
ViSP: A Cloud-based Virtual Smartphone Platform

Jiajun Wang1,*, Jigang Wang2, Peng Yang3, Zhicheng Ma3, Lei Zhang3 and Gang Wang3
1800 Dongchuan Road, Shanghai, China, 200240

2800 Tian Fu Da Dao Zhong Duan, Gaoxin District, Chengdu City, Sichuan Province, China, 610041
3629 East Xijin Road, Qili River, Lanzhou City, Gansu Province, China, 730050

*Corresponding author

Abstract—Smartphones have become increasingly ubiquitous
in our daily life. However, mobile devices are less powerful
than traditional devices like desktops and laptops. And the
hardware resources of each mobile device also vary widely
which leading to different user experiences of smartphone
users. This paper proposes ViSP, a cloud-based virtual
smartphone platform. By leveraging virtualization technology,
we provide virtual smartphones, which are deployed in the
cloud. Users can use apps remotely on the virtual smartphones,
ignoring the limits of physical devices. Experiments show that
the bandwidth cost is about 100kBps in average using zlib
encoding, which is suitable and reasonable in 4G network.

Keywords-virtualization; android; remote display; cloud
computing

I. INTRODUCTION

The number of smartphone users is growing rapidly these
years. More and more people spend time using smartphone
instead of laptop or desktop computer for its portability and
connectivity.

However, hardware resources of smartphones are
typically very limited compared to those of traditional
computers, such as central processing unit (CPU), memory,
storage and battery. And mobile app developers are required
to take these limitations into consideration. Besides the
difference in hardware resources, software stack also varies
between devices. There are so many different mobile
Operating Systems (OSs) currently such as iOS, Android,
Windows, etc. And more and more mobile OSs are
appearing like Tizen, Sailfish. The discrepancy between
different devices leads to diverse user experiences. Some
computation-intensive apps may not run smoothly on low-
end mobile phones. And some apps may not come with a
specific mobile OS due to lack of mobile developer in the
software company.

Meanwhile, virtualization has been thoroughly
researched these years and applied to industry to manage
resources more effectively. Desktop virtualization [1] has
been used in organizations and companies to ease the burden
of maintaining computers and to improve the resource
utilization. There are typically enormous desktop computers
and servers in an IT organization. Managing so many
computers and servers could be a hard burden. Using
virtualization, all the computers can be managed on the cloud
side while creating new instance or upgrading them is more
convenient. In the same way, this method could also be

applied to smartphones to provide a unified experience for
mobile users and easy to maintain.

In this paper, we propose ViSP, a Cloud-based Virtual
Smartphone Platform, using thin-client computing with
mobile phones to provide virtual mobile OSs to end users.
By running OSs and apps remotely, the gap between
different devices could be narrowed.

The remainder of this paper is structured as follows.
Section II describes the design of our platform. Section III
introduces our implementations in details. Section IV reports
the evaluation results of the proposed platform. Section 0
presents the related research work about and thin client
computing and virtual smartphone. Section VI concludes the
paper and discusses the future work.

II. ARCHITECTURE DESIGN

In order to provide good user experience to mobile phone
users, we propose ViSP in a cloud environment to leverage
virtualization technology.

FIGURE I. OVERVIEW OF VISP

Figure I shows the high-level overview of ViSP. Virtual
smartphones are running on the servers in the data center. A
user can own one or more different virtual smartphones. He
can access the virtual smartphone using ViSP client as long
as he has internet access.

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 160

FIGURE II. DETAILED ARCHITECTURE OF VISP

Figure II presents the detailed architecture of our system.
The ViSP client is also an app on smartphone, which
receives the screen updates from the server and shows it on
the physical smartphone. Thus, the user is expected to use the
virtual smartphone as a separate mobile OS from the original
OS. And the client intercepts all the touch events and then
sends them back to the server so that the virtual smartphone
can get user input from the physical device.

To make the platform easy to use and maintain, we must
ensure the transparency of the architecture. Our platform
should not require any modifications to the virtual
smartphone OSs. All work should be done at the hypervisor
layer so that different mobile OSs can run on our platform as
long as they can be virtualized on some hypervisor. This
means that we must intercept the display of virtual
smartphone and send in the control events at the hypervisor
level.

III. IMPLEMENTATION

We have implemented a prototype using Android as the
server-side virtual smartphone OS. Android emulator has
been provided in Google's Android SDK and both Android
system and the emulator are open source in Android Open
Source Project.

A. ARM Native Code Support

Android apps are typically written in Java and run on
Android runtime, Dalvik before Android 4.4 and Android
Runtime (ART) since Android 5.0. However, Android also
allows developers to implement parts of their apps in native
C/C++ code in order to speed up some CPU-intensive
programs. For instance, some game engines (e.g., Unity,
Cocos2d-x) are written in native code for performance and
portability.

In the early versions of Android, ARM is the only
platform which is officially supported by Google. Android-
x86 is an unofficial initiative to port Android to AMD and
Intel x86 chips.

Though x86 and MIPS chips are officially supported by
Google nowadays, there are still some apps which only
contain ARM native codes. To solve this problem, Intel has

created a compatibility layer named libhoudini. This library
acts as a binary translator, reading in the ARM instructions
and converting them into the corresponding x86 instructions
on the fly. So most apps could run on an x86 Android as
normal.

