

A Heuristic Interrupt Coalescing Approach for
Improving High Performance Network

Huijun Wu1 and Jigang Wang2
1School of Software, Shanghai Jiao Tong University, China 200240

2Strategy Planning, ZTE Corporation, China 610041

Abstract—With the rapid development of cloud computing
technology, high performance network has been widely deployed
in commercial cloud computing centers. This gives rise to the
challenge of how to deal with the heavy network flow between
virtual machines staying on different physical servers. SR-IOV
(Single root I/O Virtualization) technology is a new solution to
this problem based on hardware assistance principle. However,
present SR-IOV technology still face interrupt coalescing
challenges when there are multiple virtual machines running on
the same physical server. Our paper first demonstrates that the
throughput and CPU utilization has not achieved its best when
the server is under multi-VM environment. Then we make
analysis on this phenomenon and give out a heuristic algorithm to
optimize the interrupt coalescing process of SR-IOV technology.
Our evaluation result shows that our algorithm can improve
inter-server network performance by up to 62.97% and reduce
CPU resources consumption by up to 13.16% under certain
typical circumstances.

Keywords- high performance network; network virtualization;
SR-IOV; interrupt coalescing; heuristic algorithm

I. INTRODUCTION
In present day’s commercial cloud computing environment,

high performance networking interface such as 10-Gigabit
Ethernet (10GE), has become an essential part in facing the
challenge of increasingly heavy network flow between
numerous virtual machines inhabiting different physical
servers, especially when the cluster environment has the need
to achieve highly efficient and scalable I/O Virtualization.

Single Root I/O Virtualization (SR-IOV) thus derived from
original direct I/O techniques to help eliminates the overhead
from redundant data copies and the virtual network switch in
traditional network handling process through the support of
hardware virtualization assistance. However, original SRIOV
techniques does not perform its best in situation where
redundant interrupts are unexpectedly generated due to un-
scalable interrupt coalescing model which causes unnecessary
CPU overhead and the decrease of network throughput under
different circumstances.

In this paper, we study the network performance pattern
under changing cluster environment using SR-IOV with 10GE
networking interface. We identify the bottleneck of high
performance network as the interrupt coalescing mechanism
and raise an effective heuristic algorithm which applies
adaptive interrupt rate control on the 10GE networking
interface. This heuristic algorithm is based on a dynamic

approach to adjust the current interrupt throttle rate to the best
suitable value according to the changing network environment
conditions.

 The rest of the paper will be organized as followings. We
will first introduce some related work regarding the techniques
to improve the performance of I/O virtualization. Then we will
discuss and make analysis on the phenomenon and network
performance pattern when there are multiple virtual machines
under different interrupt throttling value. After that we will
show our design of a heuristic algorithm which optimizes the
network performance based on our previous analysis. And
finally, we will show you the evaluation and its results which
measure CPU utilization and the inter-server throughput and
compare them with default interrupt coalescing mechanism’s
results.

II. RELATED WORK

A. Interrupt Handling Process Optimization
Typically, there are two ways to optimize the interrupt

handling process when dealing with high performance
networking environment. One is through traditional interrupt
coalescing methods, one is through hybrid method.

• Researchers like Mogul first recognize that when
network flow is heavy, too frequent interrupt handling
will cause live lock on the receiver side. They raise
their suggestions to add priority level to different
interrupts and they think that occasional polling is
needed to avoid live lock problem.[1]

• Dovrolis and his fellows make analysis on the
increased cost of interrupt handling under modern
super-scalar processor environment. They raise a
suggestion to dynamically adjust the polling internals
based on the packet receiving rates. [2]

• Salim and his fellows introduce a hybrid interrupt
coalescing mechanism into Linux kernel which is
known as NAPI mechanism. This mechanism provide
interfaces to drivers of network devices and under the
cooperation of these devices, the interrupt mitigation
is achieved. [3]

• Salah and his fellows make analysis on the advantages
and disadvantages when using interrupt coalescing
technology on the high performance network interface.
They came to the conclusion that too frequent

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 79

interrupt coalescing will result in the destruction of
stable TCP flow. They raise an approximate model to
explain the relationship between interrupt coalescing
delay and TCP throughput stability. [4].

B. Network I/O Virtualization Optimization
There are also many researchers focusing on the network

I/O Virtualization optimization.

• Ram and his fellows raise the technique of virtual
machine device queues which is abbreviated as VMDq
technology. This technology enables the network
interface to provide each virtual machine its unique
queue and eliminates the cost of packet distribution
and copy work in VMM. [5]

• Landau and his fellows believes the traditional trap
and emulate model is key bottleneck when we want to
improve the network performance under heavy
network flow. They then raise a split execution model
in which the interrupt will only be sent to the physical
core on which the VMM is running on. [6]

III. NETWORK PERFORMANCE PATTERN ANALYSIS
We conduct our network performance pattern exploration

experiment under real high performance network environment.

