

Proposal of a Modification Method of a Source Code to Correspond with
 a Modified Model in MDA

Tetsuro Katayama*, Yuuki Kikkawa*, Yoshihiro Kita†,
Hisaaki Yamaba*, Kentaro Aburada‡ and Naonobu Okazaki*

*University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
†Kanagawa Institute of Technology, 1030 Shimo-ogino, Kanagawa, 243-0292 Japan

‡Oita National College of Technology, 1666 Maki, Oita, 870-0152 Japan

E-mail: kat@cs.miyazaki-u.ac.jp, kikkawa@earth.cs.miyazaki-u.ac.jp, y.kita@ccy.kanagawa-it.ac.jp,
yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

This paper proposes a modification method of a source code to correspond with a modified model in MDA. The
proposed method generates, translates, and modifies EAD (Extended Activity Diagram). Also, it generates a source
code from the activity diagram. We use a simple ATM example to confirm availability of the method. The method
can reduce time and effort to keep consistency between models and a source code after requirement specification is
modified.

Keywords: MDA (Model Driven Architecture), Extended Activity Diagram, Activity diagram, Detail specification.

1. Introduction

MDA (Model Driven Architecture) is a concept of
software development.1 MDA defines five models:
business model, requirement model, platform
independent model (PIM), platform specific model
(PSM), physics model.2 Each Model has different
abstraction level. A developer defines models and
generates a less abstract model by software
development in MDA. Here, MDA Tool is used to
generate a less abstract model. A developer uses UML
(Unified Modeling Language) 3 for modeling PIM and
PSM.

Before generation of less abstract model, a developer
must create generation rule of high abstract model. A
method to support the creation of a generation rule is
researched. 4

One of the MDA's problems is how to keep
consistency between the original model and an edited
model which is generated from the original. A

modification method of PIM to keep consistency with
PSM is researched.5

Also, there is no consistency way if a developer edits
the original model. A developer can keep consistency if
MDA Tool generates models from the edited models
again. Here, Some MDA Tool can generate a complete
models from models including detail specification. A
framework that generates the executable source code
from a class diagram and a state machines diagram is
researched.6 However, MDA Tool cannot generate
complete models from abstract models because these
models do not have detail specification of a system. The
developer must modify generated models to fit the
modified original models or generate a new model from
the modified models with MDA Tool and then add the
detail specification to the new model by hand again.

The purpose of this study is to improve the efficiency
of software development using MDA. This paper
proposes a modification method of a source code to
correspond with a modified model in MDA.

Journal of Robotics, Networking and Artificial Life, Vol. 2, No. 2 (September 2015), 135-139

Published by Atlantis Press
Copyright: the authors

135

Tetsuro Katayama, Yuuki Kikkawa, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

2. Proposal Method

As shown in Fig. 1, the proposed method has four
functions: generate a source code from the activity
diagram, generate EAD, modify EAD to correspond
with the modified activity diagram, and generate a
source code from the modified EAD. The proposed
method consists of six steps as below.

(i) generate a source code from the activity diagram
(ii) add detail specification to the generated source

code
(iii) generate an EAD
(iv) modify the activity diagram
(v) modify the EAD

(vi) generate a source code from the modified EAD

2.1. Generate a source code from the activity
diagram

The proposed method generates a source code from the
activity diagram. The steps to generate source code are
shown as below.

(i) Acquire the function name
The method generates a skeleton of source code.
The function name is the activity name that is
described in the activity diagram. Here, the type
and the parameter of the function is void.

(ii) Select the initial node
(iii) Implement the function

The method executes the process as below
depending on the type of the selected node.
 Call activity node

Write the name of the call activity node to the
source code.

 Decision node
Write an if-statement to the source code.
Condition of if-statement is guard condition of
this node.

 Activity final node
Finish the generation of the source code.

 Other than the above
Do nothing.

(iv) Select another node
The method reselects the node connected by the
outgoing edge of the selected node and go to (iii).

2.2. Add detail specification to the generated
source code

A developer adds detail specification to the generated
source code.

2.3. Generate an EAD

The method generates an EAD from an activity diagram
and a source code added detail specification. At the first
step, the method selects the first line of the source code
added detail specification. Thereafter, we call the
selected source code “LOS (line of selected)”. The
method executes the process shown as below.

(i) Extract a source code from activity diagram by the
steps shown in section 2.1.

(ii) Select the next line of LOS.
(iii) If (i) and (ii) are not same character string, the

method executes the process shown as below.
(a) Write LOS to the activity diagram.
(b) Encircle lines written in (a) as a node.
(c) Select the original node of the extracted source

code in (i).
(d) Connect the incoming edge for the selected

node to the node extracted in (b).
(e) Make an edge connected with the selected node

and the node extracted in (a).
(f) Go to (ii).

(iv) If encircled nodes are connected each of them, the
method collects them as one node.

(v) Go to (i).

Fig. 1. Functions of the proposed method.

Published by Atlantis Press
Copyright: the authors

136

 Proposal of a Modification Method of a Source Code

2.4. Modify the activity diagram

At the second step, a developer modifies the activity
diagram to fit the changed requirement specification.

2.5. Modify the EAD

The method modifies the EAD to correspond with the
modified activity diagram. The method executes the
process shown as below.

(i) Select initial nodes of the activity diagram.
 Call the selected node “AD selected node”.

