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Abstract—The Hybrid Memory Cube (HMC) is a 3-D-stacked 
DRAM architecture whose I/O interface achieves up to 320 GB/s 
of external bandwidth. Therefore, the HMC is a promising 
alternative to DDRx memory due to its potential to achieve 
substantially improved memory bandwidth. However, the high 
price of a HMC device compromises cost efficiency when the 
device is lightly utilized. The cost of a HMC device with 2GB 
capacity is about 5 times of a DDRx memory with the same 
capacity. In this paper, we propose a new inexpensive 
HMC+DRAM hybrid main memory architecture to reduce the 
cost consumption. In order to manage such hybrid memories, we 
develop a LRU-based data distribution mechanism to determine 
the destination of particular data flow. Evaluations show that our 
scheme reduces the cost consumption of Main Memory by 48% 
on average with a negligible performance degradation compared 
to a current HMC-based system. Also, our architecture 
outperforms a current DRAM-based system by 1.5 times, and 
reduces the response delay by 1.2 times. 
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I. INTRODUCTION  

The Hybrid Memory Cube (HMC) is a recent main 
memory technology that aims to overcome the memory wall 
problem [1] due to the limited bandwidth and long access 
latency in current memory systems. As shown in FIGURE I, a 
HMC device contains several DRAM dies stacked on top of a 
logic layer, where several DRAM memory controllers 
communicate with the host processor using an abstracted 
interface [2]. Through-Silicon Vias (TSVs) vertically connect 
memory controller to several memory banks in the DRAM 
stack, thereby providing about 1Tb/s of internal bandwidth and 
320GB/s of external bandwidth [3]. Because the TSVs build a 
denser interconnect with shorter path lengths than traditional 
DDRx memories, the throughput between the controller and 
memory banks is higher. 

On the other hand, the HMC can be denser, faster, and 
more power-efficient than DDRx, but it has problems with 
price cost. Such high bandwidth comes at a serious money 
consumption: The cost of a HMC device with 2GB capacity is 
about 20 times of a DDRx memory with the same capacity [4]. 
Although it is evident that the high bandwidth of HMCs could 
be a breakpoint to overcome the memory wall problem, such 

expensive price may not be worthwhile especially when the 
full bandwidth is underutilized. 

In this paper, we propose an inexpensive HMC+DRAM 
hybrid main memory architecture with LRU-based data 
distribution management mechanism to extremely reduce the 
price cost with limited performance lost. We add a data-
distribution module into the Linux Kernel to decide the 
destination of data block. And to minimize the extra delay 
incurred by this module, our scheme keeps track of the 
performance sensitivity to the distribution decision and 
determines the current destination based on the feedback and 
the basic LRU mechanism. In this work, we focus on 
read/write latencies, delay and bandwidth. Our goal is to 
present an auto-adapted inexpensive hybrid memory system 
and the key idea is to use the LRU-based data-distribution 
mechanism to choose HMC or DDRx to store data blocks. 

 
FIGURE I.   THE ARCHITECTURE OF AN HMC MEMORY SYSTEM 

The rest of this paper is organized as follows. Section II 
briefly introduces the HMCs and motivates the need for price-
cost management of the current memory systems. Section III 
describes our LRU-based data-distribution module and 
HMC+DRAM hybrid main memory architecture in detail. 
Section IV evaluates the effectiveness of our approach. Finally, 
the conclusion is drawn in Section V. 

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 214



 

