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Abstract—Way finding research has paid much attention to the 
selection of optimal routes under principles of spatial cognition. 
However, the commonly employed implemental approaches 
suffer inevitably from the contradictions between personalized 
network modelling and network data sharing. This paper 
presents one kind of interactive route selection approach based 
on hierarchical reinforcement learning. In this approach, a 
complete network model is unnecessary, but the environmental 
states are automatically perceived by the agent and then mapped 
into the reward function defining the goal of cognitively optimal 
routes. The optimal routes corresponding to the policies with 
maximal cumulative rewards can be found through a two-stage 
learning process including a pre-learning stage and a real-time 
learning one. Our experimental results show that the proposed 
approach learns effectively enough for real-time route selection 
and ensures found routes close to global optimal ones. 
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I. INTRODUCTION 

In recent years, several approaches have been presented that 
cover the selection of optimal routes under principles of spatial 
cognition, such as simplest routes [1], clearest routes [2], most 
reliable routes [3, 4] and easy-to-describe routes [5, 6], which 
respect for human principles of route wayfinding and direction 
giving and the cognitive complexity of traveling through a road 
network [7].  

In those approaches, landmarks, intersection structures and 
turning styles are usually taken into account for constructing 
cognitive map of environment and reducing human cognitive 
load of route following. Their implementations all follow the 
same process that firstly translating all kinds of weighted 
cognitive criteria into edge costs and turn penalties of a 
network model and then adopting modified Dijkstra or A* 
algorithms to search the routes of least cost from origin to 
destination. However, as the diversity of user cognitive 
preferences leads to different concerned landmarks and 
different weight coefficients of cognitive criteria, personalized 
network models need be generated to meet different user. 
Therefore, such model-driven route selection approach could 
bring big trouble to the sharing and maintenance of road 
network data between different users. 

This paper presents a model-independent interactive route 
selection approach using hierarchical reinforcement learning 
(HRL). In this learning process, public road network model 

defines the topological structure of streets, landmark sets 
contain personalized landmarks with regard to user cognitive 
preferences, the agents of HRL find the optimal routes 
satisfying user-defined reward conditions during interaction 
with the environment including public road network model and 
personalized landmark sets. Cuayahuitl et al. [8] tried to 
generate adaptive route instructions with MAXQ based 
hierarchical reinforcement learning in the indoor environment. 
Nevertheless, the applied manual task hierarchization and value 
function decomposition are unsuitable to urban road 
environments with large state space and irregular action space.  

In order to promote the learning efficiency in large-scale 
urban road network, we propose a two-stage approach to 
adaptively learn optimal routes employing network Voronoi 
diagram based hierarchical reinforcement learning (NVD-
HRL). In the first pre-learning stage, we automatically find 
multilayer subgoals in the road network, and construct 
hierarchical subtasks (generally called options) on the basis of 
network Voronoi diagrams generated by the multilayer 
subgoals. In the second real-time learning stage, off-policy 
intra-option Q-learning is adopted to update the estimated Q-
values of available state-action pairs, and then the optimal route 
is traced according to Q-values after convergence. After 
experiments on Wuchang district of Wuhan city, we 
demonstrate that the NVD-HRL is efficient enough at finding 
the optimal routes, and ensures that most of the selected routes 
achieve or close to global optimality. 

II. PROPOSED METHOD 

On the basis of option framework, we presents a network 
Voronoi diagram based hierarchical reinforcement learning 
(NVD-HRL) approach which is divided into pre-learning stage 
and real-time learning stage. In this approach, a reward 
function is firstly defined to generate immediate rewards 
responded to turns taken by the agent at every intersection, and 
then the two learning stages are introduced in detail 
successively for finding optimal route. 

A. Reward Function 

A reward function defines the goal in a reinforcement 
learning problem [9]. Roughly speaking, it maps each 
perceived state-action pair of the environment to a single 
number, a reward, indicating the intrinsic desirability of that 
state. As such, a reinforcement learning agent's sole objective is 
to maximize the total reward it receives in the long run, while 
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the reward function defines the immediate features of the 
problem faced by the agent. 

In this routing application, every state-action pair 
corresponds to a turn taken at an intersection. As route 
selection criteria need reflect the cognitive efforts of taking a 
turn, they can be quantified and then traded off to indicate 
which turn is good in an immediate sense. In the literature of 
factors based on cognitive and perceptual aspects influencing 
human route choice, referable landmarks, turning styles, 
intersection structures, road grades and route length are most 
commonly used route selection criteria under principles of 
spatial cognition [1-7]. Therefore, the expected reward function 
can be expressed as the following linear equation to make a 
system learn to satisfy the goal of finding optimal routes under 
principles of spatial cognition. 

