
 

SimStore: Efficient Data Management for Network 
Propagation Simulation 

Dacheng Qu, Lin Zhang and Zhao Cao 
School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China 

 
Abstract—Simulation is widely adopted in large scale network 
propagation analytics.  Plenty of analytics scenarios require to 
retrieve, review the simulation status of a given time points or 
interval. Unfortunately, it is unaffordable to re-run the 
simulation due to the long running time and other costs in many 
cases. In this paper, we introduce a system (SimStore) to enable 
efficient storage and retrieval of simulation snapshots. We 
present a novel technique to compress a series of simulation 
snapshots in order to reduce the storage cost. Experimental 
results demonstrate the efficiency and effectiveness of the 
proposed methods. 

Keywords-social network; propagation; simulation; data 
management; compression 

I. INTRODUCTION 

Large scale network propagation analytics, such as social 
networks[1][2][3] and epidemic networks[4][5][6], are 
essential in a large number of applications. To illustrate, let’s 
consider the following analytics that may be conducted on the 
large scale networks: 

 What-if analysis, which includes simulation such as 
“what are the most impacted vertices/edges if I change a 
property of a vertex or edge” or “show me the influence 
simulation result if I could control one or a subset of the 
vertices in a network”.  Such what-if analytics are simulations 
that run from an intermediate state of the simulation.  

 Review/replay the propagation process, which includes 
scenarios such as “show me the intermediate state of 10 
minutes ago” or “give me a quick reply of the influence 
propagation process since the 5th iteration”. This class of 
scenarios requires getting the intermediate state in real-time. 

Due to the large scale network and complexity of 
propagation rules, it would take a long time (e.g., few 
hours/days or even months) to reach the final state of the 
simulation. To enable the further quick analysis of the 
simulation process without run the simulation again, one of the 
viable approaches is to store the simulation data of important 
time points. For example, the analyzer would require storing 
the simulation snapshot in every 10 seconds for review/replay 
purpose. 

Unfortunately, persist every simulation snapshot per few 
epics is unacceptable due to the heavy I/O cost; it even further 
affects the simulation performance. We aim to provide a 
system (SimStore), which could compress the snapshots, to 
efficiently persist and retrieve the snapshots of network 
simulation. This is challenging because: (1) vertices properties 
change slightly and frequently caused by the propagation; (2) 

network structure might change in the simulation either caused 
by the propagation rules or external input. We make the 
following contributions: (1) we design a system to manage the 
network simulation snapshot data efficiently; (2) we propose a 
novel technique to compress a series of simulation snapshots 
efficiently; (3) we design a query processing approach; (4) our 
contributions also include experiments over synthetic dataset 
to demonstrate the efficiency of the system. 

The remainder of this paper is organized as follows: We 
present a detailed problem statement and give an overview of 
the SimStore in Section II.  The proposed simulation snapshots 
compression algorithm and query processing approach are 
presented in Section III. Experimental evaluation results are 
reported in Section IV. We review related work and conclude 
this paper in Section V and VI respectively. 

II. PROBLEM STATEMENT AND SYSTEM OVERVIEW 

A. Problem Statement 

In network propagation simulation, a network is 
considered as a direct acyclic graph G=(V, E), where V and E 
are the sets of vertices and edges respectively. Each vertex and 
edge could have a set of properties. For a given vertex v∈V, 
let A(v)={ai=vi||1≤i≤|AV|} be the set of properties for vertex 
v, where |AV| is number of attributes for each vertex. For an 
edge e∈E, let A(e)={ai=vi|1≤i≤|AE|} be the set of properties 
for edge e, where |AE| is the number of attributes for each 
edge. Vertex v ∈ V propagates its property value to its 
neighbor vertices, lets denote it as N(v), through edges. In the 
simulation, propagation consists of a series of iterations to 
reach the final state. At each iteration, both of V and E, 
including properties of each vertex in V and edge in E, would 
be changed according to propagation rules R and external user 
input. We consider each iteration of the propagation state as a 
snapshot of the intermediate result, which is also a graph, let’s 
denote it as Gi as the result of i-th iteration. G0 is the initial 
network structure. Note that the network structure would be 
updated in the simulation run. 

We would like to store these snapshots into a distributed 
key-value store, which support efficient retrieval of specified 
one or series of snapshots, with flexible scalability support. A 
retrieval query is of form q=(start, end) to specify the start 
round and end iteration id. A straightforward approach is to 
store each snapshot directly; unfortunately, it requires a huge 
and unaffordable size of storage. One of the major technique 
challenges is how to persist a series of snapshots {G0, G1, 
G2,…} with as less storage cost as possible.  

