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Abstract—Aiming at agents' autonomous cognitive problems in 
unknown environment, a novel curiosity-driven perception-
action cognitive model is proposed, which simulates intrinsic 
motivation cognitive mechanism based on the curiosity in 
psychology, and cognitive processes from perception to action is 
realized by probabilistic action selection mechanism. Information 
entropy illustrates that it can achieve better cognition to action 
applying the proposed model, and it indeed reflects the biological 
cognitive processes. Comparing simulation results using SPE 
shows that this method is effective. 
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I. INTRODUCTION 

With the study of cognitive robots, "cognitive control" has 
gradually replaced the "intelligent control"[1], which is mainly 
used to solve the control problem by simulating the biological 
cognition mechanism. According to the Piaget's cognitive 
development theory, sensorimotor is the primary stage of 
cognitive development. Human's sensorimotor (also can be 
called Perception-Action) function is the result of cognitive 
development, which is gradually formed, developed and 
perfected. In 2013, Wu Xuan and Xiaogang Ruan present a 
psychology model called skinner automata, which implemented 
the theory of operant conditioning reflex(OCR), and is used in 
equilibrium learning of self-balancing robot, and showed the 
psychology model effectiveness in the incremental learning 
process[2,3]. In 2015, Huang Jing put forward a kind of 
artificial sensorimotor system with OCR function, and realized 
the cognitive process of the mapping relationship between the 
state and action, and made a comparison verify using two 
experiment from psychology and cybernetics field[4]. 

In 2013, Cutsuridis et al proposed a cognitive control 
architecture for the perception–action cycle in robots and 
agents, which is composed of a large number of neural 
computing mechanism, and this view is strongly supported by 
the evidence of brain experimental research[5]. In the intrinsic 
motivation research framework, in 2010, Baranes et al. 
proposed the adaptive target generation algorithm based on 
curiosity as the mechanism of intrinsic motivation, which is 
used in the autonomous learning of robot[6]. In 2012, action-
perception loop based on internal model is used in the research 
of exploration mechanism in the process of cognition of agents 
without the external reward feedback[7]. Baranes and Oudeyer 
proposed an adaptive target generation - robust intelligent 

adaptive curiosity framework as the intrinsic motivation of the 
target exploration mechanism[8].  

Self-learning is a main motivation of the behavior making, 
and the exploration strategy in the intrinsic motivation plays an 
important role in the process of cognition. As one of the main 
factors that increase the intrinsic motivation, curiosity has 
played an important role in the learning process of "perception-
action" loop. Curiosity mainly includes sensory curiosity(SC) 
and cognitive curiosity(CC). A new model named as curiosity-
driven perception-action cognitive model (CPACM) is 
proposed in this paper, which apply the sensory curiosity 
(curiosity cognitive) in the learning of the perception-action 
loop. Using the classical skinner pigeon experiments, the 
effectiveness is verified in the simulation environment of 
MATLAB. 

II. CURIOSITY-DRIVEN PERCEPTION-ACTION COGNITIVE 

MODEL 

A. Structure Design 

On the basis of operant conditioning cognitive models with 
probabilistic behavior making, in the formation process of 
"perception-action" mapping, the proposed model increase the 
curiosity-driven module, and the cognitive structure is shown 
in Figure I. 

 
FIGURE I.  COGNITIVE STRUCTURE OF CPACM 

B. Mathematical Description 

The proposed curiosity-driven perception-action cognitive 
model can be described as a 9-tuplpe computational model 
CPACM , , , , , ( , , ), ( , ), ( ),S A f r V S A t C S t P t L . Every 

elements are explained as follows. 
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S  is the internal state set of CPACM, 
{ 1, 2, , }iS s i n  L ; 

A  is the optional action set of  CPACM 
{ 1, 2, , }iA a i m  L ; 

f  is the state transition of CPACM, 

: ( ) ( ) ( 1)f S t a t S t   , which is almost determined by 
environment or system model; 

  is the orientation mechanism, ( ) ( ( ))t S t  , which 
denotes the state orientation at time t, and can be defined based 
on the specific case, and the bigger of the value, the better of 
the system; 

r : ( ) [ ( ), ( )]r t r S t A t  is the reward from state ( )S t  to 

( 1)S t   after making the action ( )A t  at time t; 

( , , )V S A t is the prediction of CPACM, ( , , )V S A t   

1 2[ , , , ]mv v vL 1 2[ ( , , ), ( , , ), , ( , , )]mv S a t v S a t v S a t L  is a vector; 

( , )C S t  is the curiosity function, which denotes the state 
curiosity at time t. It is a monotone decreasing function with 
respect to time t. In the condition of the same state, curiosity is 
declined over time, in line with the characteristics of biological 
learning; 

( )P t is the probability vector from the condition of the state 
to optional behavior for the CPACM, 