II. RELATED WORK 

A. Hybrid Memory Cube 

Because TSV is an emerging technology, there has been a 
recent surge of academic and industry research about HMC’s 
impact on performance from the architecture perspective [5]. 
Mushfique Junayed Khurshid et al. [6] proposed a method to 
reduce the maximum temperature and variation by using data 
compression. Using this method, data compression on the 
processor side can cause reduced temperature as well as 
increased performance in the Hybrid Memory Cube. Yinhe 
Han et al. [7] proposed a data-aware refresh control scheme, 
Trial and Error (Trial-n-Error), which leverages the data-
pattern dependence characteristics of the cells’ retention time 
to reduce refresh operations. It makes use of the reliability and 
communication resources inside the HMC logic base, and 
strikes a balance between hardware reliability and refresh 
overheads, which is especially suitable to be applied to HMC 
that suffers from the negative effects caused by frequent 
refreshes. Shibo Wang et al. [8] introduced a new technique 
that alleviated the long wake-up penalty of an HMC by 
employing erasure codes. Gwangsun Kim et al. [9] proposed a 
memory-centric network in which all processor channels are 
connected to HMCs and not to any other processors as all 
communication between processors goes through intermediate 
HMCs. Seth H Pugsley et al. [10] presented a high-level 
description of the Near Data Computing (NDC) hardware and 
accompanying software architecture, which presented the 
programmer with a MapReduce style programming model. 
Junwhan Ahn et al. [3] proposed an adaptive mechanism to 
partially disable off-chip links of HMCs to reduce the energy 
consumption of the off-chip links. Yarui Peng et al. [11] 
presented a cross-domain CAD/architectural platform that 
addresses DC power noise issues in 3D DRAM targeting 
stacked DDR3, Wide I/O, and hybrid memory cube 
technologies. 

B. Hybrid Memory Architecture 

Hybrid memory architecture has been studied in the area of 
storage systems recently. Kai Chen et al. [12] proposed a 
hybrid global memory architecture by using both DRAM and 
PCM memory technologies. Such an architecture has the 
performance and dynamic power benefits from DRAM as well 
as the leakage power benefits from PCM. Luis Angel Bathen 
et al. [13] presented HaVOC: a run-time memory manager that 
virtualizes the hybrid on-chip memory space and supports 
efficient sharing of distributed ScratchPad Memoies (SPMs) 
and Non-Volatile Memories (NVMs). They introduced the 
notion of data volatility analysis and proposed a dynamic 
filter-based memory allocation scheme to efficiently manage 
the hybrid on-chip memory space. Meikang Qiu et al. [14] 
proposed a novel hybrid on-chip scratchpads memory (SPM) 
that consists of a static random access memory (RAM), a 
magnetic RAM (MRAM), and a zero-capacitor RAM for CMP 
systems by fully taking advantages of the benefits of each type 
of memory. To reduce memory access latency, energy 
consumption, and the number of write operations to MRAM, 
they also proposed a novel multidimensional dynamic 
programming data allocation (MDPDA) algorithm to 
strategically allocate data blocks to each memory. Soyoon Lee 

et al. [15] presented a new memory management technique for 
hybrid phase change memory (PCM) and DRAM memory 
architecture that efficiently hides the slow write performance 
of PCM. They presented a new page replacement algorithm 
called CLOCK-DWF that estimates future write references 
accurately, allowing frequent memory writes to be absorbed 
by DRAM. Xiangyong Ouyang et al. [16] proposed an SSD-
Assisted Hybrid Memory that expands RAM with SSD to 
make available a large amount of memory. Hybrid Memory 
works as an object cache and it manages resource allocation at 
object granularity, which is more efficient than allocation at 
page granularity. 

C. Motivation 

HMC technology has already been studied on their impact 
on performance and energy efficiency. However, the present 
researches merely focused on the potential application of 
HMCs and failed to notice the price-cost of the whole memory 
system. Also, to the best of our knowledge, the hybrid memory 
architecture technology has not been considered in building a 
storage system based on HMC. Therefore, we focus on the 
trade-off of the whole system, and propose a new inexpensive 
HMC+DRAM hybrid main memory architecture to reduce the 
cost consumption using a LRU-based data distribution module 
in Operating System Kernel level. 

III. SYSTEM DESIGN AND IMPLEMENTATION 

The present Inexpensive HMC+DRAM Hybrid Main 
Memory 

Architecture has the performance and latency benefits from 
HMCs as well as the price-cost benefits from DRAM. The 
benefits of our design reside on four aspects: 

 In order to reduce the latency and accelerate the I/O 
speed, the frequently used data which labeled hot data will be 
loaded to HMC. 

