
 

Group Consensus of Multi-agent Networks With 
Multiple Time Delays  

Lianghao Ji1,*, Xinyue Zhao1, Qun Liu1 and Yong Wang2  
1 Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 

400065, P. R. China 
2 School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. 

R. China 
 

 
Abstract—This paper investigates the group consensus problem 
of first-order multi-agent networks with multiple time delays. By 
applying the theory of frequency-domain, we aim to propose 
some algebraic criteria such that the multi-agent networks can 
reach group consensus. From the results, it can be shown that 
group consensus of networks is determined by owning input time 
delays and connection strengths between agents, independent of 
communication delays. However, the existence of communication 
delays will affect the convergence rate of multi-agent networks. 
Finally, several numerical simulated examples are given to show 
the validity and correctness of our theoretical results.  
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I. INTRODUCTION 

Partly due to broad applications of multi-agent networks in 
many areas such as congestion control[1] and flocking [2], the 
cooperative control has attracted many researchers’ interest. As 
a fundamental branch of cooperative control, the consensus 
issues have become hot spots. Recently, many results about 
consensus problems have been established. Specific contents 
can be found in survey papers [3-4] and references therein, etc. 

In cooperative control, in order to ensure target tasks to be 
completed harmoniously, it requires that states of all agents 
keep consistent with time. However, with the changes of 
environments, situations or even time, the consensus states are 
different. Generally, it can be described by group consensus 
problem. Up to date, group consensus of multi-agent networks 
has achieved some progress. Yu et al. [5,6] addressed group 
consensus with undirected or strongly connected and balanced 
graphs on the basis of the matrix theory. Furthermore, Yu et al. 
by the idea of double-tree-form transformation, extended group 
consensus problems with communication delays and switching 
topologies [7]. For special topologies with the same and 
different self-dynamic networks, the group consensus problems 
were investigated in [8]. Moreover, in order to reduce the cost 
of network control, pinning control strategies have been 
introduced into multi-agent networks. Particularly, the analysis 
of pinning group consensus started in [9-10] and references 
therein, etc. Additionally, under the strongly connected and 
balanced graph, Wang et al. [11] took group consensus with 
communication delays into consideration. Hu et al.[12] gave an 
overview of average-group consensus problems on networks 
with undirected topologies . Ji et al. provided group consensus 

with connected undirected and connected bipartite graphs 
respectively in [13]. In the connected bipartite graph, the 
reference [14] addressed group consensus of first-order 
networks with and without delays respectively by a control 
protocol. Moreover, Du et al. [15] extended the conclusions 
proposed in [14]. 

As we know, due to the communication link, equipment, 
etc., there exist two different kinds of delays in networks, that 
is communication delays and input delays. In fact, these two 
delays objectively exist and are different from each other. Thus 
the research towards group consensus of networks with 
multiple delays become more realistic. Comparing with 
existing investigations, there exist two main shortcomings: 
First, the effect of multi-agent networks with the two kinds of 
delays are considered insufficiently. Some related researches 
only involve communication delays, or only analyze the same 
communication and input delays [5-7,13-15]. Second, most of 
surveys only focus on networks with special topologies, such as 
undirected, strongly connected as well as strongly connected 
and balanced graphs, etc. [5-6,12-15]. Inspired by related 
researches, more general topologies are investigated. We 
address the group consensus issue with multiple delays on first-
order networks. Thereafter, algebraic criteria are derived that 
ensure group consensus to be achieved. Eventually, related 
results for similar issues are viewed as special cases of this 
paper, or analysis criteria are relatively less conservative.  

The rest of the paper is organized as follows. In Section 2, 
relevant preliminaries on graph theory and model formulation 
are summarized. The problem of group consensus of networks 
with multiple time delays is discussed in Section 3. By a 
plurality of numerical experiments, the validity and accuracy of 
conclusions is verified in Section 4. Finally, concluding 
remarks and future trends are stated.  

