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Abstract 

This paper is devoted to the problem of state estimate of discrete-time stochastic systems. A low-complexity and 
high accuracy algorithm is presented to reduce the computational load of the traditional interacting multiple model 
algorithm with heterogeneous observations for location tracking. By decoupling the x and y dimensions to simplify 
the implementation of location, updated information is iteratively passed based on an adaptive fusion decision. 
Simulations show that the algorithm is more computationally attractive than existing multiple model methods. 
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1. Introduction 

Date fusion deals with the problem of how to extract 
and utilize useful information contained in multiple sets 
of data in order to estimate unknown parameters or 
processes1, which has been widely applied in military 
and civilian fields, e.g., target tracking and localization, 
air traffic control, guidance and navigation, fault 
diagnosis, surveillance and monitoring. Estimation 
fusion is one of the important applications involving 
wireless sensor networks (WSNs), but the WSNs have 
very limited sensing range and communication 
bandwidth which restrict the application of the 
centralized signal processing method. In other words, 
not only are accurate positioning algorithms essential to 
useful location-estimation systems, but also to reduce 

energy consumption is worth developing low-
complexity schemes for WSNs2. 
State estimate problem of discrete-time Markovian jump 
linear system (MJLS) is always the focus of interest in 
the community of maneuvering target tracking. 
Multiple-model (MM) algorithms (such as generalized 
pseudo-Bayesian (GPB), interacting multiple model 
(IMM), variable-structure MM (SVMM)) are generally 
considered as mainstream approach to address this 
problem. Among them, IMM algorithm proposed by 
Blom3 is most prevalent.  
Nevertheless, the high accurate location estimation for 
maneuvering target based on the traditional IMM 
algorithm requires models interacting and inverse 
operations. The location data fusion algorithm with an 
IMM technique has high computational complexity, and 
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direct implementation of the IMM algorithm may be too 
complex for practical systems. Moreover, local stations 
in WSNs may not be able to afford IMM estimation due 
to limited computational power4. Consequently, it would 
be useful to reduce the computational complexity of the 
IMM algorithm. 
Our idea to deal with reduced-complexity state 
estimation is to reconstruct the IMM algorithm. In 
contrast to the existing reduced-complexity approach 
including: alpha-beta filtering, Kalman filtering, our 
proposed methods is based on a factor graph (FG) by 
decoupling the x and y dimensions to simplify the 
implementation of location and adaptive data decision 
for state estimation of a MJLS. 

2. Background 

2.1. Model 

Consider the dynamic system of tracked target 
described with the state space form. The mathematical 
models on the target can be taken by the following 
Markov jump linear system: 

( 1) ( ) ( )j j jx k F x k k               (1)    
( ) ( ) ( )j jz k H x k k                         (2) 

where the state )(kx  is an n-dimensional vector, the 
observation )(kz  is an m-dimensional vector, and the 
subscript   {1,2, , }j S s  denotes the model. 
The matrix functions )(jF , )( j and )(jH are known.  
The model-dependent process noise and measurement 
noise are assumed to be a Gaussian random process.  
Let 

k

jM denotes the flight model j at time k. The model 
dynamics are modeled as a finite Markov chain with 
known model-transitions probabilities from model i at 
time k-1 to model j at time k. 
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2.2. Operations of Factor Graphs 

In terms of the operations of FG operations, one 
advantage of multiplications is the distributive law. For 
example, )( cbacaba  , where the left-hand 
side involves three arithmetic operations, and the right-
hand side involves only two operations. Furthermore, 
according to the inherent distributed feature of the belief 
propagation algorithm to make the decomposition in 
accordance with prediction-correction recursion, the 

messages of the reliable information are processed and 
passed among the prediction phases and correction 
phases with the error propagation law5. 
 
 
 
 
 
 
 
 
       Fig. 1. Message passing from node to node  

1) Message from Variable Nodes to Factor Nodes: 
Assume that each message in the FG flows is a 
Gaussian PDF. A message from a variable node to a 
factor node is the product of incoming messages. For 
example, a variable node with two incoming messages 
is illustrated in Fig. 1, where a variable node is 
represented by a circle; a factor node is represented by a 
solid square. In fact, the message from a variable node 
to a factor node can be taken as the correction step in 
Bayesian filtering, where the mean is the estimated 
result based on data reliability for location estimation 
and tracking. 
2) Message from Factor Nodes to Variable Nodes: For 
two continuous variables x and y, the marginal density 
function of y is obtained by integrating the joint 
distribution over variable x. This operation can be taken 
as the prediction step using the Bayesian filtering 
approach for location estimation and tracking. 