B. Screen Updates

Some traditional remote display protocols use client-pull
mode to update the screen image. This means that the client
is responsible for handling the screen updates. Once the
client thinks the screen should be updated, for example, some
touch events have been fired or a fixed time interval has
passed, it will request a new screen image from the server.
Hence, the latency is a bit high, which is one Round Trip
Time (RTT). While in server-push mode, the server sends the
updates once the screen is changed on the server side. And
latency is half of RTT, which is better than client-pull mode.

In server-push mode, the server acts as the producer
while the client is the consumer. The server appends the
screen updates into a buffer queue. The client takes out the
updates from the queue. Unfortunately, if the network
connection is slow, the producing speed is faster than the
consuming speed, user experience will suffer. Once the client
could not consume the screen updates in time, the buffer
queue will become longer, leading to lag on the client side.
Therefore, the server puts a sequence number in each screen
update packet, and client sends back an acknowledgement
packet to indicate it has received a specific update. If the
server produces lots of updates while the client has not
responded yet, the update packets will be dropped to avoid
the lag.

IV. EVALUATION

The experiments are conducted in a separate network
environment. The server has a 3.1GHz Intel Core i5-3450
CPU and 8GB system memory. The client app runs on LG
Nexus 5. The virtual smartphone OS is Android 5.1 running
on our modified Android emulator. The resolution of virtual
Android is 320x480.

FIGURE III. CPU UTILIZATION ON SERVER

The CPU utilization of the server is presented in Figure
III. The average CPU utilization is 29.25% on one core. A

161

quad-core processor like the one we use could contain up to
10 virtual Android on one server.

Running virtual Android onthe serverr can greatly reduce
the CPU burden of physical device. All apps could run on a
server whose CPU is considered more powerful than the
CPU on mobile devices. However, screen updates must be
transferred through network. The bandwidth cost must be
considered since users may be using 3G/4G. They may be
charged according to their data traffic.

FIGURE IV. BANDWIDTH COST USING RAW ENCODING

FIGURE V. BANDWIDTH COST USING ZLIB ENCODING

We have recorded the bandwidth cost during a 5minutes
period as shown in Figure IV and Figure V. Figure IV shows
the bandwidth cost if the screen is directly sent to the client.
From the third minute, we start a game on the virtual
Android, so the bandwidth has become rather high in the
figure. Using zlib encoding, we can greatly compress the
screen images. Figure V refers to the bandwidth cost under
zlib encoding. Even playing game does not consume too
much network bandwidth. The average bandwidth cost of
raw and zlib encoding are 1199.2 kBps and 79.1 kBps. The
bandwidth could be further reduced if a lossy compression
algorithm is used like JPEG.

V. RELATED WORK

Virtualization allows multiple virtual machine instances
on one physical machine simultaneously. Xen [2] is proposed
to virtualizes x86 through paravirtualization. And KVM [3]
is a full virtualization solution on x86 linux hosts.

Thin-client computing has been researched for a long
time. The X system [4] uses a C/S architecture to separate the
UI and program. Display commands are forwarded from an
X client to an X server to be drawn on screen. VNC [5]
works at framebuffer level. The VNC client will ask the
server to send the screen updates.

THiNC [6] virtualizes the display at device driver. It
translates the display commands into some low-level
commands to be processed at ThiNC client. A mobile client
is presented so that users can remotely control a PC on a
smartphone. Lamberti [7] uses MPEG video streaming to
transfer the remote screen to the client in order to reduce the
bandwidth cost. Virtual Smartphone over IP [8] provides a
similar architecture using Android-x86 and VNC, while
adding sensors support.

VI. CONCLUSION AND FUTURE WORK

This paper presents ViSP, A Cloud-based Virtual
Smartphone Platform. Using virtualization, users can create
virtual smartphones in the cloud and connect to the virtual
smartphones using a client app on their mobile phones. The
experiments show that ViSP demands low bandwidth with
zlib compression and can provide good user experience.

We plan to add multitouch and sensor support to better
use the capabilities of physical devices. Furthermore, we plan
to migrate to KVM or Xen as the server platform since they
provide some advanced features like management APIs, live
migration and so on.

REFERENCES
[1] Lai, Guangda, Hua Song, and Xiaola Lin. "A service based

lightweight desktop virtualization system." Service Sciences (ICSS),
2010 International Conference on. IEEE, 2010.

[2] Barham, Paul, et al. "Xen and the art of virtualization." ACM
SIGOPS Operating Systems Review 37.5 (2003): 164-177.

[3] Kivity, Avi, et al. "kvm: the Linux virtual machine monitor."
Proceedings of the Linux Symposium. Vol. 1. 2007.

[4] Scheifler, Robert W., and Jim Gettys. "The X window system." ACM
Transactions on Graphics (TOG) 5.2 (1986): 79-109.

[5] Richardson, Tristan, et al. "Virtual network computing." Internet
Computing, IEEE 2.1 (1998): 33-38.

[6] Baratto, Ricardo A., Leonard N. Kim, and Jason Nieh. "THINC: a
virtual display architecture for thin-client computing." ACM SIGOPS
Operating Systems Review 39.5 (2005): 277-290.

[7] Lamberti, Fabrizio, and Andrea Sanna. "A streaming-based solution
for remote visualization of 3D graphics on mobile devices."
Visualization and Computer Graphics, IEEE Transactions on 13.2
(2007): 247-260.

[8] Chen, E. Y., and M. Ito. "Virtual Smartphone over IP. Montreal." QC,
Canada: IEEE WOWMOM (2010).

162