II. PRELIMINARIES 

In multi-agent networks, the topology can be described by 
a directed graph. The node set is defined by  1 2, ,..., NV v v v . 

Denote the node indexes belong to a finite index set by 
 1, 2,..., N  and the edges set is E V V  . The neighbor 

set of iv is    : ,i j i jN v V v v E   . Moreover, 
N N{ }ijA a    is the weighted adjacency matrix. When 

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 54



 

, 0j i ijv N a  . For simplicity, we assume , 0iii a   . Let 

 ,iD diag d i   be the degree matrix of G , L D A   is 

the Laplacian matrix of G . 

For first-order networks, the dynamic is listed as (1): 

   i ix t u t 

where ( ), ( ) n
i ix t u t  denotes the position, control input of 

the agent i . Without loss of generality, we assume 1n  , i.e., 
we just only consider ( ), ( )i ix t u t  . When 1n  , by the 
Kronecker  algorithm, it can be easily generalized. 

Usually, for convenience, we restate some related lemma 
and definitions as follows. 

Definition 1 The first-order multi-agent networks (1) is 
said to realize consensus asymptotically, if for any ,i j , it 

follows that    lim 0i j
t

x t x t


   . 

Definition 2[16] For  , ,G V E A , if V is divided into two 

disjoint subgroups 1 2{ , }V V , and the two vertices iv  and jv , 

associated with each edge ( , )i jv v  respectively, belongs to two 

different sets of vertices, we call G  the bipartite graph. 

Definition 3 If there exists a path in G  from iv  to jv , 

then jv  is said to be reachable from iv . If a node is reachable 

from every other node in G , then it is treated as a globally 
reachable node.  

Lemma 1[14]  If the topology of G  is a connected bipartite 
graph, the rank of D A  is 1n  . 

Lemma 2[17] If the graph G  exists a globally reachable 
node, its Laplacian matrix will have a simple eigenvalue 0. 

Lemma 3[18] For  0,1  , when  , convex hull 

   0 ,iCo E j i  U  does not contain  1, 0j , where 

 
2

j T

i

e
E j

T j






   and T  denotes the system delay. 

Lemma 4[19] For  , the set i
i

G

U  is included in the 

convex hull    0 ,iCo E j i  U . 

III. GROUP CONSENSUS OF MULTI-AGENT NETWORKS WITH 

MULTIPLE DELAYS 

A. Group Consensus of Delayed Multi-agent Networks with 
the Connected Bipartite Topologies 

For the network with the connected bipartite topology, ref. 
[15] by designing protocol (2), derived consistent states of 
convergence eventually. At the same time, it also discussed the 

maximum allowed delay such that the system (1) under 
protocol (3) can achieve group consensus. 


  ( ( ) ( )),

j i

i ij j i
v N

u t a x t x t i


   


  ( ( ) ( )),
j i

i ij j i
v N

u t a x t x t i 


     


where  denotes the system delay. 

By protocol (3), references [14-16] only discussed a 
special case of the same communication and input delays. 
Reference [15] did not give the conditions, where networks 
reached group consensus in the existence of time delays. In 
general, the two different kinds of delays exist objectively, so 
we derive some algebraic criteria. These algebraic criteria can 
guarantee group convergence of system (1) with protocol (4). 

  ( ( ) ( )),
j i

i ij j ij i i
v N

u t a x t T x t T i


     


where ijT  denotes communication delay and iT  indicates input 

delay. With algorithm (4), the closed-loop form of (1) is 

  ( ( ) ( )),
j i

i ij j ij i i
v N

x t a x t T x t T i


      

Theorem 1 Assume the system (5) of N agents with 
undirected bipartite topology. For i  , if 

 max / 4i id T  , system (5) can reach group consensus 

asymptotically . 

