
 

 

End-to-end Delay of Switched Ethernet Based on 
Time Division Multiple Access 

Jieqiong Zhou 
Capital University of Economics and Business, Beijing, China 

 
 
Abstract—Focusing on the access control of terminal equipment 
base on time division multiple access (TDMA), an experimental 
network based on the RTNET protocol was established. The real-
time Linux kernel was reconstructed and RTNET protocol stack 
of real-time Ethernet was transplant in the paper. Based on the 
time division multiple access mechanism, a number of tests were 
designed assigning different time slices. The results show that 
under the optimal allocation of time slices, the frame queuing 
delay in the switch is greatly reduced, and the end-to-end delay of 
Switched Ethernet applying RTNET protocol stack is 
significantly reduced compared to TCP / IP protocol. 

Keywords-end-to-end delay; time division multiple access; 
Switched Ethernet; allocation of time slices 

I. INTRODUCTION 

Research on real-time performance really is needed, to use 
Switched Ethernet to high real-time industrial control 
including train control communication. Real-time 
improvements for Switched Ethernet contain three aspects: (1) 
Design and optimization for topology [1]. (2) Research on the 
switch scheduling algorithm. (3) Research on the media access 
control mode of terminal equipment. This paper focuses on the 
use of time division multiple access (TDMA) of terminal 
equipment in Switched Ethernet. 

RTNET, with key technology of TDMA, an improved real-
time Linux operating system combining RTNET Ethernet 
protocol stack, is a software technology [2-3]. Experiments 
were completed to compare the real-time performance of 
operating system (OS) and network respectively in the 
Vxworks OS and Linux OS with RTAI/Xenomai 
transformation in literature [4], and results show that Vxworks 
OS has better real-time performance, but the real-time 
performance of network is less than RTNET. Literature [5] 
completed the transformation of Linux kernel based on 
Xenomai and transplant of  RTNET on PowerPC platform, but 
analysis of  TDMA cannot be found. Simulation of RTNET 
was established in literature [6], but there is no actual 
communication test. 

Test segment of Switched Ethernet is built based on 
RTNET protocol in the paper. Optimization allocations of time 
slices are summarized according to test results. 

II. RTNET PROTOCOL STACK 

RTNET originally aimed to provide a hardware-
independent real-time communication platform. RTNET real-
time Ethernet protocol stack framework is shown in Figure1. 

 

FIGURE I. FRAMEWORK OF THE RTNET REAL-TIME ETHERNET 
PROTOCOL 

Real-time nature is mainly ensured on the basis of the 
following mechanisms: 

(1) Real-time NIC driver. RTNET provides real-time 
driver for variety of popular Ethernet network 
interface, with hardware compatibility. NIC driver can 
achieve real-time link-layer protocol, but also retained 
the support of the standard TCP/IP protocol stack. 
Network initialization data is transmitted using 
TCP/IP protocol, while real-time data using real-time 
protocol. 

(2) RTmac real-time layer. RTNET adds a real-time MAC 
sub layer between the data link layer and the network 
layer, called RTmac, using TDMA access mechanism 
avoiding conflict. Nodes in the RTNET network are 
divided into two categories-master node and slave 
node. At the beginning of each basic cycle, the two 
kind nodes correct their clock, and then each node 
sends data in its pre-assigned time slices. 

(3) Improved UDP/IP protocol. RTNET improves the 
Address Resolution Protocol (ARP) from dynamic to 
static. In the initialization phase, the network identifies 
current nodes and generates a static routing table by 
RTcfg module. In addition, restructuring mechanism 
of fragmented IP datagram has been also optimized in 
RTNET. 

(4) API interface. RTNET provides POSIX-compatible 
socket interface functions for user module and kernel, 
which facilitates the connection between applications 
and real-time network services. 

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 92



 

 

III. RTNET TEST ENVIRONMENT 

There are two steps to building a test environment for 
RTNET: single pc transplant for RTNET protocol stack and 
networking. 

A. Single PC Transplant for RTNET Protocol Stack 

RTNET transplant and started by the following steps: 

(1) Linux kernel real-time improvements.  

(2) RTNET protocol stack configuration, compile and 
install.  

(3) Further configuration after installation.  