 A LRU-based data-distribution module is added to Linux 
Kernel to label a particular data flow as hot or cold, then 
determine the destine of this data flow. 

 An improved LRU algorithm is developed to reduce the 
complexity from O(n) to O(1), where four pages’ activeness 
level, inactive-inreferenced, inactive-referenced, active-
inreferenced and active-referenced are introduced to decide 
where to distribute this page. 

 Spin-lock is used in this LRU-based data-distribution 
module to avoid deadlock, which is indispensable to maintain 
the file system consistency. 

A. Hybrid Memory Storage Architecture 

In the present HMC+DRAM Hybrid Main Memory 
Architecture, the memory system is composed of three parts, 
Linux Kernel Data Distribution Module, traditional DRAM 
and HMC memory device. FIGURE II shows the hardware 
architecture of our system. When CPU sends several I/O 
requests to the Memory Bus, the Linux Kernel Data 
Distribution Module receives these requests and has to choose 
those that have the best ”return on investment” for migration 
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to HMC. While the others have to be sent to DRAM. Both 
DRAM and HMC have the access to the shared Disk, so the 
spin-locks have to be used to keep consistency. The key design 
of our system relies on two aspects: 

 How to distribute file system data between the two types 
of devices: DRAM and HMC. 

 How to organize the data before writing to the Disk 
Layer to ensure no potential deadlock would occur. 

These two points will be elaborated in the following 
sections.  

CPU

Kernel

DRAM HMC

Hybrid Memory System

Disk

Memory Bus

 
FIGURE II.  HYBRID MEMORY STORAGE ARCHITECTUER 

B. Deciding Which Pages to Put in HMC 

Within the whole set of candidate pages, the OS must 
choose those that have the relatively possibility to jump 
between different layers for migration to HMC. In this way, 
the hot data which are migrated frequently will be dealt with in 
HMC, the whole performance of this system will benefit from 
the HMC’s extremely high speed. Four metrics are introduced 
to distribute the data flow [17]: 

 Page types: OS tends to associate pages with type 
information. Stack pages, for example, are good candidates for 
migration to HMC because of the frequent changes; non-file 
pages shared between two processors are good candidate. 
While code pages are bad candidate because they are unlikely 
to be moved out of the memory layer. 

 File reference modes: 80% of temporary files will be 
deleted within four seconds [18], so pages from files marked 
temporary should be migrated to HMC. 

 Application-supplied page attributes: Memory-hungry 
applications with large workload, such as databases, are good 
candidate for migration to HMC. 

 Page history: The OS could track the history for each 
page, and migrate pages with high recurrence rate to HMC. 

C. Improved-LRU-based Data Distribution Module 

The Data-Distribution Module selects hot pages for HMC 
and cold pages for DRAM, using an improved LRU algorithm 

whose time complexity is O(1). In this improved LRU 
algorithm, the number of lists to record different-activeness-
level pages increases to four, indicating four labels: inactive-
inreferenced, inactive-referenced, active-inreferenced and 
active-referenced. Each level corresponds to a list. The Data-
Distribution Module levels up or down one page’s activeness 
according to the four metrics mentioned above. And HMC 
simply select pages from the head of the active-referenced list, 
while DRAM from the tail of the inactive-inreferenced list. 
These operations with O(1) time complexity will substantially 
reduce the latency. 

D. Spin-lock: Deadlock Avoiding 

File system consistency is always an indispensable issue in 
file system design. As described above, both HMC and 
DRAM can access the shared Disk block. Therefore, there is a 
possibility of deadlock when HMC and DRAM are both trying 
to write a same Disk block. In order to avoid deadlock, we 
lock each page when loaded to memory level and unlock it 
after the I/O request has already submitted to the Disk layer. 
The procedure of the data-distribution strategy is described in 
Algorithm 1. 