(ii) Select initial nodes of the EAD.
 Call the selected node “EAD selected node”.

(iii) Execute the process shown as below depending on
the case.
 EAD selected node is encircled node.

(a) Change EAD selected node to the next node
of the current EAD selected node.

 AD selected node and EAD selected node have
the same name.

(a) If the incoming edge of the AD selected
node does not include guard condition, the
method write guard condition to the edge of
the EAD selected node.

(b) Change EAD selected node to the next node
of the current EAD selected node.

(c) Change AD selected node to the next node
of current AD selected node.

 AD selected node and EAD selected node do
not have the same name.

(a) Write the AD selected node to the EAD
(b) Make an edge to the previous node of the

EAD selected node and the node written in
(a).

(c) Make an edge to connect the EAD selected
node and the node written in (a).

(d) Change EAD selected node to the next node
of (a).

(e) Change AD selected node to the next node
of current AD selected node.

(iv) Go to (iii).

2.6. Generate a source code from the modified
EAD

The method generates a new source code from the
modified EAD. It has information about detail
specification and is applied the changed requirement
specification. Therefore, a new source code generated

from the modified EAD corresponds with the changed
requirement specification and has information about
detail specification.

Here, the method can treat only if-statement. The way
to treat other statements is a future issue. In addition, the
method can treat with addition only to a generated
source code and an activity diagram, but it cannot treat
with deletion or revision. Correspondence to them is a
future issue.

3. Application Example

We use a simple ATM as an example to confirm
availability of the method. This ATM system executes a
withdrawal process or a depositing process depending
on a user input. Fig. 2 shows the activity diagram that
expresses processing flow of the ATM system.

Fig. 2. The activity diagram.

Fig. 3. The source code generated from activity diagram.

Published by Atlantis Press
Copyright: the authors

137

Tetsuro Katayama, Yuuki Kikkawa, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

Fig. 4. The source code added detail specification.

Fig. 5. The Extended Activity Diagram.

The method generates a source code from the activity

diagram. Fig. 3 shows a generated source code.
The developer adds the detail specification to the

generated source code in order to execute it. The source
code added the detail specification shown in Fig. 4.

Suppose a case that the requirement of specification
is changed to add a process of balance checking after
adding the detail specification.

The method generates the EAD from source code
added the detail specification and the activity diagram
shown in Fig. 2. Fig. 5 shows the generated EAD.

A developer adds the process of balance checking to
the activity diagram as shown in Fig. 2. Fig. 6 shows the
activity diagram added the process of balance checking.

The method modifies EAD to correspond with the
modified activity diagram. Fig. 7 shows the modified
EAD.

The method generates the source code from the
modified EAD. Fig. 8 shows the generated source code.
This source code has the detail specification.

Fig. 6. The modified activity diagram.

Fig. 7. The modified EAD.

Published by Atlantis Press
Copyright: the authors

138

 Proposal of a Modification Method of a Source Code

4. Discussion

MDA Tool such as EA7 (Enterprise Architecture) can
generate a skeleton of a source code from a class
diagram. In addition, EA can generate a source code
from an activity diagram or a state machine diagram.
However, The source code generated by EA does not
have detail specification. It takes time and effort that the
developer adds detail specification to the source code
generated from the modified activity diagram.

The method can generate a source code including
detail specification. The method can reduce time and
effort to add detail specification to the source code
generated from the modified activity diagram.
Moreover, it can reduce time and effort to keep
consistency between models and a source code after
requirement specification is modified. Therefore, the
method is useful for efficiency of software
development.

5. Conclusion

This paper has proposed a modification method of a
source code to correspond with a modified model in
MDA. The method can generate the source code that
corresponds with the modified activity diagram and has
information about detail specification. We have
confirmed that the method can generate a source code
including the detail specification from the original
activity diagram, the modified activity diagram, and the

original source code. Therefore, the method is useful for
efficiency of software development.

Future issues are as follows.
 Development of the tool implemented the method
 Improvement of the method to treat with deletion or

revision to source code and activity diagram.
 Improvement of the method to treat with other

statements except if-statement.

References

1. MDA (Model Driven Architecture),
http://www.omg.org/mda (accessed February 16, 2015).

2. Wada H, Yasutake Y, MDA (Model Driven Architecture)
and Actual Development Process (in Japanese), UNISYS
TECHNOLOGY REVIEW, No.61 (2004), pp. 47-59.

3. UML (Unified Modeling Language),
http://www.omg.org/spec/UML/2.4.1 (accessed February
15, 2015).

4. D. Lopes, S. Hammoudi, J. Bézivin, F. Jouault: Mapping
Specification in MDA: From Theory to Practice,
Interoperability of Enterprise Software and Applications,
(Springer-Verlag London Ltd 2006), pp.253-264,

5. Ueno M, Omori M, An Approach to Keep Coherence
between PIM and PSM of MDA (in Japanese), IPSJ SIG
Technical Report, SE-156 (7), (2007), pp. 41-47.

6. A. Derezinska, Code Generation and Execution
Framework for UML 2.0 Classes and State Machines,
IMCSIT, (2008), pp. 517-524.

7. Enterprise Architect, http://www.sparxsystems.jp
(accessed December 10, 2014).

Fig. 8. The source code generated from EAD.

Published by Atlantis Press
Copyright: the authors

139

