of the Adaboost algorithm was run 
on a CPU core while the MIC version was run on a CPU core + 
a MIC. We developed the parallelized training program 
carefully and made sure the parallel MIC version produced 
exactly the same strong classifier as the sequential version did.  

The following table illustrated the computing time and 
speedup of the sequential version and parallel MIC version of 
the Adaboost algorithm. The MIC version was slower than the 
sequential version when the number of samples is 5120. This is 
because the data transmission between CPU and MIC occupied 
relatively large amount of time compared to the computing 
time in MIC when the data is not large enough. As more 
samples were input, MIC started to show better performance 
than CPU. The MIC version achieved the best speedup of 5.2 at 
the top of the sample size. 

TABLE I.  COMPUTING TIME OF DIFFERENT SAMPLES 

Sample 
Number. 

Sequential 
(S) 

MIC 
(S) 

Speed 
Up 

5120 26.3 27.1 0.97 

7680 39.2 32.7 1.2 

10200 54.8 30.4 1.8 

12800 72.1 28.8 2.5 

15300 89.3 27.9 3.2 

20480 134 31.2 4.3 

25600 172 33.0 5.2 

V. CONCLUSION  

This paper analyzed the Adaboost algorithm and proposed a 
parallel strategy on Intel MIC architecture. The experiment 
result indicated that a CPU + a MIC coprocessor can increase 
the computing speed by 5.2 times. From the trend of speedup, 
one can see that the speedup of the MIC version still has 
potential to increase. Our future work will be to increase 
sample size to see where the speedup limit is. 
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