The metrics we are concentrating at are the interrupt
throttle rate and the corresponding throughput between three
VMs inhabiting two independent physical servers. These two
servers are connected with each other through a network wire
with the bandwidth of 10Gbps to avoid hardware’s restriction
on the performance of the network between these two physical
machines. The packet size is 15000 bytes. The Figure I
illustrates the experiment result.

From Figure I we can see that the throughput first
increases at a very rapid speed as the interrupt throttle rate
increase. This is because when we have not use up all the CPU
resources on the packet receiver side, the increase on the
interrupt throttle rate will allow for more interrupts coming in
one second. This will result in more timely collection of
coming packets and will result in low delay of response time.
However, as the interrupt throttle rate come to the number of
48000HZ, the throughput reaches its peak in the whole
experiment. After that, the throughput will decrease as the
interrupt throttle rate goes up. This is because we have use up
all the CPU resources available and as we receives more
interrupts further, we will spend most of our precious CPU
cycles on the interrupt handling process instead of handling
the packets and data.

From our analysis above, we can conclude that if the
number of interrupts exceeds a certain value which is highly
affected by the changing network environment, redundant
interrupts will be generated and cause loss on the performance
of network. And there is a most suitable interrupt throttle rate
for changing network environments which enable us to
achieve the best throughput and avoid waste of precious CPU
resources.

FIGURE I. IMPACT OF INTERRUPT THROTTLE RATE ON NETWORK
THROUGHPUT

IV. HEURISTIC INTERRUPT COALESCING ALGORITHM
Our solution to the problem we illustrated above is to

design a heuristic interrupt coalescing algorithm which will
dynamically adjust the interrupt throttle rate and try to
approach the optimized value which will lead to the best
throughput in a high performance network environment. Our
algorithm is illustrated as following:

HEURISTIC INTERRUPT COALESCING ALGORITHM

Init:

Low=MinITR,High=MaxITR

CutRate=0.618 //Use Golden Ratio as the cut rate

Begin：

Internal=High-Low

while Internal>AcceptInternal do

 TestLow=Low+(1-CutRate)*Internal

 TestHigh=Low+CutRate*Internal

 ThptLow=GetThroughput(TestLow)

 ThptHigh=GetThroughput(TestHigh)

 if ThptLow< ThptHigh then

 High=TestHigh

 else

 Low=TestLow

 end if

 Internal=High-Low

end while

ASSERT(Internal<AcceptInternal)

BestITR=(Low+High)/2

Return BestITR

End

80

Instead of using a mathematical model to calculate out the
best suitable interrupt throttling rate, we adopt a heuristic
search method to approach the most optimized value in a more
dynamic way. This is because in real network environment,
there will be various VMs providing different service on a
single physical server, thus we may not be able to predict and
figure out the precise mathematical model behind the scene.

Apart from what has been discussed above, we should
notice that there will be many interrupts happening in one
second, and if we consume too much CPU resource on the
algorithm, we will not be able to achieve our goal to saves
CPU cycles from redundant interrupts and improve the
network performance. Thus our heuristic search method is a
more reasonable solution.

Our algorithm works by repeatedly excluding ranges that
the most optimized interrupt throttling value cannot exists.
MinITR and MaxITR is determined by the hardware which
defines the initial lower bound and upper bound of interrupt
throttling rate. GetThroughput is a sub-function which will
measure the instantaneous throughput based on statistics
collected by the network interface driver. This function give
indication of how to shrink the range and finally make the
variable Low and High both approach the best suitable value.

In our algorithm, we will test the throughput in a very short
time slice to evaluate the actual effect of our last interrupt
throttle rate modification. Since the environment is changing,
thus the best interrupt throttle rate may vary as well so we
adopt the design to restart the heuristic algorithm every 1000
interrupts.

This algorithm also has the feature of robustness when it is
deployed under various network conditions. Within its
iterations, it will constantly verify the actual performance
result of last interrupt throttling modification and exclude
intervals where the best interrupt throttle rate cannot exists.
Since it does not rely on specific network environment
parameters, it does not have algorithm parameters to be
configured before deployed in actual environment. This
feature can be ascribed to the algorithm’s heuristic style and
also make it scalable when applied to servers running
unknown number of virtual machines.

V. PERFORMANCE EVALUATION
In this section, we will give out our evaluation method and

result about the effect of the heuristic interrupt coalescing
algorithm. We will demonstrate the algorithm’s effect by
comparing its experiment result with the default interrupt
coalescing mechanism which are both carried out under the
same real network environment.

In our evaluation, we mainly focus on the CPU
consumption and the throughput between two interacting
physical servers. We will first explain our evaluation setup and
then we will show the evaluation result and make analysis on
them.