Among them, the following principles are needed in the 
TDMA mode configuration: 

(1) Time slice reservation for the clock synchronization. In 
initialization, each node identifies the network composition 
first, and then a static routing table is generated. The first time 
slice of basic cycle is always set aside out for the clock 
synchronization. 

(2) Time slice reservation for the backup master node. The 
second time slice of each basic cycle is generally reserved for 
the backup master node to monitor the master node, so that 
when the master node fails, the standby master node can work 
as master node in time, and open the next basic cycle. 

(3) Time slice configuration needs to set three properties: 
the offset (space between the starting time of the time slice and 
the starting time of the basic cycle), the length, and the 
belonging (the time slot belongs to which terminal equipment). 

B. Networking 

A test network segment is set up consists of four single PC, 
each of which nodes has been transplant with RTNET protocol 
stack and improved with Xenomai real-time Linux kernel. 
Specific hardware and software environment parameters for 
networking test are shown in Table 1. 

TABLE I.  ENVIRONMENT PARAMETERS OF NETWORK TEST 

PC property PC1 PC2 PC3 PC4 

CPU model 
Core2 
P8400 

Core-i3-
2100 

Core2 
Q8300 

Core2 
Q8300 

CPU clock 
speed 

2.25GHz 3.10GHz 2.50GHz 2.50GHz

Memory size 4GB 4GB 4GB 2GB 

NIC model 
Intel 

82567 
Intel 

82541 
Intel 

82541 
Intel 

82541 

Link rate 100Mbps 
operation Xubuntu 

Real-time Linux 
kernel 

3.5.7-xenomai-2.6.2.1 

RTNET version 0.9.13 
Real-time NIC 

driver 
rt_e1000e rt_e1000 rt_e1000 rt_e1000

Node property 
Maste 
node 

Slave 
node A 

Slave 
node B 

Slave 
node C 

IP address 
136.137.1

38.20 
136.137.1

38.21 
136.137.1

38.22 
136.137.1

38.23 

 

IV. RTT TEST AND ANALYSIS 

This paper analyzes the data end-to-end delay through the 
experiment of the network round-trip time (RTT). RTT test 
can reflect the processing capability of terminal device and 
real-time communication capability of the network segment.  

Aiming at different time slice allocation methods 
performed three tests. 

A. The Master and Slave Node Time Slice are both 100μs. 

Time slice allocation is shown in Figure 2. The 
synchronization time slice is 100μs, and the master node send 
a request data frame to slave node A, and both the master and 
the slave node time slice are 100μs. 

 
FIGURE II. BOTH THE TIME SLICES OF MASTER AND SLAVE NODE 

ARE 100ΜS 

The master node sends respectively through TCP/IP 
protocol and RTNET protocol test data frames with length of 
512 Byte and cycle of 10ms to the salve node A 5 times, and 
records 100 RTT values every time, which is shown in Table 2. 
Because the kernel clock accuracy in the Xenomai platform is 
improved, so the test results of RTNET stack values accurate 
to 0.1μs. 

TABLE II.  STATISTICAL RESULT WHEN BOTH THE TIME SLICES OF 
MASTER AND SLAVE NODE ARE 100ΜS 

Protocol 
stack 

Test NO. 
Average 
value(μs) 

Maximum 
value(μs) 

Standard 
deviation(μs) 

TCP/IP 

1 612 3642 165 

2 622 7867 215 

3 678 5016 143 

4 679 4120 167 

5 681 4025 159 

RTNET 

1 1341.1 1412.9 60.5 

2 1635.5 1669.8 40.9 

3 1871.4 1825.9 36.1 

4 1978.2 1989.2 51.2 

5 1563.7 1597.6 48.5 

The results show that: the average value of RTT measured 
in TCP/IP network can kept in 700μs or less, is smaller than in 
RTNET network, but the delay jitter in RTNET is smaller than 
in TCP/IP network, which standard deviation can kept in 70μs 
or less. 

B. The Master and Slave Node Time Slice are both 200μs 

Modifying the TDMA time slice allocation on the basis of 
test 1 shown in Figure 3, carry out the similar experiment with 
the same parameters, and the results are shown in Table 3. 

