
How to Assign Papers to Referees

Miki Hermann
hermann@lix.polytechnique.fr

Vincent Rudelli
rudelli@lix.polytechnique.fr

LIX, École Polytechnique, France

ABSTRACT
We present an algorithm to distribute a possibly large number of

papers among a smaller number of referees, each paper requiring k
reports. The optimality criterion for the assignment is not based

on a local view of each referee, but on a global performance of the

whole k-assignment satisfying a fairness criterion. The algorithm

is based on an iterative application of maximum weighted match-

ing. The iterative method is only a constant factor approximation

algorithm.

1. INTRODUCTION
Consider the well-known task a chairperson of a conference is con-

fronted with, to distribute the submitted papers among the members

of the program committee. This task is not very difficult if the num-

ber of referees as well as of the submitted papers is not very large,

provided that the chair knows well the competences of the program

committee members. However, imagine a quite large conference

with 60 program committee members and 700 submitted papers to

referee, with the additional requirement to ask for 4 different re-

ports per paper. Such a situation cannot be solved easily and the

chair must take advantage of a conference management system. Al-

though the existing conference management systems allow a cer-

tain degree of automatization, they do not solve the problem of pa-

per assignment to the referees with an optimal algorithm. ConfMan

does not include such a module, CyberChair offers only a rudimen-

tary system working on keyword agreement, and EasyChair uses

an assignment algorithm based on local search till it reaches a local

maximum.

A k-assignment problem consists of distributing a possibly large

number of papers among a smaller number of referees, each paper

requiring k reports. Each referee expresses his or her preference

towards each paper on a finite positive integer scale, going from 0,

expressing a conflict of interest precluding any possibility to ref-

eree the particular paper, up to a certain predefined maximal value,

expressing the highest pledge for refereeing it. Contrary to popular

matchings [1], the optimality criterion is not based on a local view

of each referee, but rather on a global performance of the whole

k-assignment. However, the optimal k-assignment must also sat-

isfy a fairness criterion. Informally speaking, by fairness we mean

that two referees making almost the same preference choice will

get assigned papers with approximately the same preference values.

Considered only statically, this constitutes a classical combinato-

rial optimization problem. It can be reformulated as the Hitchcock

problem [6, section 7.4] and solved by a variant of the primal-dual

method called the alphabeta algorithm. Nonetheless, this algorithm

does not guarantee fairness of the assignment.

In this paper, we present a new algorithm assigning papers to ref-

erees, trying to maximize an objective function based on a global

performance. It is implemented in the conference management sys-

tem MyReview. It is based on an iterative application of a bipartite

weighted matching algorithm. We will study the performance of

the algorithm with respect to optimality.

Our algorithm and the considered problem have to be understood

in a more general setting. This algorithm represent a solution to

a multi-commodity multi-assignment problem with preferences un-

der a fairness criterion. Such problems often arise in planning or

in electronic commerce especially in connection with auctions. We

decided to treat this problem on the most popular application.

2. PRELIMINARIES
Let G = (R,S,E,w) be a weighted bipartite unoriented graph,

where R = {r1, . . . , rm} are the left-hand side vertices represent-

ing the referees, S = {s1, . . . , sn} are the right-hand side vertices

representing the submitted papers, E ⊆ R × S is the set of edges

between referees and papers, and w : E → N is the weight function

representing the preferences of referees towards papers. Assume

that there exists a total order ≺ on R, which is fulfilled in practice

when the referees are lexicographically sorted by their names. Also

assume that there exists a total order ≺ on S, which is fulfilled in

practice when the papers are identified by numbers. For a given

vertex v ∈ R∪S and a subset of edges F ⊆ E we denote by F (v)
the set of edges in F incident to v and by degF (v) the degree of v
in F . An edge rs ∈ E between a referee r ∈ R and a paper

s ∈ S with a null weight, i.e., w(rs) = 0 meaning a null prefer-

ence, represents a conflict of interest for the referee r towards the

paper s. We assume that all such edges have been removed from

the graph G and the weight function w : E → N
∗ is always pos-

itive for all edges in E. We extend the weight function to sets of

edges by the overloading identity w(F) =
∑

e∈F w(e) for every

subset F ⊆ E.

Let also d be an integer parameter greater than the upper bound

of w, i.e., d > max{w(e) | e ∈ E}. It seems first that d should

be variable and depend on a particular graph. In practice the differ-

International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2016)

© 2016. The authors - Published by Atlantis Press 30

ent possible values of w will be determined once and for all, since

we cannot allow referees to chose whatever preferences they like.

