

Inexpensive HMC+DRAM Hybrid Main Memory

Architecture with LRU-based Data Distribution

Management

Ying Zhou1, Lin Zhang1,*, Shuang Niu1 and Shulin Zhao2
1Information Engineering, Shanghai Maritime University, Pudong District, Shanghai, China

2College of Computer Science, Shandong University, Jinan, Shandong, China
*Corresponding author

Abstract—The Hybrid Memory Cube (HMC) is a 3-D-stacked
DRAM architecture whose I/O interface achieves up to 320 GB/s
of external bandwidth. Therefore, the HMC is a promising
alternative to DDRx memory due to its potential to achieve
substantially improved memory bandwidth. However, the high
price of a HMC device compromises cost efficiency when the
device is lightly utilized. The cost of a HMC device with 2GB
capacity is about 5 times of a DDRx memory with the same
capacity. In this paper, we propose a new inexpensive
HMC+DRAM hybrid main memory architecture to reduce the
cost consumption. In order to manage such hybrid memories, we
develop a LRU-based data distribution mechanism to determine
the destination of particular data flow. Evaluations show that our
scheme reduces the cost consumption of Main Memory by 48%
on average with a negligible performance degradation compared
to a current HMC-based system. Also, our architecture
outperforms a current DRAM-based system by 1.5 times, and
reduces the response delay by 1.2 times.

Keywords-component; formatting; style; styling; insert (key
words)

I. INTRODUCTION

The Hybrid Memory Cube (HMC) is a recent main
memory technology that aims to overcome the memory wall
problem [1] due to the limited bandwidth and long access
latency in current memory systems. As shown in FIGURE I, a
HMC device contains several DRAM dies stacked on top of a
logic layer, where several DRAM memory controllers
communicate with the host processor using an abstracted
interface [2]. Through-Silicon Vias (TSVs) vertically connect
memory controller to several memory banks in the DRAM
stack, thereby providing about 1Tb/s of internal bandwidth and
320GB/s of external bandwidth [3]. Because the TSVs build a
denser interconnect with shorter path lengths than traditional
DDRx memories, the throughput between the controller and
memory banks is higher.

On the other hand, the HMC can be denser, faster, and
more power-efficient than DDRx, but it has problems with
price cost. Such high bandwidth comes at a serious money
consumption: The cost of a HMC device with 2GB capacity is
about 20 times of a DDRx memory with the same capacity [4].
Although it is evident that the high bandwidth of HMCs could
be a breakpoint to overcome the memory wall problem, such

expensive price may not be worthwhile especially when the
full bandwidth is underutilized.

In this paper, we propose an inexpensive HMC+DRAM
hybrid main memory architecture with LRU-based data
distribution management mechanism to extremely reduce the
price cost with limited performance lost. We add a data-
distribution module into the Linux Kernel to decide the
destination of data block. And to minimize the extra delay
incurred by this module, our scheme keeps track of the
performance sensitivity to the distribution decision and
determines the current destination based on the feedback and
the basic LRU mechanism. In this work, we focus on
read/write latencies, delay and bandwidth. Our goal is to
present an auto-adapted inexpensive hybrid memory system
and the key idea is to use the LRU-based data-distribution
mechanism to choose HMC or DDRx to store data blocks.

FIGURE I. THE ARCHITECTURE OF AN HMC MEMORY SYSTEM

The rest of this paper is organized as follows. Section II
briefly introduces the HMCs and motivates the need for price-
cost management of the current memory systems. Section III
describes our LRU-based data-distribution module and
HMC+DRAM hybrid main memory architecture in detail.
Section IV evaluates the effectiveness of our approach. Finally,
the conclusion is drawn in Section V.