 

IV. EVALUATION 

A. Methodology 

We evaluate our design using a low-level simulator HMC-
SIM, whose goal is to provide architectural simulation 
frameworks the ability to begin migrating current banked 
DRAM memory models to stacked HMC-based designs 
without a reduction in simulation fidelity or functionality [19]. 
TABLE I shows the details of the simulation configuration. 
We choose two comparison points that represent an upper and 
lower bound to show the validity of this system. The lower 
bound is a 4-GB quad-channel DDR4 memory system and the 
upper bound is a 4-GB HMC system, while our design is a 
hybrid 1-GB HMC + 3-GB DDR4 memory system. So the 
cost consumption of our memory system is only about 48% of 
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the 4-GB HMC system [20]. In this section, we present the 
performance of our file system in four aspects: bank conflict, 
read and write request, crossbar latency and crossbar request 
stall. 

TABLE I.  SIMULATION CONFIGURATION 

CPU 8 out-of-order x86 cores 

L1 Cache 128 K L1-I / 128 K L1-D 

L2 Cache 2 MB shared L2 

Operation System Ubuntu Linux 12.04 

Banks 8 

Vaults 16 

Queue Depth 64 

Crossbar Depth 128 

Number of Requests 10240 

 
Benchmarks 

Hmc physrand 

Decode physrand 

Gups 

stream 

B. Bank Conflict 

 
FIGURE III.  BANK CONFLICT 

FIGURE III describes the bank conflicts on each vault in 
DRAM, hybrid HMC+DRAM and HMC systems. Because the 
4G-DRAM system only has two banks while the others both 
have eight banks, so in FIGURE III (a) and FIGURE III (b), 
the present hybrid HMC+DRAM system is inferior to DRAM 
and HMC systems. However, in FIGURE III (c) and FIGURE 
III (d), the bank-conflict performance of hybrid HMC+DRAM 
system is almost equivalent to the other systems. 

C. Read and Write Request 

FIGURE IV describes the read and write requests in 
DRAM, hybrid HMC+DRAM and HMC systems, which 
directly reflect the throughout performance. We can observe 
that the throughput of hybrid HMC+DRAM system 
outperforms the DRAM system by about 1:5_. However, the 

HMC system still outperforms the hybrid HMC+DRAM 
system by about 2:1_. Considering the present system is 
consisted of 1G-HMC and 3G-DRAM while the HMC system 
of 4G-HMC devices, and the time spending on dead-lock 
avoiding, the throughout performance of our design is still 
effective. 

 
FIGURE IV.  READ AND WRITE REQUEST 

D. Crossbar Latency 

 
FIGURE V.  CROSSBAR LATENCY 

FIGURE V describes the crossbar latency in DRAM, 
hybrid HMC+DRAM and HMC systems, which directly 
reflect the I/O request delay in crossbar. In Figure 5(a), Figure 
5(b) and Figure 5(c), the crossbar-latency performance of 
hybrid HMC+DRAM system is almost equivalent to the other 
systems. But in Figure 5(c), the present hybrid HMC+DRAM 
system outperforms DRAM and HMC systems by about 1.4 
times. 

E. Crossbar Request Stall 

FIGURE VI describes the crossbar request stalls in DRAM, 
hybrid HMC+DRAM and HMC systems, which directly 
reflect the I/O request response time in crossbar. We can 

217



 

observe that the I/O request response time in crossbar of 
hybrid HMC+DRAM system outperforms the HMC system by 
about 1.2 times, and is almost equivalent to the DRAM system. 

 
FIGURE VI.  CROSSBAR REQUEST STALL 

V. CONCLUSION  

The HMC is a promising alternative to DDRx memory due 
to its potential to achieve substantially improved memory 
bandwidth. However, the high price of a HMC device 
compromises cost efficiency when the device is lightly utilized. 
In this paper, we propose a new inexpensive HMC+DRAM 
hybrid main memory architecture to reduce the cost 
consumption. In order to manage such hybrid memories, we 
develop a LRU-based data distribution mechanism to 
determine the destination of particular data flow. Evaluations 
show that our scheme reduces the cost consumption of Main 
Memory by 48% on average with a negligible performance 
degradation compared to a current HMC-based system. Also, 
our architecture outperforms a current DRAM-based system 
by 2.1 times, and reduces the response delay by 1.9 times 
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