Thus, supw will always be a value bounded by a constant integer,

allowing us to determine a constant parameter d.

Instead of using the weight function w, each referee r ∈ R could

express the preferences for the papers S by means of an order ❁r .

This would allow us to recompute the weight function W from the

order ❁r of each referee r ∈ R as the relative rank of each paper

s ∈ S in this order. However, the integer parameter d would not

be a constant any more, but a function of the number of papers n.

Of course, we can perform the oposite operation: given the weight

function w we can recover the order ❁r of preferences for each

referee r ∈ R, as we will see in the sequel.

A subset M ⊆ E is a k-assignment for a bipartite weighted graph

G = (R,S,E,w) if for all papers s ∈ S we have the identity

degM (s) = k. For each referee r ∈ R we define a total or-

der ❁r on the edges E(r) asserting for all papers s, s′ ∈ S that

rs ⊑r rs′ holds if w(rs) < w(rs′) or w(rs) = w(rs′) and

s � s′ is satisfied. Let M be a k-assignment for G and let r ∈ R
be a referee. The set of papers M(r) can be sorted by ❁r in a

strictly decreasing order to form a tuple of length l = degM (r) de-

noted by M [r] = (M1(r),M2(r), . . . ,Ml(r)) and satisfying the

relation M1(r) ❂r M2(r) ❂r · · · ❂r Ml(r). The set M(r) and

the vector M [r] denote the same object, but M [r] also bears the

information about the relative preferences for the papers assigned

to the referee r. We call M [r] the assignment order for the ref-

eree r in M . Then we can write the k-assignment as the union

M =
⋃

r∈R{Mi(r) | 1 ≤ i ≤ degM (r)}.

Let M ⊆ E be a k-assignment for G. For any edge e = rs ∈ M
between r ∈ R and s ∈ S we define the position of e in M with re-

spect to the paper s by the function κM (e) = |{r′ � r | r′s ∈M}|.
For e /∈ M we set κM (e) = 0. Since degM (s) = k holds, we

clearly have 1 ≤ κM (e) ≤ k for all edges e ∈ M . Moreover, for

all papers s ∈ S and all indices j ∈ {1, . . . , k} there exists a ref-

eree r ∈ R matching the paper s, i.e., such that rs ∈ M , and also

κM (rs) = j. Since the set of referees R is totally ordered by ≺,

the referee r is unique.

Let M ⊆ E be a k-assignment for G. For any edge e = rs ∈
M between r ∈ R and s ∈ S there exists a unique integer i ∈
{1, . . . , n}, satisfying the identity e = Mi(r), called the rank of e
within M . Given an edge e and a k-assignment M , we denote the

rank of e within M by λM (e). If e /∈ M , we set λM (e) = 0.

We know from the construction of M [r] that s′ ∈ S, s′ 6= s, and

rs′ ∈ M imply λM (rs) 6= λM (rs′). This means that two edges

of M incident to the same referee r cannot have the same rank.

Let M be a k-assignment for G. The performance of a referee

r ∈ R within the assignment M is defined as

p(r,M) =

degM (r)
∑

i=1

w(Mi(r))d
n−i

and the global performance of the assignment M is defined by

p∗(M) =
∑

r∈R p(r,M). A k-assignment M for a graph G is

maximal if its performance p∗(M) is maximal among all k-assign-

ments. The papers-to-referees k-assignment problem is the task to

find a maximal k-assignment for a bipartite weighted graph G =
(R,S,E,w). We say that the k-assignment problem for a graph G
is feasible if there exists a k-assignment M for G. The latter is true

if and only if each paper from S has at least k incident edges in E.

We always assume that the k-assignment problem for a graph G is

feasible, i.e., that each paper s ∈ S has at least k incident edges

in E, and that G is not void, i.e., R 6= ∅, S 6= ∅, E 6= ∅, and

d > 1.

3. FAIRNESS CRITERION
We want to maximize the global performance rather than simply

the total weight because the performance also ensures a kind of

a fairness in addition to taking weights in account. As we will

show, the global performance indeed represents the fact that we had

distributed papers almost uniformly among referees who expressed

similar preferences, instead of assigning almost all of them to one

referee just because he expressed higher preferences.

The assignment order M [r] does not necessarily represent the real

order how the papers were assigned to the referee r in the k-assign-

ment M , but rather his assigned papers sorted in decreasing order

with respect to the relative preferences of the referee r. It will help

us to establish the fairness of the global performance.