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 214

II. RELATED WORK

A. Hybrid Memory Cube

Because TSV is an emerging technology, there has been a
recent surge of academic and industry research about HMC’s
impact on performance from the architecture perspective [5].
Mushfique Junayed Khurshid et al. [6] proposed a method to
reduce the maximum temperature and variation by using data
compression. Using this method, data compression on the
processor side can cause reduced temperature as well as
increased performance in the Hybrid Memory Cube. Yinhe
Han et al. [7] proposed a data-aware refresh control scheme,
Trial and Error (Trial-n-Error), which leverages the data-
pattern dependence characteristics of the cells’ retention time
to reduce refresh operations. It makes use of the reliability and
communication resources inside the HMC logic base, and
strikes a balance between hardware reliability and refresh
overheads, which is especially suitable to be applied to HMC
that suffers from the negative effects caused by frequent
refreshes. Shibo Wang et al. [8] introduced a new technique
that alleviated the long wake-up penalty of an HMC by
employing erasure codes. Gwangsun Kim et al. [9] proposed a
memory-centric network in which all processor channels are
connected to HMCs and not to any other processors as all
communication between processors goes through intermediate
HMCs. Seth H Pugsley et al. [10] presented a high-level
description of the Near Data Computing (NDC) hardware and
accompanying software architecture, which presented the
programmer with a MapReduce style programming model.
Junwhan Ahn et al. [3] proposed an adaptive mechanism to
partially disable off-chip links of HMCs to reduce the energy
consumption of the off-chip links. Yarui Peng et al. [11]
presented a cross-domain CAD/architectural platform that
addresses DC power noise issues in 3D DRAM targeting
stacked DDR3, Wide I/O, and hybrid memory cube
technologies.

B. Hybrid Memory Architecture

Hybrid memory architecture has been studied in the area of
storage systems recently. Kai Chen et al. [12] proposed a
hybrid global memory architecture by using both DRAM and
PCM memory technologies. Such an architecture has the
performance and dynamic power benefits from DRAM as well
as the leakage power benefits from PCM. Luis Angel Bathen
et al. [13] presented HaVOC: a run-time memory manager that
virtualizes the hybrid on-chip memory space and supports
efficient sharing of distributed ScratchPad Memoies (SPMs)
and Non-Volatile Memories (NVMs). They introduced the
notion of data volatility analysis and proposed a dynamic
filter-based memory allocation scheme to efficiently manage
the hybrid on-chip memory space. Meikang Qiu et al. [14]
proposed a novel hybrid on-chip scratchpads memory (SPM)
that consists of a static random access memory (RAM), a
magnetic RAM (MRAM), and a zero-capacitor RAM for CMP
systems by fully taking advantages of the benefits of each type
of memory. To reduce memory access latency, energy
consumption, and the number of write operations to MRAM,
they also proposed a novel multidimensional dynamic
programming data allocation (MDPDA) algorithm to
strategically allocate data blocks to each memory. Soyoon Lee

et al. [15] presented a new memory management technique for
hybrid phase change memory (PCM) and DRAM memory
architecture that efficiently hides the slow write performance
of PCM. They presented a new page replacement algorithm
called CLOCK-DWF that estimates future write references
accurately, allowing frequent memory writes to be absorbed
by DRAM. Xiangyong Ouyang et al. [16] proposed an SSD-
Assisted Hybrid Memory that expands RAM with SSD to
make available a large amount of memory. Hybrid Memory
works as an object cache and it manages resource allocation at
object granularity, which is more efficient than allocation at
page granularity.

C. Motivation

HMC technology has already been studied on their impact
on performance and energy efficiency. However, the present
researches merely focused on the potential application of
HMCs and failed to notice the price-cost of the whole memory
system. Also, to the best of our knowledge, the hybrid memory
architecture technology has not been considered in building a
storage system based on HMC. Therefore, we focus on the
trade-off of the whole system, and propose a new inexpensive
HMC+DRAM hybrid main memory architecture to reduce the
cost consumption using a LRU-based data distribution module
in Operating System Kernel level.

III. SYSTEM DESIGN AND IMPLEMENTATION

The present Inexpensive HMC+DRAM Hybrid Main
Memory

Architecture has the performance and latency benefits from
HMCs as well as the price-cost benefits from DRAM. The
benefits of our design reside on four aspects:

 In order to reduce the latency and accelerate the I/O
speed, the frequently used data which labeled hot data will be
loaded to HMC.