R ω1 R1 ω2 R2 ω3 R3 ω4 R4 ω5 R5           (1) 

Where R1 to R5 represent the quantified rewards respectively 
obtained from every turn in consideration of the above five 
route selection criteria, and ω1 to ω5 are their weight 
coefficients when the trade-off is made. 

B. Pre-Learning Process 

The tasks of pre-learning include subgoal identification and 
option construction. Subgoals are states that are believed to 
process some “bottleneck” importance and are worthwhile 
reaching. Options are treated as subtasks that efficiently take 
the agent to reach these subgoals. 

We adopt betweenness centrality measure in this paper for 
identifying bottleneck nodes in road network crucial to develop 
useful options [10, 11]. Betweenness centrality of a node u, 
denoted by BC (u), is defined as the frequency that a node lies 
on an optimal route connecting two distinct nodes: 

st
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σ (u)
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 
                        (2) 

Where σst is the number of optimal route from node s to node t, 
σst(u) is the number of such routes that pass through node u. As 
algorithm efficiency is not critical to pre-learning, Q-learning 
could be applied to find the optimal route in line with above 
route selection criteria under principles of spatial cognition 
between any pair of nodes. In Q-learning process, the 
transitions among states are constrained with the topological 
relations among nodes in road network, and the immediate 
reward of every state-action pair is obtained in accordance with 
equation (1). When every node in road network is scored based 
on the betweenness centrality measure, the top most scored 
nodes are ranked into several levels considered as hierarchical 
subgoals. 

After the identification of subgoals, we utilize network 
Voronoi diagrams (NVD) [12] to construct hierarchical options. 
Directed NVDs would be hierarchically generated, with the 
hierarchical subgoals as generators at different levels and 
cumulative rewards of the routes between arbitrary nodes and 

generators as inward/outward distances defined on the road 
network. In an inward or outward NVD, we call the nodes 
belonging to more than one Voronoi subnetworks or directly 
connecting to nodes in other Voronoi subnetworks as bridge 
nodes. Figure 1 shows an example of inward NVD with two 
Voronoi subnetworks, which are {v1, v2, v3, v4, v5, v6, v7, v8, 
v9, v10, v11, v12} and {v10, v11, v12, v12, v14, v15, v16, v17, 
v18, v19, v20, v21}. 

 

FIGURE I. AN EXAMPLE OF NETWORK VORONOI DIAGRAM 

Options built upon inward and outward NVDs are 
respectively called inward options and outward options, which 
are constructed as following rules. The initiation sets of inward 
and outward options include the non-generator and generator 
nodes in the corresponding Voronoi subnetwork respectively. 
The inward options terminate with probability one when the 
generators of their corresponding Voronoi subnetworks are 
reached and with probability zero at other nodes, while the 
outward options may terminate at any nodes in their 
corresponding Voronoi subnetworks except the generators. We 
define two kinds of policies for each option, called internal 
policy and bridge policy, for efficiently executing other options 
when an option terminated. The internal policies of inward and 
outward options are defined as sequences of turning decisions 
from initial states to terminal states. The bridge policy of an 
inward or outward option defines a sequence of turning 
decisions from one Voronoi subnetwork adjacent to another 
through a bridge node. 

C. Real-Time Learning Process 

The main task of real-time learning is updating the 
estimated Q-values of state-action pairs constrained by 
hierarchical options with a reinforcement learning algorithm. 
We apply the same update rule from Q-learning equation (as in 
[9]) for each transition considered, but perform these updates 
from goal state to initial state. In this case, after every full 
episode the agent will have updated its Q-value estimate for 
every transition along the route it took to the goal.  

As the internal policies always start and terminate at 
subgoal nodes, the subgoal nodes passed in any episode need 
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not be considered for executing other options. Consequently, 
the available lower level inward options are executed to 
generate training examples from the calling nodes to their 
subgoal nodes under corresponding internal policies, while the 
available lower level outward options are executed to generate 
training examples from their subgoals to the calling nodes 
under corresponding internal policies. In this process, the 
estimated Q-values of all the training examples are updated 
according to Intra Option Q-Learning [13, 14]. 

When there is not any Q-value updated in a predefined 
number of successive episodes, it can be thought that 
convergence has been reached in this learning process. Thus, 
the expected optimal route can be traced by way of taking the 
turns with maximal Q-values at any following node from the 
origin node and until the destination node reached. 

III. EXPERIMENTS 

We carried out route selection experiments on the Wuchang 
district of the city of Wuhan. In the employed navigation 
electronic map, the road network for this district comprises 
5639 nodes and 40214 turns at intersections. In addition, 224 
landmarks, being ranked into 4 levels according to their 
significance, were extracted from the POI data of this area 
according to the approach proposed in literature [15]. 