A. Evaluation Setup
We conduct our evaluation on two physical servers. We

make one physical server as the evaluation server and we

make another physical server as the evaluation client. The
evaluation server and the evaluation client have the same
hardware condition. Both of them are Dell PowerEdge R630
Blade servers equipped with Intel E5-2699 2.3GHz CPU. The
memory of each physical server is 24GB and each of server
has been assigned an Intel 82599 10 Gigabit Ethernet
controller. These two servers are connected with each other
through a 10Gbps network wire directly.

For the software setup, both the evaluation server and
evaluation client’s operating system are CentOS 6. On the
evaluation server side, multiple VMs is running based on
KVM hypervisor. Each of the VM running on the evaluation
server has 512 MB memory and has 2 virtual cores. The
operating system of the VM is CentOS 6 with the least
software installed to avoid the interference on CPU resources
consumption measurement. Netperf is installed on each of the
VM and Linux’s evaluation tool “top” is installed on the
evaluation server to collects the statistics result of CPU
utilization.

In our evaluation we will use the netperf as the evaluation
tool to measure the throughput between two physical servers.
And “top” is used to help calculate out the ultimate CPU
resources consumption by all VM during the packet receiving
time. We configure the packet size as 512 bytes and we
conducts experiment from 1 VM to 15 VM to demonstrate the
performance tendency in a clearer way.

Figure II shows the throughput evaluation result. Figure III
shows the average CPU resources consumption comparison
based on 5 duplicate evaluations and Figure IV shows the
median evaluation result based on the same set of experiment.

B. Evaluation Result Analysis
As can be seen from Figure II, the network throughput

improves evidently by at least 7.56% and at most 62.97%
when we adopt the heuristic interrupt coalescing algorithm
compared to default interrupt coalescing mechanism.

This is because our algorithm can dynamically adjust the
interrupt throttling rate to the best suitable value which enables
the full speed of packets handling and at the same time avoid
too frequent interrupt coming. This process will eliminate the
redundant interrupts, thus reserving CPU resources for
handling packets instead of wasting precious CPU cycles in
the interrupt handling process.

FIGURE II. IMPACT OF INTERRUPT THROTTLE RATE ON
NETWORK THROUGHPUT

81

From Figure III and Figure IV, we can see that with the
increase of virtual machine numbers, the CPU utilization will
first increase in a comparatively rapid speed and then the
increase will become mild.

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e

C
PU

 U
til

iz
at

io
n

(%
)

Number of VM

Average CPU Utilization (%)

Default Interrupt Coalescing Mechanism

Heuristic Interrupt Coalescing Algorithm

FIGURE III. AVERAGE CPU UTILIZATION WHEN RECEIVING

PACKETS ON THE EVALUATION SERVER

FIGURE IV. MEDIAN CPU UTILIZATION WHEN RECEIVING

PACKETS ON THE EVALUATION SERVER

This is because the number of physical CPU is limited for
multiple VM to share and after the VM number achieves
certain level it will access the ceiling and will not be able to
consume more CPU resources any more.

However, when given specific VM numbers, our algorithm
can enable the evaluation server to consume less CPU
resources by more optimized interrupt throttle rate control.
Part of the saved CPU resources was used to complete the
actual packets receiving work load and others part of the
saving of CPU resources is reflected in the figure. The
evaluation result shows that our algorithm can saves at most
13.16% of CPU resources compared to default interrupt
throttle mechanism.

VI. SUMMARY
In this paper we make analysis on the network

performance pattern. And based on our analysis result, we
design and implement a heuristic interrupt coalescing
algorithm which eliminated unnecessary interrupts in high
performance network environment. We evaluate the
performance of our algorithm and find that it can improve the
network throughput by at most 62.97% and saves CPU
resources by at most 13.16%

ACKNOWLEDGMENT
I want to extend my most sincere gratitude to all the people

who help me along the way. They are my fellows in the labs
who use their spare time to give valuable advices to my work.
They are my families and my close friends who support my
life and work along the way. Without these people and their
encouragement, I may endure much greater hardship in my
research work.

REFERENCES
[1] Mogul J C, Ramakrishnan K K. Eliminating receive livelock in an

interrupt-driven kernel[J]. ACM Transactions on Computer Systems,
1997, 15(3): 217-252.

[2] Dovrolis C, Thayer B, Ramanathan P. HIP: hybrid interrupt-polling for
the network interface[J]. ACM SIGOPS Operating Systems Review,
2001, 35(4): 50-60.

[3] Information on https://en.wikipedia.org/wiki/New_API
[4] Salah K. Integrated performance evaluating criterion for selecting

between interrupt coalescing and normal interruption[J]. International
Journal of High Performance Computing and Networking, 2005, 3(5-6):
434-445.

[5] Ram K K, Santos J R, Turner Y. Redesigning Xen’s memory sharing
mechanism for safe and efficient I/O virtualization[C]//Proceedings of
the 2nd conference on I/O virtualization. USENIX Association, 2010: 1-
1.

[6] Landau A, Ben-Yehuda M, Gordon A. SplitX: Split Guest/Hypervisor
Execution on Multi-Core[C]//WIOV. 2011.

82

