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Abstract—in this paper, impulsive neural networks with a Gui 
chaotic strange attractor is studied. By employing the Lyapunov-
like stability theory of impulsive functional differential equations, 
some criteria for synchronization between two impulsive neural 
networks are derived. An illustrative example is provided to show 
the effectiveness and feasibility of the proposed method and 
results. 
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I. INTRODUCTION 

Neural networks are attached more importance by many 
researchers, due to their widely applications in signal 
processing, pattern recognition, optimization, and so on ([1]–
[4]). On the other hand, in real world, many evolutionary 
processes are characterized by abrupt changes at certain time. 
These changes are called to be impulsive phenomena, which 
are included in many fields such as physics, chemistry, 
population dynamics, optimal control, etc. and can be described 
by impulsive differential equations (see [5]). Thus, researches 
of neural networks with impulse have been received much 
interesting ([6]–[8]). In recent years, the additive neural 
networks have been extensively studied, including both 
continuous time and discrete-time settings, and applied to 
associative memory, model identification, optimization 
problems, etc. Many essential features of these networks, such 
as qualitative properties of stability, oscillation, & convergence 
issues have been widely investigated ([9]–[12]). 

However, as we all know, in many applications, the 
property of periodic oscillatory solutions or chaotic attractor of 
cellular neural networks is of great interest. In fact, there has 
been considerable research on the nonautonomous neural 
networks, such as [9], [13]. Meanwhile, the cellular neural 
networks with impulse effect are also widely studied, where the 
criteria on the existence, uniqueness and global stability of 
periodic solution or chaotic attractor are obtained. Further, a 
new chaotic strange attractor was also found, known as Gui 
chaotic strange attractor (eg. [14]–[18]). 

Another type of synchronization, impulsive synchronization, 
has been developed (see [19]). It allows synchronization of 
chaotic systems using only small impulses generated by 
samples of the state variables of the driving system at discrete 
time instances [20]. These samples are called the synchronizing 
impulses and they drive the response system discretely at these 
instances. After a finite period of time, the two chaotic systems 

behave in accordance with each other and the synchronization 
of the two chaotic systems is achieved. In other words, the 
asymptotic stability property of the error dynamics between the 
driving and response systems is reached. The impulsive 
synchronization has been applied to a number of chaotic based 
communication systems which exhibit good performance for 
synchronization purposes and for security purposes ([21], [22]). 

Motivated by the above discussions, the aim of this paper is 
to study the synchronization of impulsive neural networks with 
a Gui chaotic strange attractor. By employing the Lyapunov-
like stability theory of impulsive functional differential 
equations, some criteria for synchronization of impulsive 
neural networks are derived. 

The remainder of this paper is organized as follows: Section 
II describes the issue of synchronization of coupled impulsive 
systems with a Gui chaotic strange attractor. In Section III, 
some sufficient conditions for the synchronization are derived 
by constructing suitable Lyapunov-like function. In Section IV, 
an illustrative example is given to show the effectiveness of the 
proposed method. Finally, conclusions are given in Section V. 

II. PRELIMINARIES AND PROBLEM FORMULATION 

In this paper, we consider the following cellular neural 
networks model with impulses 
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to the state of the thi unit at time t , ( ( ))j jf x t  denotes the 

output of the thj unit at time t , ijb denotes the strength of the 

thj unit on the thi unit at time t  which satisfies 0ijb   when 

| | 1i j  , ia  represents the rate with which the thi unit will 
reset its potential to the resting state when disconnected from 
the network and external inputs. 

Throughout this paper, we assume that: 
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(H1) Functions ( )jf u  ( 1, 2, ,j n  ) are Lipschitz 

continuous and monotonically non-decreasing, i.e. for all 

1 2, ( , )u u    �  there are constants 0jL   such that 
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(H2) There exists a positive integer T , such that 

( ), ,k T k i k T ikt t d d     

where 1, 2, , 1, 2, ,k i n   . 

Now we consider the derive system in the form of the 
neural networks (1). For the purpose of synchronization, we 
introduce the response system driven by (1) via a set of signals 
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where 
0ijb 

(when | | 1i j  ), 1, 2, ,i n  , 1, 2,k   . 