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 168



 

 
(a) Baseline graph                       (b) next graph 

FIGURE I. AN ILLUSTRATIVE EXAMPLE 

Since the graph structure and properties would not change 
so significantly among nearby iterations, our intuitive idea is 
to remember the changed part of the properties and structures 
based on a selected baseline snapshot, instead of the full graph. 
For example, Figure 1(a) is the baseline snapshot, the snapshot 
in Figure 1(b) is changed a little bit based on graph Figure 1(a). 
We only need to remember that the property for vertex 4 and 
weight for edge 3->4 are changed as marked with gray 
background. Comparing to store the entire graph in Figure 
1(b), storing only the changed part could reduce the storage 
cost significantly. For a series of snapshots S={G1, G2, G3,…, 
GN}, we would like to: (1) split S into batches BSi={G|B|*i+x|0
≤x<|B|}; (2) For each batch, we select the first snapshot as 
baseline and compress the subsequent snapshots by only 
remembering the changed parts and the delta values of the 
changes. 

B. System Overview 

 

FIGURE II. SIMSTORE SYSTEM OVERVIEW 

Figure 2 provides a high-level overview of SimStore and 
its logical architecture. Data enters through SimStore API 
invocation from the simulator. The data ingestion API is of the 
form ingest(time t, Graph g). Snapshot is accessed via queries 
and the return (synchronously or asynchronously) of their 
results. The SimStore Controller in Figure 2 is the logical 
entry point for data ingestion and user requests. The Writer 
module is called by controller to cache the graph data in 
SimStore memory. The Compressor module is periodically 
called to compress the cached snapshots and persist the 
compressed result into the backend key-value store, for 

example Apache Cassandra is employed in our prototype 
system. The Query Processor module is called by controller to 
answer user requests. More specifically, it retrieves related 
compressed snapshots from backend key-value store; then 
calls the decompressor module to decompress and finally 
composes query results. 

III. SIMULATION SNAPSHOTS COMPRESSION 

Given a batch Bi={G|B|*i+x|0≤x<|B|}, we will describe how 
to compress a batch in this section. To compress the entire 
snapshots series, we just need to apply the same approach to 
each batch separately. We select the first snapshot G|B|*i in 
batch Bi as the baseline, let’s denote it as BSLi. As shown in 
Figure 3, for each snapshot, the snapshot data is split into three 
parts, including: network structure, vertices properties and 
edges properties. For the baseline, we store the graph data 
completely. However, for each subsequent snapshot, we only 
persist what are changed comparing to the baseline in structure, 
vertices properties and edges properties respectively. The 
following subsection A, B and C will present the compression 
strategy for each part. Subsection D will describe how to 
answer a query based on the compressed snapshots data. 

 

FIGURE III. COMPRESSED SNAPSHOTS LAYOUT IN KEY-VALUE 
STORE 

We would like to exploit key-value store as the backend 
data store for its flexible scalability and efficient value 
retrieval.  The iteration id of the snapshot is chosen as key in 
key-value store. For the baseline snapshot, we set the 
serialized baseline graph as value (as the value for key B*i 
shown in Figure 3). But for the subsequent snapshots, we set 
the serialized compressed snapshot (as the value for key B*i+1 
shown in Figure 3). 

A. Graph Structure Compression 

The graph structure includes a list of vertices and edges 
between vertices. Consequently, for baseline network 
structures, we store a list of sorted vertices ids and a list of 
sorted edges in the form of (u, u’) denotes an edge from vertex 
u to u’, where the edges is sorted by u and then sorted by u’ if 
two edges have the same u. 

For each consecutive snapshot, one of the observations is 
that graph structure doesn’t change so frequently. Hence, we 
would like to remember the changes only. For both of vertices 
and edges, there are two types of changes: add and remove. 
Consequently, we use four lists to maintain network structure 

169



 

changes, including: (1) new added vertices; (2) removed 
vertices; (3) new added edges; (4) removed edges. 