Fairness Conditions:. The applied fairness criterion must sat-

isfy the following conditions:

(A) The papers, for wich different referees declared high prefer-

ences, must be almost equally distributed among these refer-

ees.

(B) The papers must be distributed almost uniformly among refer-

ees. The maximal difference between the cardinalities of the

sets of assigned papers to two different referees must be mini-

mized, i.e., the value maxr,r′∈R ||M(r)| − |M(r′)|| must be

minimal.

(C) The criterion must be independent of arbitrary numbering of

papers and referees.

Let G = (R,S,E,w) be a weighted bipartite graph. Let M
and M ′ be two k-assignments for G differing only in two consecu-

tive positions j and j + 1 for two referees r1, r2 ∈ R.

Let Mj(r1) = r1s1, Mj+1(r1) = r1s2,

Mj(r2) = r2s3, Mj+1(r2) = r2s4,

and

M ′

j(r1) = r1s1, M ′

j+1(r1) = r1s3,

M ′

j(r2) = r2s2, M ′

j+1(r2) = r2s4

Since Mj(ri) ❂ri Mj+1(ri) must hold for each i = 1, 2, the

weights must satisfy the relations w(Mj(ri)) ≥ w(Mj+1(ri)) and

w(M ′

j(ri)) ≥ w(M ′

j+1(ri)), which is better expressed by means

of the following inequalities:

w(r1s1) ≥ w(r1s2), w(r1s1) ≥ w(r1s3),

w(r2s2) ≥ w(r2s4), w(r2s3) ≥ w(r2s4).

Assume that w(r1s2) > w(r1s3) and w(r2s2) > w(r2s3) hold.

Then it is clear that M ′ is preferable to M , since it better satisfies

the fairness condition (A). Indeed, we have

(w(M ′

j(r2))− w(Mj(r2)))d > w(Mj+1(r1))− w(M ′

j+1(r1))

31

since d > max{w(e) | e ∈ E}, w(r1s2) − w(r1s3) > 0, and

w(r2s2)− w(r2s3) > 0 hold. This implies the relation

w(M ′

j(r2))d
n−j + w(M ′

j+1(r1))d
n−j−1

> w(Mj(r2))d
n−j + w(Mj+1(r1))d

n−j−1

leading to p(r1,M
′) + p(r2,M

′) > p(r1,M) + p(r2,M), since

Mj(r1) = M ′

j(r1) and Mj+1(r2) = M ′

j+1(r2) hold. Since

p(r,M) = p(r,M ′) holds for all referees r ∈ R r {r1, r2}, we

conclude that p∗(M ′) > p∗(M) is satisfied.

Moreover, note that there is no assumption on the relation between

weights allocated to the same paper by different referees. Indeed,

we did not assume anyting between the weights w(Mj(r1)) and

w(Mj(r2)), or between w(M ′

j(r1)) and w(M ′

j(r2)), respectively

for each j = 1, . . . , degM (ri). Hence referee r1 could have al-

located high weights to the papers s1, . . . , s4, compared to small

values allocated to the same papers by referee r2. Nevertheless, an

algorithm maximising the global performance will satisfy the fair-

ness condition (A).

Now let N and N ′ be two k-assignments in the same weighted

bipartite graph G, differing only in the number of papers assigned

to two referees r1, r2 ∈ R.

Let |N [r1]| = j + 2, |N [r2]| = j,
∣

∣N ′[r1]
∣

∣ = j + 1,
∣

∣N ′[r2]
∣

∣ = j + 1.

It is clear that N ′ is preferable to N , since it better satisfies the

fairness condition (B). Indeed, we have

w(N ′

j+1(r2))d ≥ d > w(Nj+2(r1))

from d > max{w(e) | e ∈ E} and from the positive integer

values of the weights in every assignment order for each referee.

This implies

w(N ′

j+1(r2))d
n−(j+1) > w(Nj+2(r1))d

n−(j+2)

leading to p(r1, N
′) + p(r2, N

′) > p(r1, N) + p(r2, N) since

Nℓ(ri) = N ′

ℓ(ri) for ℓ = 1, . . . , j and i = 1, 2, as well as

Nj+1(r1) = N ′

j+1(r1) hold. Since p(r,N) = p(r,N ′) holds for

all referees r ∈ R r {r1, r2}, we conclude that p∗(N ′) > p∗(N)
is satisfied.

