
Web-based User Interface Modeling and Automatic
Mobile Web App Generation Tool

Kibong Choi1 and Saehwa Kim2*
1, 2Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, 449-791 Korea

*Corresponding author

Abstract—This paper proposes a web-based logical user interface
(UI) modeling and automatic mobile web App generation tool.
Logical UI modeling is based on PELUM (Pattern and Event
based Logical User Interface Modeling). PELUM is an effective
embedded SW development methodology for UI centric
embedded systems. Our automatic web App generation tool
consists of a model editor and a code generator. The model editor
provides a web environment for editing a Logical UI model (LUM)
and a Programming Interface Model (PIM). The code generator
generates a mobile web App from LUM and PIM. LUM abstracts
screen configurations and events while PIM abstracts local
database schema. Generated mobile web Apps conform to MVC
(Model-View-Controller) architecture so that users can easily
optimize them. By exploiting our tool, users can rapidly
implement mobile web Apps that can run on multiple devices.

Keywords-software engineering; modeling; user interface;
automatic code generation

I. INTRODUCTION

The proliferation of various smart embedded devices,
including smart phones, tablets, navigators, and smart TVs,
lead to the ever increasing needs for applications that are
adaptable for multiple devices. One of the important
bottlenecks for increasing such reusability is that the user
interfaces (UIs) for multiple devices cannot be the same. To

overcome this problem, we have proposed PELUM (Pattern
and Event based Logical User Interface Modeling) in [1].
PELUM encompasses (1) a pattern-based method for deriving
a UI implementation from a UI model, (2) a meta-model for
modeling both abstract UI and task model, whose name is
Logical User Interface Model (LUM), and (3) its supporting
modeling tool, which is based on Eclipse RCP (Rich Client
Platform) [2].

In this paper, we propose a web-based logical UI modeling
and automatic mobile web App generation tool for PELUM.
Our related work includes UI mock-up tools such as Balsamiq
[3] and invision [4] as well as UI authoring tools such as
Appery [5] and mBizmaker [6]. UI mock-up tools have
limitations that they cannot generate Apps that can run on real
devices. UI authoring tools also have limitations that users
cannot manipulate their own source code since generated
source code itself is not available to users.

The proposed tool consists of a model editor and a code
generator. It is web-based and thus users do not need to install
them in their computers. The model editor provides a web
environment for editing a Logical UI model (LUM) and a
Programming Interface Model (PIM). These models are in the
xml format. The code generator configure jQuery Mobile by
parsing these two model files and generate an operable App.

TABLE I. THE 4-LAYER AND META-MODEL OF PELUM

Modeling elements Description

Container A view that contains any LUM components

Population that represents a collection of instances of a class in PIM

Options that contains optional services for its container

Settings for setting certain configuration

Presentation A view that presents constant data or an image

Navigator for activating another or

Internal Service for providing an internal service

Instance for representing instance variable of an object in PIM

Editable An Editable

Togglable that is turned on or off instantly

Selectable that is selectable from some predefined set of values

Event An association between components (or). The arrival of
an event to a source component activates the target component.

(a) 4-layer architecture of PELUM (b) PELUM meta-model components

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 104

The generated App is in the MVC architecture for users to
easily optimize to multiple devices. The main advantage of the
proposed tool is that UI models can be flexibly applied to

multiple platforms since users can check events and logical UI
components visually and the local database is automatically
created.

TABLE II. LUM PATTERN APPLICATION EXAMPLE

(a) Reference implementation (b) LUM of reference implementation (c) LUM pattern applied
The remainder of the paper is as follows. In Section II, we

present PELUM, which our tool is based on. In Section III, we
present our proposed tool. Section IV concludes the paper

II. PELUM (PATTERN AND EVENT-BASED LOGICAL UI

MODELING)

PELUM proposes 4 hierarchical layer models as shown in
TABLE I (a). First, PIM (Programming Interface Model) is
generally given as an API layer, depending on the specific
platform like Android, iOS, etc. The proposed tool in this paper
exploits this PIM as its data model. Second, LUM (Logical UI
Model) is a layer that models abstract UI and components with

events. Our tool in this paper exploits this LUM as the UI
model. Third, CLM (UI Control and Layout Model) is a layer
that determines a concrete UI controls (widgets such as buttons,
check box, etc.) and a specific layout of UI elements. Finally,
GRM is a layer that provides graphic resources of UI elements.
Our code generator tool automatically synthesizes CLM and
GRM based on jQuery mobile [7] based on patterned templates.
Note that our model editor tool models PIM and LUM and our
code generator tool synthesizes a mobile App with PIM and
LUM modeled in our model editor along with patterned
templates of CLM and GRM.

FIGURE I. WEB-BASED UI MODELING AND AUTOMATIC MOBILE WEB APP GENERATION TOOL ARCHITECTURE

TALBE I (b) shows the brief explanation for each LUM

meta-model. Container is a general view that contains any
LUM components. Population is a container that represents a
collection of instances of a class or classes in PIM.

105

FIGURE II. OUR PROPOSED LOGICAL MODEL EDITOR: THE

LEFT IS FOR LUM (LOGICAL UI MODEL) AND THE RIGHT IS FOR
PIM (PROGRAMMING INTERFACE MODEL)

Option is a container that contains optional services for its
container. Setting is a container for setting certain
configurations. Presentation is a view for constant data or
images. Navigator is a presentation that activates other
presentations. InternalService is a presentation that provides
internal service that is connected with APIs of PIM. Instance is
a presentation for representing an instance variable of an object
in PIM. Editable is an editable presentation. Togglable is an
instance that is turned on or off instantly. Selectable is an
instance that is selectable from some predefined set of values.
Finally, Event is an directional association between
components (container or presentation). If the source
component of an arrow gets the event, the target component is
activated

TABLE II shows a pattern example for population whose
detailed explanations are available in [8]. TABLE II (a) shows
a reference implementation, Table II (b) shows an LUM model
that models all UI elements. Table II (c) shows a patterned
LUM model for this which omits the title of header, the add
button, and, the delete-button of list as TABLE 2 (a).

