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the BER to 10–5. Thus, the coding gain difference between 
802.16e and 802.11n at the code rate of 1/2 was 1.3 dB. 

V. CONCLUSION 

In this study, a diversified encoder was created using 
LabVIEW and the IEEE Standard 802.16e irregular 
parity-check matrices, and the diversified decoder was 
completed using the MSA. The BER curve diagrams 
obtained from simulating the AWGN channel with QPSK 
modulation were compared to the BER curves obtained from 
previous studies, revealing that the subblock sizes did not 
affect the BER in the AWGN channel environment. At the 
code rates of 5/6 and 2/3, the BERs of 80216e and 802.11n 
were nearly identical. At the BER of 10–5, the coding gain 
difference was only 0.1 dB; however, at the code rate of 1/2 
and the BER of 10–5, the coding gain difference was as high 
as 1.3 dB. These confirmed that 802.11n exhibited superior 
error correction ability compared with 802.16e at the code 
rate of 1/2, and the error correction ability of 802.16e was 
closer to that of the regular LDPC codes at the code rate of 
1/2. 

Future studies should consider applying the 
sum-of-product algorithm or forward–backward algorithm 
[14], [15] to accomplish decoding. In addition, Rayleigh 
fading or Ricean fading may be implemented in the channels 
for further investigation of the changes in BER under various 
scenarios. 

REFERENCES 
[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell 

Syst. Tech. J, pp. 379-423(Part1);pp. 623-56(Part2), July 1948. 

[2] Berrou, C, Glavieux, A,. and Thitimajshima, P., “Near Shannon limit 
error- correcting coding and decoding: Trubo-codes,” IEEE 
International Conference on Communications, ICC’93, Geneva. Vol. 
2, 1993, pp. 1064-1070. May. 1993. 

[3] Brenard Sklar, “Digital Communications Fundamentals and 
Applications SECOND EDITION”. 

[4] R. G. Gallager, “Low-Density Parity-Check Codes, ”IRE Trans. 
Inform. Theroy, pp. 21-28, Jan. 1962. 

[5] Jinghu Chen, Marc P. C., ”Near Optimum Universal Belief 
Propagation Based Decoding of Low-Density Parity Check Codes”, 
IEEE Trans Commun., vol. 50, no. 3, pp. 406-414, Mar. 2002. 

[6] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and 
the sum-product algorithm, ”IEEE Trans. Inform. Theory, VOL. 47. 
pp. 498-519, Feb. 2001. 

[7] IEEE P802.11n?/D1.04 Draft Amendment to STANDARD for 
Information Technology-Telecommunications and information 
exchange  

[8] Yi Hua Chen, Jue Hsuan Hsiao, Zong Yi Siao, “Wi-Fi LDPC Encoder 
with Approximate Lower Triangular Diverse Implementation and 
Verification”, Multi-Conference on Systems, Signals & Devices 
(SSD), 978-1-4799-3866-7/14/$31.00 ©2014 IEEE , pp. 1-6, 
2014SSD.  

[9] Richardson, T. J, and Urbanke, R. “Efficient encoding of low-density 
parity-Check Codes, ”IEEE Trans. Inf. Theory, 47. (2), pp. 638-656, 
2001. 

[10] R. MICHAEL TANNER,”A Recursive Approach to Low Complexity 
Codes”, IEEE Transactions on information theory, VOL.IT-27, No.5, 
pp. 533-547 ,September 1981. 

[11] Yi-Hua Chen, Chang-Lueng Chu, Jheng-Shyuan He,”FPGA 
Implementation and Verification of LDPC Minimum Sum Algorithm 
Decoder with Weight (3, 6) Regular Parity Check Matrix”, 
ICEMI’2013. pp.682-686. Aug. 2013. 

[12] Yi Hua Chen, Jue Hsuan Hsiao, Zong Yi Saio, and Hua Ting Syu , 
“Minimum Sum Algorithm Decoder for LDPC Nonregular Parity 
Check Matrix in BPSK System.” PIERS Proceedings, 2136 - 2144, 
July 6-9, Prague, 2015. 

[13] He, Jheng-Shyuan,”Implementation of LDPC Encoder and Decoder 
on SDR wireless communication system”, Thesis-of-Master-degree, 
O.I.T Institute of information and communication Engineer, July, 
2013. 

[14] M. Fossocier, M. Mihaljecvic, H. Imai, “Reduced complexity 
decoding of low-density parity check codes based on belief 
propagation, ”IEEE Trans. On Commun., VOL. 47 no. 5, pp. 673-680, 
May 1999. 

[15] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of 
linear codes for minimizing symbol error rate, ”IEEE Trans. Inform. 
Theory, VOL. 20, pp. 284-287, Mar. 1974. 

91