The global performance is independent of the numbering of papers

and referees, since the assignment order depends on the order≺ on

the papers S only if for a certain referee r the weights w(rs) and

w(rs′) are equal. This is defined in this manner only to break ties,

but any other criterion ensuring a total order (e.g. a lexicographic

order on papers considered as strings) would be sufficient. Hence

the global performance also satisfies the fairness condition (C).

The fairness conditions are strongly relativised by the preferences

w(rs) = 0 declared by a referee r for a paper s, which precludes

any assignment of s to r. If there are too many declared zero prefer-

ences, the optimal result to the k-assignment problem can be biased

and the fairness cannot be ensured any more, as it is shown in Ex-

ample 1.. This is the reason why the word “almost” appears in the

context of the fairness criterion.

Example 1 Consider a 1-assignment for the bipartite graph G =
(R,S,K2,2, w) with the referees R = {r1, r2}, the papers S =
{s1, s2}, and the weights w

(

1 0
2 1

)

Algorithm 1 Iterative algorithm for k-assignment

Algorithm: ITERATIVE k-ASSIGNMENT

Input: A weighted bipartite graph G = (R,S,E,w) and a positive

integer bound k.

Output: A k-assignment for G.

Method:

1: M ← ∅
2: while S 6= ∅ do

3: Find a maximum weighted matching M ′ in G among non-

marked edges in E
4: Mark all edges contained in M ′

5: M ←M ∪M ′

6: S′ ← {s ∈ S | s has k incident marked edges}
7: E ← E r {rs ∈ E | s ∈ S′}
8: S ← S r S′

9: end while

10: return M

with the parameter d = 3. The maximum 1-assignment, being the

set {r2s1, r2s2} with performance 7, is not fair. Indeed, it violates

the fairness condition (B). The 1-assignment {r1s1, r2s2} is fair

with respect to the condition (B) but its performance is equal to 6.

If the weight w(r1s2) were different from 0, a 1-assignemnt of the

paper s1 to referee r2 and of the paper s2 to referee r1 would have

a performance of at least 9.

4. ITERATIVE ALGORITHM
The iterative method for the k-assignment problem operates on

the original bipartite graph G = (R,S,E,w) repeatedly apply-

ing an algorithm for weighted bipartite matching. See Algorithm 1

for the implementation. The basic idea of this iterative method

is somewhat similar to the method of successive approximations

for minimum-cost flow problems presented in [4]. Notice that a

k-assignment found through Algorithm 1 is not unique, for it may

depend upon the choice of maximum weighted matchings. If the k-

assignment problem is feasible, Algorithm 1 will eventually termi-

nate and find a valid k-assignment, although not necessarily maxi-

mal. However, we will prove that the performance of a k-assignment

found by the iterative method approximates the performance of the

maximal k-assignment by a factor depending on both k and d.

Let us first show an example showing that the iterative method does

not compute maximal k-assignments.

Example 2 We are looking for a 2-assignment for the graph G =
(R,S,K3,3, w), with the referees R = {r1, r2, r3}, the papers

S = {s1, s2, s3} and with the weights w given by the following

|R| × |S| matrix




5 1 1
4 1 3
1 1 4





Choose d = max{w(e) | e ∈ E} + 1 = 6. The maximum

weighted matching in graph G is N ′ = {r1s1, r2s2, r3s3} with a

total weight of 10. The maximum weighted matching in graph G
with the previous matching N ′ removed is then the set N ′′ =
{r1s3, r2s1, r3s2} with a total weight of 6. Algorithm 1 computes

the 2-assignment N = {r1s1, r1s3, r2s1, r2s2, r3s2, r3s3}. The

assignment orders are N [r1] = (s1, s3), N [r2] = (s1, s2), and

N [r3] = (s3, s2). The global performance is p∗(N) = 486. How-

ever, we can easily see that the maximal 2-assignment is the set

32

M = {r1s1, r1s2, r2s1, r2s3, r3s2, r3s3} with the assignment or-

ders M [r1] = (s1, s2), M [r2] = (s1, s3), M [r3] = (s3, s2), and

the global performance p∗(M) = 498.

The previous example shows that Algorithm 1 does not compute

a maximal k-assignment. We will analyze how far the produced

k-assignment can be from the optimum. To evaluate the approxi-

mation we need the following lemma.

Theorem 3 Algorithm 1 is a constant factor approximation algo-

rithm for the k-assignment problem with the factor kd/(d− 1).

In the case of a variable parameter d instead of a constant one, we

obtain a constant factor by replacing d with a lower bound of d.