 A LRU-based data-distribution module is added to Linux
Kernel to label a particular data flow as hot or cold, then
determine the destine of this data flow.

 An improved LRU algorithm is developed to reduce the
complexity from O(n) to O(1), where four pages’ activeness
level, inactive-inreferenced, inactive-referenced, active-
inreferenced and active-referenced are introduced to decide
where to distribute this page.

 Spin-lock is used in this LRU-based data-distribution
module to avoid deadlock, which is indispensable to maintain
the file system consistency.

A. Hybrid Memory Storage Architecture

In the present HMC+DRAM Hybrid Main Memory
Architecture, the memory system is composed of three parts,
Linux Kernel Data Distribution Module, traditional DRAM
and HMC memory device. FIGURE II shows the hardware
architecture of our system. When CPU sends several I/O
requests to the Memory Bus, the Linux Kernel Data
Distribution Module receives these requests and has to choose
those that have the best ”return on investment” for migration

215

to HMC. While the others have to be sent to DRAM. Both
DRAM and HMC have the access to the shared Disk, so the
spin-locks have to be used to keep consistency. The key design
of our system relies on two aspects:

 How to distribute file system data between the two types
of devices: DRAM and HMC.

 How to organize the data before writing to the Disk
Layer to ensure no potential deadlock would occur.

These two points will be elaborated in the following
sections.

CPU

Kernel

DRAM HMC

Hybrid Memory System

Disk

Memory Bus

FIGURE II. HYBRID MEMORY STORAGE ARCHITECTUER

B. Deciding Which Pages to Put in HMC

Within the whole set of candidate pages, the OS must
choose those that have the relatively possibility to jump
between different layers for migration to HMC. In this way,
the hot data which are migrated frequently will be dealt with in
HMC, the whole performance of this system will benefit from
the HMC’s extremely high speed. Four metrics are introduced
to distribute the data flow [17]:

 Page types: OS tends to associate pages with type
information. Stack pages, for example, are good candidates for
migration to HMC because of the frequent changes; non-file
pages shared between two processors are good candidate.
While code pages are bad candidate because they are unlikely
to be moved out of the memory layer.

 File reference modes: 80% of temporary files will be
deleted within four seconds [18], so pages from files marked
temporary should be migrated to HMC.

 Application-supplied page attributes: Memory-hungry
applications with large workload, such as databases, are good
candidate for migration to HMC.

 Page history: The OS could track the history for each
page, and migrate pages with high recurrence rate to HMC.

C. Improved-LRU-based Data Distribution Module

The Data-Distribution Module selects hot pages for HMC
and cold pages for DRAM, using an improved LRU algorithm

whose time complexity is O(1). In this improved LRU
algorithm, the number of lists to record different-activeness-
level pages increases to four, indicating four labels: inactive-
inreferenced, inactive-referenced, active-inreferenced and
active-referenced. Each level corresponds to a list. The Data-
Distribution Module levels up or down one page’s activeness
according to the four metrics mentioned above. And HMC
simply select pages from the head of the active-referenced list,
while DRAM from the tail of the inactive-inreferenced list.
These operations with O(1) time complexity will substantially
reduce the latency.

D. Spin-lock: Deadlock Avoiding

File system consistency is always an indispensable issue in
file system design. As described above, both HMC and
DRAM can access the shared Disk block. Therefore, there is a
possibility of deadlock when HMC and DRAM are both trying
to write a same Disk block. In order to avoid deadlock, we
lock each page when loaded to memory level and unlock it
after the I/O request has already submitted to the Disk layer.
The procedure of the data-distribution strategy is described in
Algorithm 1.