1 21 2 , , ,( ) [ ( , ), ( , ), , ( , ) ] [ ( ), ( ), , ( )]
mm a S a S a SP t p a t p a t p a t S p t p t p t L L

, action selection probability 
( , , ) / ( , ) ( , , ) / ( , )

, ( ) ( | , ) j

j

V S a t C S t V S a t C S t
a S j a A

p t p a a S t e e


     

denotes that agent choose the action ja A  as ( , )jp a t P  in 

the condition of state S  at time t, and 0 ( , ) 1mp a s t  , 

1

( , ) 1
m

i
i

p a s t


 ; 

L  denotes the updating of "Perception-Action" mapping of 
CPACM, : ( ) ( 1)L PA t PA t  . This updating mechanism is 
implemented through changing the prediction critic network, 
which use the TD(0) method to update the weight of ( , , )V S A t  

of CPACM, that is (0)( ) ( , )TDW t V IN W W      , where, 

(0) ( 1) ( 1) ( )TD r t V t V t      , and then the action selection 

probability is changed. 

The cognition process could be concluded as follows. At 
time t, the state of agent is ( ) iS t s S  , and based on the 

initial prediction critic function ( , ,0)iV S a , curiosity parameter 
and P  vector, the behavior selection probability of each action 
could be decided, and then select the action ka A as 
probability to act on the environment, and state is transformed 
to ( 1)S t S  , and then get the immediate critic information r , 

and then ( , , )V S A t is updated based on TD(0) algorithm to 
formulate new prediction estimation value, and update the 
curiosity value at this state, and the get new probability 

vector P , and the first loop of cognition is complemented. 
Looping as the above process, the "perception-action" loop 
based on curiosity-driven intrinsic motivation is formed, and 
the agent learns the behavior selection mechanism, so the 
cognition process is over.  

In order to characterize the certainty degree of the system, 
we use information entropy to measure, and conditional 
entropy is used here to describe the behavior information 
entropy in a defined state (in bit), which is defined as follows. 

, 2 ,
1

( , ) ( ) log ( )
i i

m

a S a S
i

H S t p t p t


 


where, , ( )
ia Sp t  represents probability of selection behavior ia  

in the condition of state S  at time t and satisfies ,
1

( ) 1
i

m

a S
i

p t


 , 

which denotes that the bigger of the information entropy, the 
higher of the system's uncertainty degree. 

The proposed cognitive model express the process from 
random to certainty, and reflect the gradual learning 
characteristics similar to biology. 

III. EXPERIMENTAL SIMULATION  AND ANALYSIS 

In order to verify the proposed curiosity-driven "perception-
Action" cognitive model's behavioral learning ability, we make 
a simulation research using typical experiment(skinner pigeon 
experiment) in behavioral learning theory, and make a 
experimental comparative analysis with the operant 
conditioning models to illustrate the effectiveness of the 
proposed method. 

A. Skinner Pigeon Experiment 

Skinner Pigeon Experiment(SPE), which has been 
described in literature [3] in detail is a classic experiment in 
behavioral learning theory. In this experiment, he pigeon is 
placed in a designed box named skinner box. In the face of 
three different colored buttons, that is red, yellow and blue 
color, the pigeon makes an action selection of pecking at the 
three buttons. When it pecks  at different button, it will get 
different response. If pecking at red button, pigeon will get foot 
for reward, and pecking at yellow button does not respond, and 
pecking at blue button, pigeon will get electric shock as 
punishment. At the beginning, number of pigeon pecking the 
three buttons is almost equal. But after a period of cognitive, 
the number of pigeon pecking at the red button is significantly 
increased, and the pigeon learned the behavior of pecking at the 
red button autonomously to get food reward this behavior.  

In order to facilitate simulation of the experiment, the state 
and behavior was coded, and the simplified discrete 
mathematical model is established. The state transition diagram 
is shown in Figure II, in which the circle denote the state in 
which and arrows indicate the transition between two states, 
and the value above the arrow indicates the action taken. 
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FIGURE II.  STATE TRANSITION DIAGRAM OF SPE 

In Figure 2, 0 1s  is the state of pain; 1 2s   is the state of 

desire to obtain food; 2 3s   is the state of satisfied. The bigger 
the state value, the better the pigeon's state. The orientation of 
the pigeon is satisfying itself need in the maximum extend and 
the better the state, the bigger the orientation value. The three 
action of pigeon is 0 1 21, 2, 3a a a   , which respectively 
denotes pecking at red, yellow and blue button. 