Recall that d > 1 and notice that d/(d − 1) is decreasing with

respect to d)

When the parameter d becomes arbitrarily large, the approximat-

ing factor in Theorem 3 tends towards k. There exists bipartite

graphs G with arbitrarily heavy weights on edges for which k is the

right approximation factor, i.e., limd→∞ p∗(N)/p∗(M) = 1/k.

5. COMPLEXITY ANALYSIS
The algorithm is based on finding maximum weighted matchings

in bipartite graphs. Let τ(i, j, ω) denote the time complexity of

finding a maximum weighted matching in a bipartite graph with i
vertices, j edges and an upper bound on weights of ω. Recall that

we consider n = |S| papers in the weighted bipartite graph G =
(R,S,E,w). We also note W = supw. Since we have fewer

referees than papers, the graph G has at most 2n vertices and at

most n2 edges.

In the iterative method, the most time consuming operation in the

while-loop is Step 3 which requires to find a maximum weighted

matching in a (sub)graph G. We also need the following proposi-

tion to evaluate the complexity of Algorithm 1.

Proposition 4 The while-loop in Algorithm 1 will be repeated at

most n+ k − 1 times.

The number of iterations of the while-loop in Algorithm 1 is O(n)
since we have k < n. Moreover, for all methods considered be-

low, the complexity τ(i, j, ω) is monotonically increasing with re-

spect to i, j, and ω. Therefore Algorithm 1 can be performed in

O(nτ(2n, n2,W)) time. Since all aforementioned complexities

consist of a product of positive powers of the arguments or their

logarithm, we can omit the constants. Hence, the iterative algo-

rithm can be performed in O(nτ(n, n2,W)) time. The effective

complexitiy of the the algorithm depends on the method used to

find maximum weighted matchings. We will compare the results

using several different complexities, taken from a survey written

by Schrijver [7].

Using the Hungarian method (see [6]), the maximum weighted

matching can be computed in time τ(i, j, ω) = O(i4). Using this

method, Algorithm 1 has a time complexity of O(n5).

The method of Dinits and Kronrod [2] computes the maximum

weighted matching in time τ(i, j, ω) = O(i3). This more efficient

method allows the iterative algorithm to be performed in O(n4)
time.

The method of Gabow and Tarjan [3] computes the matching in

time τ(i, j, ω) = O(
√
i j log(iω)). With this newer method, the

iterative algorithm has a time complexity of O(n5/2 log(nW)). In

this case when either d is a constant or it is dependent on n, we

always have that d = O(W). We can reasonably assume that

W = O(n). Finally, the algorithm presented in [5] computes the

matching in time τ(i, j, ω) = O(
√
i jω). This recent method is

totally unadapted for the b-matching algorithm, since the resultant

complexity of O(n4Wdn) is exponential.

6. CONCLUDING REMARKS
We designed an algorithm computing a k-assignment for a weighted

bipartite graph. It is based on an iterative application of the maxi-

mum weighted matching. The iterative method is only a constant

factor approximation algorithm with factor kd/(d − 1). The it-

erative algorithm has already been integrated into the MyReview

system.

7. REFERENCES
[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn.

Popular matchings. In Proceedings 16th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2005), Vancouver

(British Columbia, Canada), pages 424–432, January 2005.

[2] E. A. Dinits and M. A. Kronrod. An algorithm for solving the

assignment problem. Doklady Akademii Nauk SSSR,

189(1):23–25, 1969.

[3] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for

network problems. SIAM Journal on Computing,

18(5):1013–1036, 1989.

[4] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flow

problems by successive approximation. In Proceedings 19th

Annual ACM Symposium on Theory of Computing (STOC’87),

New York (New York, USA), pages 7–18. Association for

Computing Machinery, 1987.

[5] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. A

decomposition theorem for maximum weight bipartite

matchings with applications to evolutionary trees. In

J. Nešetřil, editor, Proceedings 7th Annual European

Symposium (ESA’99), Prague (Czech Republic), volume 1643

of Lecture Notes in Computer Science, pages 438–449.

Springer, 1999.

[6] Ch. H. Papadimitriou and K. Steiglitz. Combinatorial

optimization: Algorithms and complexity. Dover Publications,

1998.

[7] A. Schrijver. Combinatorial Optimization — Polyhedra and

Efficiency, volume A : Paths, Flows, Matchings, chapter 17 :
Weighted bipartite matching and the assignment problem,

pages 285–300. Springer, 2003.

33