Algorithm 1 Graph structure compression algorithm 

Input: a batch of snapshots Bi={G|B|*i+x|0≤x<|B|} 

Output: four lists regarding to changes to graph structure 

1: AddedV, RemovedV, AddedE, RemovedE←Ф 

2: BL←G|B|*i 

3: for each subsequent graph g∈Bi 

4:       for each vertex v in V(g) 

5:              if v does not exist in BL     AddedV.add(v) 

6:       for each vertex v in V(BL) 

7:              if v does not exist in g        RemovedV.add(v) 

8:       for each edge e in E(g) 

9:              if e does not exist in BL     AddedE.add(e) 

10:     for each edge e in E(BL) 

11:            if e does not exist in g      Removed.add(e) 

12: return (AddedV, RemovedV, AddedE, RemovedE) 

As shown in line 3 of Algorithm 1, for each subsequent 
snapshot, we compare it with the baseline snapshot. If a vertex 
or edge is in the subsequent snapshot but not in the baseline, it 
should be a new added vertex (line 5) or edge (line 9). In 
contrast, if a vertex or edge is in the baseline but not in the 
subsequent snapshot, it should be a removed vertex (line 7) or 
edge (line 11). 

B. Vertices Property Compression 

We observe that vertex properties are changed the most 
frequently in network propagation, however, the vertex 
property don’t change significantly among consecutive 
iterations. Therefore, we would store the original vertex 
property values for the baseline graph. Then, for the 
consecutive snapshots, one design point is that we compute the 
property value changes. More specifically, we for each vertex, 
we would like to remember the delta comparing to the value in 
baseline graph. For example, a vertex v’s property value is 
1000 in the baseline graph, and its property value is updated to 
1001 in the next iteration, we would only remember the 
delta(v)=1001-1000=1, which will use less bytes (e.g., 2 bytes 
in our prototype system) in storage. Another point is that we 
don’t store the delta values as a list of (vertex id, delta value) 
tuples. Since the vertex list is sorted, we just store the delta 
values in the same order as vertex id list to save storage cost. 
However, for the new added vertices, we still persist their 
delta values as a list of (vertex id, delta value) tuples. 

C. Edges Property Compression 

We also observe that edge property values are changed 
much less frequently than vertex property. Meanwhile, the 
property value would not change significantly comparing to 
the nearby iterations. Hence, we decide to represent these 
changes in the form of (edge, new value) tuple list, mainly 
because the edge property changes are rare. We could save 

time cost to decompress the edge changes comparing to keep 
the delta only. 

D. Query Processing 

The basic idea for query processing is as follows: (1) 
compute the required batches according to the start and end 
iteration ids of the request; (2) for each required snapshot, we 
decompress the snapshot as shown in Algorithm 2, which 
returns the required snapshots. 

Algorithm 2 Decompression algorithm 

Input: iteration id in the request,iid 

Output: a snapshot 

1: CBL←retrieve compressed baseline from key-value store 

2: CChange←retrieve compressed changes from key-value store 

3:  RS←Ф    //result snapshot 

4: //decompress structure 

5:  RS.V←CBL.V 

6:  RS.E←CBL.E 

7:  RS.V←RS.V∪CChange.AddedV 

8:  RS.V←RS.V-CChange.RemovedV 

9:  RS.E←RS.E∪CChange.AddedE 

10:  RS.E←RS.E-CChange.RemovedE 

11: //decompress vertices properties 

12: for each vertex v’s properties in CChange.VDelta 

13:        RS.V.property(v)+=CChange.VDelta.property(v) 

14: for each vertex v’s properties in CChange.VAdded 

15:        RS.V.property(v) = CChange.VAdded.property(v) 

16: //decompress edge properties 

17: for each edge e’s properties  in CChange.Edges 

18:        RS.E.property(e) =CChange.Edges.property(e) 

19: return RS 

As shown in Algorithm 2, for each required snapshot, we 
first decompress its network structure by merging the new 
added vertices and edges to the baseline graph (line 7 and 9), 
and eliminating the removed vertices and edges from the 
baseline graph (line 8 and 10). Then, we decompress the 
vertices properties, as shown from line 11-15 in Algorithm 2, 
for properties of the vertices existing in baseline snapshot, we 
add the delta value to the value in baseline graph; but for 
properties of new added vertices, the value is what is got from 
the compressed snapshot. Finally, edges properties values are 
calculated by merging the values in baseline graph and 
changed values in compressed snapshot as shown in line 17 
and 18.  

IV. EXPERIMENTAL EVALUATION 

We next present an experimental study of SimStore system 
using synthetic data. 

170



 

A. Experimental Setup 

Hardware and platform: All our experiments were 
performed on an Intel(R) Core(TM) i3-5010U 2.1GHz CPU 
machine running Ubuntu14.04 with 4GB of RAM. The system 
was implemented in Java and used Apache Cassandra as 
backend key-value store. 