IV. EVALUATION

A. Methodology

We evaluate our design using a low-level simulator HMC-
SIM, whose goal is to provide architectural simulation
frameworks the ability to begin migrating current banked
DRAM memory models to stacked HMC-based designs
without a reduction in simulation fidelity or functionality [19].
TABLE I shows the details of the simulation configuration.
We choose two comparison points that represent an upper and
lower bound to show the validity of this system. The lower
bound is a 4-GB quad-channel DDR4 memory system and the
upper bound is a 4-GB HMC system, while our design is a
hybrid 1-GB HMC + 3-GB DDR4 memory system. So the
cost consumption of our memory system is only about 48% of

216

the 4-GB HMC system [20]. In this section, we present the
performance of our file system in four aspects: bank conflict,
read and write request, crossbar latency and crossbar request
stall.

TABLE I. SIMULATION CONFIGURATION

CPU 8 out-of-order x86 cores

L1 Cache 128 K L1-I / 128 K L1-D

L2 Cache 2 MB shared L2

Operation System Ubuntu Linux 12.04

Banks 8

Vaults 16

Queue Depth 64

Crossbar Depth 128

Number of Requests 10240

Benchmarks

Hmc physrand

Decode physrand

Gups

stream

B. Bank Conflict

FIGURE III. BANK CONFLICT

FIGURE III describes the bank conflicts on each vault in
DRAM, hybrid HMC+DRAM and HMC systems. Because the
4G-DRAM system only has two banks while the others both
have eight banks, so in FIGURE III (a) and FIGURE III (b),
the present hybrid HMC+DRAM system is inferior to DRAM
and HMC systems. However, in FIGURE III (c) and FIGURE
III (d), the bank-conflict performance of hybrid HMC+DRAM
system is almost equivalent to the other systems.

C. Read and Write Request

FIGURE IV describes the read and write requests in
DRAM, hybrid HMC+DRAM and HMC systems, which
directly reflect the throughout performance. We can observe
that the throughput of hybrid HMC+DRAM system
outperforms the DRAM system by about 1:5_. However, the

HMC system still outperforms the hybrid HMC+DRAM
system by about 2:1_. Considering the present system is
consisted of 1G-HMC and 3G-DRAM while the HMC system
of 4G-HMC devices, and the time spending on dead-lock
avoiding, the throughout performance of our design is still
effective.

FIGURE IV. READ AND WRITE REQUEST

D. Crossbar Latency

FIGURE V. CROSSBAR LATENCY

FIGURE V describes the crossbar latency in DRAM,
hybrid HMC+DRAM and HMC systems, which directly
reflect the I/O request delay in crossbar. In Figure 5(a), Figure
5(b) and Figure 5(c), the crossbar-latency performance of
hybrid HMC+DRAM system is almost equivalent to the other
systems. But in Figure 5(c), the present hybrid HMC+DRAM
system outperforms DRAM and HMC systems by about 1.4
times.

E. Crossbar Request Stall

FIGURE VI describes the crossbar request stalls in DRAM,
hybrid HMC+DRAM and HMC systems, which directly
reflect the I/O request response time in crossbar. We can

217

observe that the I/O request response time in crossbar of
hybrid HMC+DRAM system outperforms the HMC system by
about 1.2 times, and is almost equivalent to the DRAM system.

FIGURE VI. CROSSBAR REQUEST STALL

V. CONCLUSION

The HMC is a promising alternative to DDRx memory due
to its potential to achieve substantially improved memory
bandwidth. However, the high price of a HMC device
compromises cost efficiency when the device is lightly utilized.
In this paper, we propose a new inexpensive HMC+DRAM
hybrid main memory architecture to reduce the cost
consumption. In order to manage such hybrid memories, we
develop a LRU-based data distribution mechanism to
determine the destination of particular data flow. Evaluations
show that our scheme reduces the cost consumption of Main
Memory by 48% on average with a negligible performance
degradation compared to a current HMC-based system. Also,
our architecture outperforms a current DRAM-based system
by 2.1 times, and reduces the response delay by 1.9 times

REFERENCES
[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of

the obvious,” ACM SIGARCH computer architecture news, vol. 23, no.
1, pp. 20–24, 1995.

[2] P. Rosenfeld, “Performance exploration of the hybrid memory cube,”
2014.