Tree Node ID attribute check

Load a relevant
html template

Change ID to
temporary UID

Save the html
to be output

Load view.js
and event.js

Change Link
name and Page_id

Search a location to
insert child element into

the html to be output

[Options]

Insert a child element
to fit relevant type

[remaing number
of nodes!= 0]

Search a location to
insert child element
into the loaded JS

Save to JS to be output
[Population || Settings]

Change PIM.xml
to JSON

[Settings]

Load the script
template of select tag

Set JSON value to a
relevant range value.

Add DB
domain value

[Range Value]

Load DB.js

Insert schema
creation code

[Settings]

[Settings]

Create
index.html

view.js
event.js
DB.js

[Population]

FIGURE III. AUTOMATIC MODEL TRANSLATION ALGORITHM (REPRESENTED IN UML ACTIVITY DIAGRAM).

III. WEB-BASED UI MODELING AND AUTOMATIC MOBILE

WEB APP GENERATION TOOL

FIGURE I shows the architecture of our proposed web-
based UI modeling and automatic mobile web app generation
tool. This tool is composed of a model editor and a code
generator. Figure II shows the model editor which enables for

106

users to edit UI model and data model, save their edited model,
and load their saved model to the editor.

The model editor is composed of the file manager, the UI
model manager, and data model manager as shown in FIGURE
I. The file manager loads and saving files. The file manager
delivers each file of a specific type to a proper manager by
classifying files. We implemented the file manager based on
jQuery to support multi browsers and to simplify searching
DOM (Document Object Model) and binding events. Our UI
model manager is based on jsPlumb as well as jQuery. We
exploit jsPlumb to draw inter-model event on browsers. Finally,
our data model manager manages the value of the data model
that is needed to create the database schema. We also
implemented the data model manager based on jQuery.

 The code generator is composed of the parser and the
translator as shown in FIGURE I. The parser receives the xml
values from the model editor as its input. Then, the xml values
are modified for the translator. In the parser, UI model is
changed to tree structured ID list and the data model is
modified to JSON objects. Parser is based on python for easy
string manipulation. The translator gets preprocessed input
value from the parser and generates a mobile web App based
on the rules defined at [9].

The algorithm of the translator is outlined in Figure III. As
shown, it checks the tree node attribute at ID list that is
structured by the parser. Then, it loads templates that
correspond to the types of node ID attributes. Next, the
translator inserts templates at the proper location that is found
at a pre-defined flag within the output file. For implementing
the templates, we exploit jQuery Mobile and the MVC
architecture. Note that these templates cover CLM and GRM in
the PELUM 4-layer architecture which we presented in Section
II. We classify templates according to the MVC architecture as
shown in FIGURE IV. Template file types are as follows.

 Html template: it implements UIs based on jQuery.

 JavaScript template: it implements db, view, event,
which map model, view, and controller of the MVC
architecture, respectively.

The code generator generates index.html, db.js, view.js,
event.js files from assembling these templates as shown in
Figure I. The main strong point of our tool is that it enables for
users to generate and initialize a local database (Indexed DB)
only by modeling UIs. Moreover, our tool is very flexible
because it represents UIs from the logical point of view, which
dramatically increases the reusability of mobile Apps for
multiple devices.

IV. CONCLUSION

In this paper, we have presented our web-based UI
modeling and automatic mobile web App generation tool. This
tool is composed with a model editor and a code generator. The
Users can model their UIs using the model editor. Specifically,
the model editor enables users to model their logical UI models
(LUM) and the programming interface model (PIM). The code
generator generates a mobile web app based on (LUM and
PIM) models edited in the model editor. The automatically
generated App can be easily configurable according to various

screen sizes, actuators, and sensors since the implementation is
based on jQuery mobile and the architecture follows the MVC
architectural pattern. With this, users can rapidly develop their
Apps for multiple devices. As future work, we will enable for
users to model the GRM (Graphical Resource Model) and
CLM (Control UI and Layout Model). With this, users can
more easily customize their Apps by customizing graphic,
control widget and layouts.

FIGURE IV. WEB-BASED UI MODELING AND AUTOMATIC

MOBILE WEB APP GENERATION TOOL ARCHITECTURE

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2013R1A1A3006819).

REFERENCES
[1] S. Kim, Pattern and Event Based Logical UI Modeling for Multi-

Device Embedded Applications, Proceedings of International
Conference on Convergence and Hybrid Information Technology, 2011.

[2] S. Kim, Graphical Modeling Environment for Logical User Interfaces
Based on Eclipse GMF, Journal of Information Industrial Engineering,
2011.

[3] Balsasmiq, https://balsamiq.com/

[4] Invision, http://www.invisionapp.com/

[5] Appery, https: // www.appery.io/

[6] mBizmaker, http:// http://www.mbizmaker.com/

[7] jQuery mobeil, https://jquerymobile.com/

[8] K. Choi, S. Kim, Mobile Web Based Reference Implementation for
Logical UI Modeling for Embedded Applications, Journal of
Information Industrial Engineering, 2014

[9] K. Choi, S. Kim, Mapping Logical UI Models to HTML5-based
Embedded Applications, Korea Computer Congress (KCC), 2014.

107