93



 

 

 
FIGURE III. BOTH THE TIME SLICES OF MASTER AND SLAVE NODE 

ARE 200ΜS 

TABLE III.  STATISTICAL RESULT WHEN BOTH THE TIME SLICES OF 
MASTER AND SLAVE NODE ARE 200ΜS 

Protocol 
stack 

Test NO. 
Average 
value(μs) 

Maximum 
value(μs) 

Standard 
deviation(μs)

TCP/IP 

1 674 4098 162 
2 675 4252 165 
3 659 4089 158 
4 621 7896 280 
5 623 3497 141 

RTNET 

1 459.5 469.2 14.1 
2 466.3 466.6 9.1 
3 392.9 401.2 11.5 
4 587.2 590.5 12.5 
5 531.2 536.5 12.6 

The test results show that when the time slice of the master 
and slave node increases from 100μs to 200μs, the RTT values 
measured in RTNET network are greatly reduced, less than 
measured in TCP/IP network, and the delay jitters are also 
very small, and the standard deviations are even less than 15μs 
at the same time. 

In order to analyze the reason that the average RTT values 
reduce with the time slice increase, the current widely used 
network analysis software Wireshark is applied, to capture the 
data frame of the master node in the paper, to help analyze the 
request and response. When using RTNET protocol stack for 
data transmission, data frame is divided into two categories. 
One is the synchronous frame, sent in broadcast by the master 
node in each initialization phase of the basic cycle.  And the 
other one is the request and response data frame, sent between 
the master node and slave node A. When the time slice is set 
in 100μs, the master node sends a request data frame in its 
time slice (offset 200μs, width 100μs), but when the slave 
node A is ready to give a response to the request data, the time 
slice belong to it (offset300μs, width 100μs) has missed, so the 
response can only wait for its next time slice in the following 
basic cycle, leading to the increase of RTT values. 

That is, when the time slices of the node are 100μs, the 
time waiting for the allocated slice leads to the larger RTT 
value, comparing to the 200μs time slice. Therefore, it’s 
necessary to research the bandwidth allocation policy, which 
ensures the response data frame can be sent in the same basic 
cycle with the request data frame. 

End-to-end delay in Switched Ethernet means that the time 
difference between the data sent from the source node to it 
received by the sink node, that in addition to the delay in the 
switch, also including the time in the source/sink node and the 
link. The specific component is shown in Figure 4. 

 
FIGURE IV. DELAY COMPONENT DIAGRAM OF FRAME 

TRANSMISSION IN THE SWITCHED ETHERNET 

Each part of the delay including: 

(a)Source node delay, sourceT , which contains the time 

processing in the source node protocol stack, proc
sourceT , the time 

waiting in the MAC layer buffer, wait
sourceT , the time sending the 

data frame, send
sourceT ,which related to the data length. 

(b)Switch node delay, switchT , which contains the basic 

delay basic
switchT  and the queuing delay queue

switchT . This paper divides 

the queue
switchT  into waiting delay wait

switchT  and sending delay send
switchT , 

which is the ratio of the data length and data transfer rate. 

(c)Sink node delay, sinkT , which contains the time 

receiving data frame, sin
reci

kT ,which is the ratio of the data 

length and data transfer rate, and the time processing in the 

sink node protocol stack, sin
proc

kT . 

(d)Link propagation delay, propT , depending on the cable 

length between the communication nodes and the electrical 
signals transfer rate. 

According to this, data frame end-to-end delay can be 
presented: 

source switch sink= + + +delay propT T T T T 

     sin sin= + + + + + + + +proc wait send basic wait send reci proc
source source source switch switch switch k k propT T T T T T T T T 



The data frame queuing delay in the switch may be 
considered zero, for the Ethernet introducing TDMA 
mechanism. Assuming the time waiting for the corresponding 

time slice in the source node is wait
sourceT , the end-to-end delay in 

the Switched Ethernet using TDMA according to (1) can be 
expressed: 

TDMA
delay source switch sink propT T T T T    

proc wait send basic send reci proc
source source source switch switch sink sink prop( ) ( ) ( )T T T T T T T T        



94



 

 

 
FIGURE V. TIME SLICE ALLOCATION OF RTNET 

In general, the relationship between the waiting time of the 

request data _req wait
sourceT  and the timing sending it xT , in the 

network which basic TDMA time slice allocated as Figure 5, 
can be presented: 

1 1

_
1 2

1 2

,0

0,

,

x x

req wait
source x

x x

s T T s

T s T s

T T s s T T

  
  
    