Proof: By taking the Laplace transformation of (5), we 

 

obtain  det 0ij i
sT sTsI De Ae    .For simplicity, we 

define    det ij i
sT sTF s sI De Ae    . By the general 

Nyquist stability criterion, the following two cases are 
discussed respectively: 

1) When 0s  ,    detF s D A  , based on Theorem 1, 
we can derive that  F s  has a simple zero at 0s  . 

2) When 0s   ,let    F s
P s

s
 ,  

ij i
sT sTDe Ae

G s
s

 
  . 

The discussion about the zeros of  F s  equals to the zeros of 

 P s . So if all zeros of  P s  being on the open left complex 

plane, system (5) will have group consensus. 
Let s j . From the Greshgorin disk theorem, the 

equivalent of  G j  satisfies 
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   i
i

G j G 


 


: ,
i i

j i j i

j T j T

i ij ij
v N v N

e e
G C a a

j j

 

  
 

 

 

      
  

 


where C denotes complex field.  

On the basis of  (7), the center of the disk iG  is 

 0

i

j i

j T

i ij
v N

e
G j a

j










    . Then intersection point is defined 

by iW , which is made by the boundary of the disk and the 
origin point of the complex plane O . We can see that the track 

of point is   2
i

j i

j T

i ij
v N

e
W j a

j










  . From Lemma 3, noting 

that    i i iW j E j    , we know that for any given 1i  , 

it is easy to know that / 4
j i

ij i
v N

a T 


 . 

Now letting  max ,i i   , obviously, when 1  , 

for any  i  , it is easy to obtain that the next equation holds 

           0 0 0i i i iCo E j E j Co W j         . In the 

view of Lemma 3, since   ( 1, 0) 0 ( ),ij Co E j i   U , 

we also can conclude that ( 1, 0) i
i

j G


  U . Noting that 

 (0 ( ), )i i
i

Co W j i G


 U U , according to Lemma 4, we 

have ( 1, 0) i
i

j G


  U . That is to say ( ( ))G jw  does not 

contain ( 1, 0)j . Therefore, we conclude that if the general 

Nyquist stability criterion is applied, all zeros of  P s  have 

negative real parts. The proof of Theorem 1 is completed. 

Remark 1 The allowable upper bounds of delays are 
proposed analytically, which can guarantee group consensus in 
[14]. In the sharp contrast to Lemma 1, the conclusion about 
the bound of delays is too broad. The following compared 
results of experiments verify the conclusion. Meanwhile, from 
the conclusion of Theorem 1, it shows that group convergence 
is subject to the input delays and adjacent weights, and is 
independent of communication delays. 

Corollary 1 Supposed the system (5) of N agents with 
directed bipartite topology, for i  , if  max / 4i id T  is 

satisfied, system (5) can reach group consensus asymptotically.  

The process of the proof is similar with Theorem 1, we 
omit it due to the limitation of space. 

B. Group Consensus of Delay Systems with the Topology 
Owning a Globally Reachable Node 

Suppose the network consists of n m  agents, and 

1 2{1,2,..., }, { 1, 2,..., }L n L n n n m     . Based on the 

following two assumptions of in-degree balance , considering 
the following protocol (8) with multiple time delays, 

a) 11
0,

n m

ijj n
a i L



 
   ;b) 21

0,
n

ijj
a i L


   . 

  1 2

2 1

( ( ) ( )) ( )

( ( ) ( )) ( )

j i j i

j i j i

ij j ij i i ij j ij
V N V N

i

ij j ij i i ij j ij
V N V N

a x t T x t T a x t T

u t
a x t T x t T a x t T

 

 

     


 
    



 

 


In (8), for 1, , 0iji j L a   ; 2, , 0iji j L a   ; 

     1 2 1 2, , : , , : , , iji j i j i L j L i j j L i L a       U

.  