3. Proposed Location Tracking Algorithm 

This article focuses on location tracking approaches in 
terms of the X and Y groups individually, and the X and 
Y results of the state and the covariance equations are 
decoupled as individual input. Moreover, others 
heterogeneous observations can be viewed as individual 
input, and corresponding state estimation can be 
obtained individually. All estimations combined with 
data fusion algorithm, which can improve the accuracy 
of location estimation and tracking.  
Given the computationally attractive feature of FGs

6, 
this article proposes a location tracking scheme based 
on the FG approach and the error for location and speed 
estimations to implement the recursive Bayesian 
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estimation and to reduce the computational load of the 
traditional IMM algorithm. Furthermore, decoupling the 

X and Y dimensions for different tracking groups also 
can reduce the computational complexity. Therefore, the 
2-D problem is reduced to two 1-D problems. The 2-D 
problem can be represented by two independent main 
groups, the X-coordinate and the Y-coordinate groups. 
   According to the concept of undirected graph model7, 
the representation related to estimate speed and location 
of the X-coordinate group is illustrated as the black 
color diagram in Fig. 2, where a correction node is 
illustrated by a circle; a prediction node is illustrated by 
a solid square. 
 
 
 
 
 
 
 
 
 
Fig. 2. Graph model of the data-fusion location estimation for 
X-coordinate group from the kth to (k+1)th. 
 
The measurement model based on IMM algorithm is the 
situation that the error propagation law can be applied to 
the linear dynamical system, and then the proposed 
IMM algorithm based on factor graphs (IMM-FG) for 
location estimation and tracking are illustrated in the 
following part. 
Step 1: Calculate the mixed initial probability for the 
filter m-atched to model k

jM j（ ） 
 

1

| 0: 1

1 1

0: 1 0: 1

0: 1

1

( | ) P{ , }

P{ , } P{ }
               =

P{ }

               =          ,         

k k

i j i j k

k k k

j i k i k

k

j k

k

ij i

j

k k M M z

M M z M z

M z

i j
c



 





 

 









       

 

 (4) 

where 
jc is the normalization constant. 

Step 2: Calculate the mixed initial state and correspond-
ing covariance for the filter matched to model

k

jM j（ ） 
 

 
 
 
 
Step3: Filtering j（ ） 
Prediction state 
 
 
 
Correction state 
 
 
 

Step4: Combine the state estimates and correspond-
ing covariance according to the updated weights 
 
 
 
 
Updated weight of model k

jM is 
 
 
 
 
 
 
where 
 
 
 
 
It's worth mentioning that decision [.] refers to a 
decision-making or data fusion process, for example, 
mean[.], max[.], min[.] or more intelligent decision, 
different location and tracking problems can adopt 
different data fusion for better tracking accuracy. 

4. Simulation Results 

In this section, we evaluate the performance of IMM-
FG algorithm, and the classical IMM algorithm using 
the target tracking example. The results are obtained 
from 100 Monte Carlo runs. The X position and velocity 
RMSE are shown in Fig.3 and Fig.4, respectively. The Y 
position and velocity RMSE are omitted due to limited 
space.  It can be found that accuracy estimate of the 
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IMM algorithm as nearly as the proposed IMM-FG 
algorithm in almost time. Although IMM-FG algorithm 
has a higher position estimate error than IMM algorithm 
during the second maneuvering (time samples 61-66), 
the estimate error converges to zero within a short time. 
The occurrence of this phenomenon maybe due to that 
the IMM-FG algorithm pays more attention to the rapid 
change of the velocity during the high maneuvering. On 
the whole, the estimation accuracy of the IMM-FG 
algorithm is almost the same with the classical IMM 
algorithm, but the computing time is short. It can be 
verified through the comparison computing time 
between IMM and IMM-FG given in Table 1. 
 
 
 
 
 
 
 
 
 
 

Fig. 3. X position RMSE versus time step. 
 
 

 
 
 
 
 
 
 
 
 

Fig. 4. X speed RMSE versus time step 

Table1. Computing time between IMM and IMM-FG 

 IMM IMM-FG 
50 Monte Carlo runs 1.3767 1.1228 
100 Monte Carlo runs 2.4825 2.1691 

5. Conclusion 

The conclusion comes here. In the paper, IMM-FG 
algorithm is presented for maneuvering target tracking.  
 

It is principally similar to the popular IMM algorithm. 
The difference lies in the use of filtering. To avoid the 
inverse of covariance matrix and reducing the 
complexity of tracking algorithm, the FG algorithm and 
the idea of decoupling the X and Y dimensions to 
simplify the implementation of location estimation and 
tracking is induced to construction of IMM algorithm. 
Computer simulations indicate that the IMM-FG 
algorithm has almost the same tracking accuracy with 
the IMM algorithm. 
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