[3] J. Ahn, S. Yoo, and K. Choi, “Low-power hybrid memory cubes with
link power management and two-level prefetching.”

[4] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” in ACM SIGARCH Computer Architecture News, vol. 37, no.
3. ACM, 2009, pp. 267–278.

[5] J. S. Pak, J. Kim, J. Cho, K. Kim, T. Song, S. Ahn, J. Lee, H. Lee, K.
Park, and J. Kim, “Pdn impedance modeling and analysis of 3d tsv ic by
using proposed p/g tsv array model based on separated p/g tsv and chip-
pdn models,” Components, Packaging and Manufacturing Technology,
IEEE Transactions on, vol. 1, no. 2, pp. 208–219, 2011.

[6] M. J. Khurshid and M. Lipasti, “Data compression for thermal
mitigation in the hybrid memory cube,” in Computer Design (ICCD),
2013 IEEE 31st International Conference on. IEEE, 2013, pp. 185–192.

[7] Y. Han, Y. Wang, H. Li, and X. Li, “Data-aware dram refresh to squeeze
the margin of retention time in hybrid memory cube,” in Proceedings of
the 2014 IEEE/ACM International Conference on Computer-Aided
Design. IEEE Press, 2014, pp. 295–300.

[8] S. Wang, Y. Song, M. N. Bojnordi, and E. Ipek, “Enabling energy
efficient hybrid memory cube systems with erasure codes,” in Low
Power Electronics and Design (ISLPED), 2015 IEEE/ACM International
Symposium on. IEEE, 2015, pp. 67–72.

[9] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system
interconnect design with hybrid memory cubes,” in Proceedings of the
22nd international conference on Parallel architectures and compilation
techniques. IEEE Press, 2013, pp. 145–156.

[10] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A.
Buyuktosunoglu, F. Li et al., “Ndc: Analyzing the impact of 3d-stacked
memory+ logic devices on mapreduce workloads,” in Performance
Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on. IEEE, 2014, pp. 190–200.

[11] Y. Peng, B. W. Ku, Y. Park, K.-I. Park, S.-J. Jang, J. S. Choi, and S. K.
Lim, “Design, packaging, and architectural policy co-optimization for dc
power integrity in 3d dram,” in Design Automation Conference (DAC),
2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

[12] K. Chen, Z. Yu, C. Xu, J. Liu, and X. Li, “Improving power efficiency
of gpgpu’s global memory by a hybrid memory approach,” in
Information Science and Technology (ICIST), 2014 4th IEEE
International Conference on. IEEE, 2014, pp. 660–664.

[13] L. A. Bathen and N. Dutt, “Havoc: a hybrid memory-aware
virtualization layer for on-chip distributed scratchpad and non-volatile
memories,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 447–452.

[14] M. Qiu, Z. Chen, Z. Ming, X. Qin, and J. Niu, “Energy-aware data
allocation with hybrid memory for mobile cloud systems.”

[15] S. Lee, H. Bahn, and S. H. Noh, “Clock-dwf: A write-history-aware
page replacement algorithm for hybrid pcm and dram memory
architectures,” Computers, IEEE Transactions on, vol. 63, no. 9, pp.
2187–2200, 2014.

[16] X. Ouyang, N. S. Islam, R. Rajachandrasekar, J. Jose, M. Luo, H. Wang,
and D. K. Panda, “Ssd-assisted hybrid memory to accelerate memcached
over high performance networks,” in Parallel Processing (ICPP), 2012
41st International Conference on. IEEE, 2012, pp. 470–479.

[17] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi, “Operating
system support for nvm+ dram hybrid main memory.” in HotOS, 2009.

[18] W. Vogels, “File system usage in windows nt 4.0,” in ACM SIGOPS
Operating Systems Review, vol. 33, no. 5. ACM, 1999, pp. 93–109.

[19] J. D. Leidel and Y. Chen, “Hmc-sim: A simulation framework for hybrid
memory cube devices,” Parallel Processing Letters, vol. 24, no. 04, p.
1442002, 2014.

[20] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

218