With (8), the closed-loop form of (1) is 

  1 2

2 1

( ( ) ( )) ( )

( ( ) ( )) ( )

j i j i

j i j i

ij j ij i i ij j ij
V N V N

ij j ij i i ij j ij
V N V N

a x t T x t T a x t T

x t
a x t T x t T a x t T

 

 

     


 
    



 

 


Theorem 2 Under assumptions of in-degree balance, we 
consider system (9) of ( , 1)n m n m  agents is a digraph 
which owns a globally reachable node. Then the network will 
achieve group consensus asymptotically if and only if 

 max / 4i id T  , 1, 2,...,i n m  , where 
1,

m n

i ikk k i
d a



 
  . 

The proof progress of Theorem 2 is very similar to 
Theorem 1 and is omitted from this note due to the limitation 
of space. 

IV. SIMULATION EXAMPLES 

According to Theorem 1 and Theorem 2 respectively, 
some simulation examples are given to verify the effectiveness 
and the correctness of the criteria established above. 

A. Experiment  I 

We consider system (5) with the topology and coupling 
weights between agents described in Figure I. Let 1v , 2v  in a 

group and 3v , 4v , 5v in another group. The initial states of 

agents are (0) [1.0,2.0,5.0,4.0,3.0]Tx  . Input delays are 

1 2 0.1 ,T T s  3 4 0.2 ,T T s   5 0.1T s . In Figure II, it shows 
that the network can achieve group consensus. Comparing the 
network curves with different delays, it is obvious that the 
existence of communication delays can impact the 
convergence speeds of networks.  
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FIGURE I.  TOPOLOGY OF SYSTEM (5) 

 
a. 0.1ijT s .                                                            b. 0.4ijT s . 

FIGURE II.  TRAJECTORIES OF SYSTEM  (5) 

From Figure I, the degrees of 1v  and 2v  are 3. By Theorem 
1, in order to reach the group consensus of networks, the 
allowed input delays of 1v  and 2v  should hold 

/ 12 0.26iT s  , 1, 2i  . Based on the above experiments, 
we conduct experiments on the following situations. The state 
trajectories of system (5) are plotted in FigureIII. 

 

a. 1 0.26T s .                                                     b. 2 0.26T s . 

FIGURE III.  STATE TRAJECTORIES OF SYSTEM (5) 

From FigureIII, it illustrates that system (5) will not reach 
group consensus. Compared with the result in [15], it is clear 
that the upper bound of the time delay we derived is more 
accurate. 

B. Experiment  II 

We consider the topology of the network (11) with 5 nodes 
plotted in Figure IV. The initial states of agents are 

(0) [2.0,3.0,5.0,7.0,6.0]Tx  . Let 0.4ijT s , and input delays 

of each node are 0.6s, 0.7s, 0.3s, 0.4s and 0.1s, respectively. 
The state trajectories of (12) are shown in Figure V (a). The 
group consensus is achieved. By the condition of Theorem 2, 
we can learn that 1 1d % and the input delay satisfies 

1 / 4 0.785T s  . If set 1 0.79T s , and the delays of other 
nodes keeping unchanged, from Figure V (b), we learn that the 

group consensus is fail to be realized. The correct and 
effective of Theorem 2 is verified. 

 

1

2 3

4 

5

G1 
G2 

‐1

1 

1 1 1 ‐1  1 1

1

 

FIGURE IV.  INTERCONNECTION GRAPH OF SYSTEM (11) 

 
a. 1 0.6T s                                                         b. 1 0.79T s . 

FIGURE V.  DYNAMIC BEHAVIORS OF SYSTEM  (11) 

V. CONCLUSION  

For first-order networks, this technical survey is aimed at 
exploring the issue of group consensus of multi-agent 
networks with diverse communication and input delays. By the 
theory of frequency-domain, some algebraic criteria of the 
group consensus are derived. It can be shown that the group 
consensus of networks is determined by owning input delays 
and connection strengths, independent of communication 
delays. However, the existence of communication delays will 
affect the convergence speed of networks. Due to various 
reasons, the topology of complex networks typically changes, 
thus our future work will investigate the group consensus issue 
for diverse delays under switching topologies.  
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