Datasets: We implemented a network simulator to: (1) 
generate the initial network structure and vertices/edges 
properties, where the values of vertices/edges properties are all 
integers; (2) produce propagation simulation snapshots, which 
are the input to SimStore system, based on the configured 
propagation rules. 

Effectiveness/efficiency measurements: We measure the 
storage effectiveness by the compression ratio comparing to 
persisting the graph vertices and edges directly. The retrieval 
efficiency is measured by the retrieval query latency. 

 
FIGURE IV. COMPRESSION RATIO EXPERIMENTAL RESULTS 

B. Experimental Results 

Storage effectiveness: As shown in Figure 4, SimStore 
could overall significantly reduce the storage cost by 
compression ratio of 4. We further evaluate the storage 
effectiveness by varying the number of graph structure 
changes. As shown in Figure 4, with the increase of structure 
change, the storage cost would not increase significantly. 

Snapshot retrieval efficiency: We use randomly selected 
iteration id as point query to verify the snapshot retrieval 
efficiency. We also compare the query latency with baseline 
approach which stores each snapshot directly into key-value 
store. In our experimental result, we see that SimStore only 
introduces 20% of the additional query latency than the 
baseline approach. 

V. RELATED WORK 

Data compression: General data compression 
algorithms[7] were deeply investigated in the community and 
applied successfully[8]. All of these compression algorithms 
don’t consider the characters of the data. In database 
management system area, e.g.,C-Store[9][10], HP Vertica[11], 
IBM DB2 BLU[12], a batch of compression techniques are 
employed to compress data based on data characteristics. 
These works are for column relational data management, but 
cannot used in graph data. 

Graph data management: Graph data management is a hot 
topic in data management community. The major focus is to 
manage a very big graph, instead of managing a series of 
graphs. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we presented the design of a network 
propagation simulation data management system. Our major 
technical contributions include (1) designed a network 
simulation snapshot data management system; (2) proposed a 
novel algorithm to compress a series of snapshot and 
decompress it for query processing. Our experimental results 
demonstrate the efficiency of our techniques. In future work, 
we plan to extend our work to support distributed adapter, 
writer, compressor, and query processor. We would further 
explore series graph data compression for other simulation 
data management problems. 

Acknowledgment 

This project has been supported by the National Natural 
Science Foundation of China (No. 61370136). 

References 
[1] Yu Q. H., Zhang C. A Hybrid Algorithm for Relationship 

Recommendation in Social Networks. Beijing 4th NCSC. 132-137, 2012. 

[2] Kumar R., Novak J., Tomkins A. Structure and evolution of online 
social networks[C]. Proceedings of the 12th ACM SIGKDD. New York: 
611-617, 2006. 

[3] Wu X. Y., Liu Z. H. How community structure influences epidemic 
spread in social network. Physica  A. 387: 623, 2008. 

[4] Small M., Tse C. K.. Clustering model for transimission of the SARS 
virus: application to epidemic control and risk assessment. Physica A. 
351: 499, 2005. 

[5] Lu T. Y. Early Experience in Analyzing the Human Flesh Search Model 
Based on Small World Model[C]. Beijing, 4th NCSC. 156-160, 2012. 

[6] Liu Z. H., Hu B. Epidemic spreading in community networks[J]. Euro 
phys. Lett. 72: 315, 2005. 

[7] Witten I, Neal R, Cleary J. Arithmetic coding for data compression[J]. 
Communications of The ACM, 30(6): 520-540, 1987. 

[8] https://en.wikipedia.org/wiki/Gzip. 

[9] Stonebraker M, Abadi D, Batkin A. C-store: a column-oriented 
DBMS[J]. Very Large Data Bases, 2005. 

[10] Abadi D, Madden S, Ferreira M. Integrating compression and execution 
in column-oriented database systems[J]. International Conference on 
Management of Data, 2006. 

[11] Lamb A, Fuller M, Varadarajan R. The vertica analytic database: C-store 
7 years later[J]. VLDB, 5(12): 1790-1801, 2012. 

[12] Raman V, Attaluri G, Barber R. DB2 with BLU acceleration: so much 
more than just a column store[J]. Proceedings of The Vldb Endowment, 
6(11): 1080-1091, 2013. 

[13] Angles R, Gutierrez C. Survey of graph database models[J]. ACM 
Computing Surveys, 2008.  

 

 

 

 

 

 

 

 

171