To express prediction function V, a recurrent neural 
network is used, and the input vector is 1rIN R , output is 

1mY R , hidden nodes number is h , the input vector of 

hidden layer is  T 1
1 2( ) ( ), ( ), , ( ) h

ht o t o t o t  O RL , which 

could be seen as the excitation function of network internal 
state. The output vector of hidden layer is 

 T 1
1 2( ) ( ), ( ), , ( ) h

ht h t h t h t  H RL , which denotes the 

internal state set of the network. The weights of this recurrent 
neural network is (1) (2) (3), ,h r h h m hW W W    R R R , and 
the activation function of output layer is a linear weighting 
function as follows. 

(3)( ) ( )Y t W t H 

The internal state transition function is 
(1) (2) T

1 2( ) ( ( ), ( 1), , )=[ ( ), ( ), , ( )]ht g IN t t W W h t h t h t H H L , 
and the excitation function of internal state 
is (2) T (1) T( ) ( ) ( 1) ( ) ( )t W t W IN t  O H , 

where, ( ) 1 (1 exp( ( ))) ( 1, 2, , )j jh t o t j h    L .The perception 

state and action in SPE are all one dimension variable, so 
T 2 1[ , ]IN x a  R . 

In order to express state curiosity of pigeon, we make a 
statistics of the same state in the learning process, denoting as 

( , )Num S t , which is a monotone decreasing function with 
respect to time t, shown as formula (3). 

2

1
( , )

( , )
1 k Num S t

k
C S t

e 
 

where, 1 20, 0k k  is the adjustment factor of curiosity 
parameter, satisfy the following condition. 
When ( , )Num S t  , ( , ) 0C S t  , that meets the 
characteristic of biological cognition. 

Define the reward mechanism based on the orientation as 
( ) ( )t S t  , and if ( 1) ( )t t   , 0r  . If 

( 1) ( )t t   , 1r   . 

For the SPE, the cognitive flow based on the proposed 
model is shown as Figure III, where, maxstep is the max run step 
during simulation. The initial state of pigeon is the state of 
desire to obtain food. 

maxt step

1t t 


( ) ( ) 1Num S Num S 

max

0 1 2

, , ,

, , , , , ( ,0) 0

step r h m

s W k k A Num S 

( ) ( , )V t V IN W=

( , )C S t

 

FIGURE III.  COGNITIVE FLOW BASED ON THE PROPOSED CPACM 
MODEL. 

B. Simulation Results and Analysis 

Using the CPACM cognitive models proposed in this paper 
and OCR model, cognitive process of SPE were simulated. The 
sampling time is 1s, and we record the data of the three action's 
selection probability, skinner pigeon's state and action taken at 
each second. Comparison of the results is shown in Figure IV. 
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a) action selection probability changing using CPACM model 
with curiosity 
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b) action selection probability changing using OCRM model 
without curiosity 
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 c) skinner pigeon's state and action taken changing using 

CPACM model with curiosity 
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d) skinner pigeon's state and action taken changing using 

OCRM model without curiosity 
FIGURE IV.  SKINNER PIGEON COGNITION RESULTS COMPARISON 

OF CPACM AND OCRM 
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FIGURE V.  BEHAVIOR INFORMATION ENTROPY CURVE OF 
SKINNER PIGEON. 

As it can be seen from Figure IV a) and b), probability of 
skinner pigeon pecking at red button are gradually changing 
from 0.3333 to 1, ie pigeon selects the behavior of pecking at 
the red button with probability 1 eventually. Due to the 

presence of curiosity in CPACM, in the initial moments pigeon 
has a certain curiosity at three states, so that a certain degree of 
behavior select probability fluctuation of skinner pigeon occur 
compared with OCRM method. By observing Figure IV c) and 
d) we will find that although the probability of CPACM 
method appears shock, but on the late stage skinner pigeon 
behavior and state have reached a more determined state. But 
in the sudden small probability events of OCRM method, 
behavioral choices certainty decreased. From Figure IV d) it 
would be observed that there is also the cases of choosing 
yellow or blue button, that is because in the early stages of 
learning, curiosity does not work, lack of cognition under 
certain states and behavior, cognition process is affected. 

Figure V shows a variation of the system behavior 
information entropy. By entropy's trend tends to 0, we can 
conclude that the cognition of the system is a evolution process 
from uncertainty to certainty. 

IV. CONCLUSION 

In this paper, aiming at agents' autonomous cognitive 
problems in unknown environment, a novel curiosity-driven 
perception-action cognitive model is proposed, which simulates 
intrinsic motivation cognitive mechanism based on the 
curiosity in psychology, and cognitive processes from 
perception to action is realized by probabilistic action selection 
mechanism. In order to verify the proposed curiosity-driven 
"perception-Action" cognitive model's behavioral learning 
ability, we make a simulation research using typical SPE in 
behavioral learning theory, and make a experimental 
comparative analysis with the OCRM to illustrate the 
effectiveness of the proposed method. Information entropy 
illustrates that applying the proposed model it can achieve 
better cognition, and it indeed reflects the biological cognitive 
processes. Comparing simulation results show that this method 
is effective. 
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