Let ( ) ( ) ( )i ie t y t x t   be synchronization error, 

where 1 2( ) ( ( ), ( ), , ( ))T
ne t e t e t e t  , ( )ix t  and ( )iy t  are the 

state variables of drive system (1) and response system (3). 
Thus, we can derive the error dynamical system as follows: 
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I  is identity matrix, and 
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1

2

0 0

0 0

0 0 n

a

a
W

a

 
  
 
 

 





   

 , 

1

2

0 0

0 0

0 0

k

k
k

nk

d

d
D

d

 
 
 
 
 
 





   

  

In fact, from the analysis above, we can see that (1) and (3) 
are synchronized if and only if the equilibrium point of (4) is 
asymptotically stable for any initial condition. So the global 
impulsive synchronization problem can be solved if the 

controller gain matrices kD  are suitably designed such that the 
zero solution of (4) is globally asymptotically stable.  

III. MAIN RESULTS 

In this section, we will derive some sufficient conditions for 
synchronization between drive system (1) and response system 
(3) with impulsively controlling. 

Theorem 1. If there exist a positive constant 0  , 0  , 
positive definite diagonal matrix 0P  , such that 

(1) Linear matrix inequality 
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where 
max{ }M jL L

, (*)M  denote the largest eigenvalue of 
matrix *; 

(2) 1inf { } 1k k kt t    � ; 

(3) There exists a constant 1   such that  
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where 
2 ( )k M kI D   ; 

then, the origin of system (4) is globally asymptotically stable, 
which implies that (1) and (3) are completely synchronized. 

Proof: Construct a Lyapunov function in the form of  
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Also, by the well-known inequality 
12 T T Ta b a a b b   , 

for 0  , we obtain 
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From Linear matrix inequality (5) and (7), we have 
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Let ( ) ( ( ))V t V e t , then  
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when 1( , ]k kt t t , from the second equation in (4), we have 
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From (11), we can see that the trivial solution of system (4) 
is globally asymptotically stable. This completes the proof. 

IV. AN ILLUSTRATIVE EXAMPLE 

In order to demonstrate and verify the performance of the 
proposed method, some numerical simulations are presented in 
this section. 

As is known to all that (1) can exhibit Gui chaotic strange 
attractor. In order to show it clearly, we give the following 
example: 
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Obviously, 
( )jf x

satisfy (H1). 

Numerical simulation indicate that system (12) without 
impulsive effect has a chaotic attractor (see Fig 1). 

Now we investigate the influence of the period T of 
impulsive effect on the system (12). Set 1T  , then the 
original chaotic attractor of system (12) without impulsive 
effect will be destroyed by impulses. However, numeric results 
show that system (12) still has a global attractor which can be a 
Gui chaotic strange attractor (see Figs. 2-5). 

 

FIGURE I.  CHAOTIC STRANGE ATTRACTOR OF SYSTEM (12) 
WITHOUT IMPULSIVE EFFECT 

 

FIGURE II.  TIME-SERIES OF 1( )x t
 OF SYSTEM (12) WITH IMPULSE 

PERIOD 1T   
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FIGURE III.  TIME-SERIES OF 2 ( )x t
 OF SYSTEM (12) WITH IMPULSE 

PERIOD 1T   

 

FIGURE IV.  TIME-SERIES OF 3 ( )x t
 OF SYSTEM (12) WITH IMPULSE 

PERIOD 1T   

 

FIGURE V.  PHASE PORTRAIT OF GUI CHAOTIC STRANGE 

=ATTRACTOR OF SYSTEM (12) WITH IMPULSE PERIOD 1T   

Now the response chaotic cellular neural network is 
designed as follows: 
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Let ( ) ( ) ( )i ie t y t x t  , then the error system (14) of drive 
system (12) and response system (13) is constructed as follow 
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If one choose 1 2 3 1.5L L L   , 1.1  , 1 0.35kd  , 

2 0.4kd  , 3 0.5kd  , it is easy to check the conditions in 
Theorem 1 are satisfied. So, the system (12) and (13) is 
synchronized. By Theorem 1, synchronization can be obtained. 
The synchronization performance is illustrated by Fig. 6, 7. The 
numerical simulations show that synchronization could be 
quickly achieved. 

 

FIGURE VI.  SYNCHRONIZATION ERRORS BETWEEN DRIVE 
SYSTEM (12) AND RESPONSE SYSTEM (13) WITH IMPULSE PERIOD 

1T   

 

FIGURE VII.  PHASE PORTRAIT OF SYNCHRONIZATION ERRORS 
BETWEEN DRIVE SYSTEM (12) AND RESPONSE SYSTEM (13) WITH 

IMPULSE PERIOD 1T   
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V. CONCLUSIONS 

In this paper, the synchronization of the impulses neural 
network with a Gui chaotic strange attractor has been 
investigated based on the stability analysis of impulsive 
functional differential equation. Criteria for synchronization are 
derived. Some illustrative examples are finally included to 
visualize the effectiveness and feasibility of our main results. 
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