TABLE I.  PARAMETER SETTING FOR IMMEDIATE REWARDS 

Criteria Situations Rewards 

Landmark 
Existing any level 1 landmark at 

an intersection 
-10 

 
Existing any level 2 landmark at 

an intersection 
-20 

 
Existing any level 3 landmark at 

an intersection 
-40 

 
Existing any level 4 landmark at 

an intersection 
-80 

 No landmark at an intersection -100 
Turning style Turning distinctly straight -10 

 Turning distinctly right -40 
 Turning distinctly left -60 
 Turning distinctly back -80 
 Passing through a roundabout -50 
 Taking an ambiguous turn -100 

Road grade Highway -10 
 Urban highway -20 
 National road -30 
 Main prefecture road -60 
 General prefecture road -80 
 Other road -100 

Intersection 
structure 

The number of competing out 
ways 

Normalized into 
range (0, -100] 

Segment 
length 

Actual length of the road segment 
Normalized into 
range (0, -100] 

A. Experimental Setting 

The five aspects of immediate rewards that a user can 
obtain from every turn at an intersection, as defined in equation 
(1), were all quantified into normalized values in range (0, -
100], to ensure the cost of the route receiving maximal 
cumulative rewards is minimal. The set values shown in Table 
1 mean that the larger a value is, the less cognitive effort need 

to be made. In addition, the five weight coefficients in equation 
(1) were all set as 0.2 in current experiments. 

The learning parameters used by the algorithms were the 
same for both Q-learning and our NVD-HRL approaches. The 
learning rate parameter α decays from 1 to 0 according to α = 
100/(100 + τ), where τ represents the past episodes in current 
state. The discount factor γ = 1 makes future rewards as 
valuable as immediate rewards. The action selection strategy 
employed ε-Greedy with ε = 0.1, and initial Q-values of 0. 

B. Experimental Results 

After the computation of between’s centrality of every node, 
we treated the top scored 282, 564 and 1410 nodes as three 
levels of subgoals, respectively constituting about 5%, 10% and 
25% of the total nodes in the network. Then, there levels of 
inward and outward options were constructed upon the inward 
and outward NVDs generated from these levels of subgoals. 

We randomly selected 500 different origin-destination pairs 
for finding the optimal routes under principles of spatial 
cognition with Q-learning and our NVD-HRL approaches 
respectively. The proposed approaches are both coded with 
Visual C++ 2010 and ran on a 2.5 GHz Dual-Core Pentium 
with 2-GB RAM. The learning of each OD was executed over 
five independent trials with different approaches, and related 
computational results were averaged for the comparison 
between the two approaches. In addition, we thought the 
convergence of learning could be reached if no Q-value was 
updated in 100 successive episodes. 

 

 

FIGURE II. CONVERGENCE TIME OF Q-LEARNING 

 

 

FIGURE III. CONVERGENCE TIME OF OUR NVD-HRL 
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Figure 2 and Figure 3 respectively show the convergence 
time for learning the optimal route between any pair of origin 
and destination with the approaches of Q-learning and NVD-
HRL. Obviously, our NVD-HRL performs much more 
efficiently than the flat Q-learning in this route selection case, 
and basically meets the efficiency requirement of real-time 
route selection. 

As the optimal routes learned by Q-learning are always the 
globally optimal ones, we can define the optimal degree of any 
optimal route learned by the NVD-HRL as the ratio of 
cumulative rewards of NVD-HRL to Q-learning learned 
optimal route. It can be observed from Figure 4 that more than 
80% of the 500 optimal routes learned by our NVD-HRL 
approach are globally optimal, and the cumulative rewards of 
more than 95% of these routes are 10% larger than the 
corresponding globally optimal route. 

 

 

FIGURE IV. OPTIMALITY ANALYSIS of NVD-HRL 

IV. CONCLUSIONS 

We have proposed a hierarchical reinforcement learning 
approach to find the optima route considering human route 
selection criteria. This approach automatically identifies 
hierarchical subgoals and constructs corresponding hierarchical 
options in advance, and then learns the optimal route from 
origin to destination with these options at real-time. It can 
easily overcome the contradictions between model-driven route 
selection and the diversity of human cognitive preferences for 
optimal routes under principles of spatial cognition.  

In this paper, the environment is assumed to be unfamiliar 
with the users, causing the action rewards are only judged by 
the spatial features at intersections. However, users may differ 
in their amount of prior knowledge and hence in their 
informational needs or preferences. In future work, we will 
consider integrating the user’s a-priori spatial knowledge of the 
environment into the state representation and the learning 
process.  
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