Assuming the slave node A can always respond the request 
data in the same basic cycle, then the relationship between the 
RTT and the timing sending the data xT , can be presented: 

_wait _( ) ( )req req resp wait resp
source delay source delayRTT T T T T   


1 2 1 1

1 2

1 1 2

( ) ( ) ,0

( ) ,

( ) ( ) ,

resp
x delay x

req resp
delay 2 x delay x

resp
x 2 delay x

s T s s T T s

T s -T T s T s

T T s s - s T s T T

      
    


      

where, _waireq t
sourceT and _resp wait

sourceT respectively represents the 

waiting time of the master node sending request and the 
waiting time of the slave node sending response data,  then 

req
delayT  and resp

delayT  respectively represents the end-to-end delay 

of request data and response data. 

C. RTT Test in the Larger throughput Network 

Master node sends requests to the slave node A, B, C 
successively, and the time slice allocated as Figure 6. The 
network throughput is about 12Mbps, with heavier load, where 
request data frames’ cycle is 1ms and their size is 1500 Bytes. 
The RTT results in the TCP/IP protocol stack and the RTNET 
shown in Table 4. 

TIME SLICE ALLOCATION IN LARGER THROUGHPUT NETWORK 

TABLE IV.  STATISTICAL RESULT IN LARGER THROUGH NETWORK 

Protocol 
stack 

Slave node. 
Average 
value(μs) 

Maximum 
value(μs) 

Standard 
deviation(μs)

TCP/IP 
Slave node A 1712 8682 231 
Slave node B 1668 7673 182 
Slave node C 2009 9854 203 

RTNET 
Slave node A 1235.7 1314.2 36.6 
Slave node B 1149.6 1163.5 10.2 
Slave node C 1258.9 1289.4 25.2 

The results show that: with the increase of throughput in 
TCP/IP network, the average values of RTT increase 
significantly, and some test value even is greater than 2000μs, 
which has exceeded its deadline when assuming its deadline is 
equal to its transmission cycle, then the real-time performance 
of the network cannot be guaranteed. Whereas in the RTNET 
network, the average values of RTT and delay jitter both are 
reduced greatly and the maximum RTTs are all less than 
1300μs, less than their deadline, then the real-time nature are 
guaranteed. 

V. CONCLUSION 

Summary, this paper describes an effective method for 
reducing the Switched Ethernet end-to-end delay and 
completes some typical test focusing on the time slice 
allocation of the nodes. The results show that with reasonable 
division of the time slice in the TDMA Switched Ethernet, the 
end-to-end delay can be reduced by 30% compared to the 
traditional TCP/IP network. 

VI. ACKNOWLEDGMENT 

This work was supported by the Beijing outstanding talent 
training funding (No. 2014000020124G119). 

REFERENCES 
[1] ZHANG SHUNYI, SUN LIHONG, SHU FEI, et al. design of the new 

algorithm based on genetic algorithm for Large-scale network 
topological[J].Journal on communications, 2001(6): 27-33. 

[2] CARVAJAL G, FISCHMEISTER S. A TDMA Ethernet Switch for 
Dynamic Real-Time Communication[C]. 2010 18th IEEE Annual 
International Symposium on Field-Programmable Custom Computing 
Machines, Charlotte, 2010:119-126. 

[3] HONG LU, HONG FENG, LI ZHENGBAO, et al. Efficient TDMA 
protocol of Underwater sensor network [J]. Journal on communications, 
2012, 33(2):164-174. 

[4] BARBALACE A, LUCHETTA A, MANDUCHI G, et al. Performance 
Comparison of VxWorks, Linux, RTAI, and Xenomai in a Hard Real-
Time Application[J]. Nuclear Science, IEEE Transactions on, 
2008,55(1):435-439. 

[5] YUAN T, GUOGING R, QINZHANG W. Implementation of Real-time 
Network Extension on Embedded Linux[C]. 2009 International 
Conference on Communication Software and Networks, Macau, 
2009:163-167. 

[6] LING CHONGYU. Simulation and performance analysis applying 
OMNeT++ for Real-time Ethernet[D].Shang hai.Tongji University,2008. 

[7] KISZKA J, WAGNER B. RTnet-a flexible hard real-time networking 
framework[C]. 2005 10th IEEE Conference on Emerging Technologies 
and Factory Automation, Catania, 2005:448-456. 

95




