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We introduce a new generalization of Weibull distribution by making use of a transformation of the standard
two- sided power distributed random variable. Weibull and the exponentiated Weibull distributions are sub-
models of this new distribution. We show that this newly defined distribution is in fact a mixture of the truncated
forms of Weibull and the exponentiated Weibull distributions. The new distribution has two shape parameters
that make it more flexible for modeling data than Weibull and exponentiated Weibull distributions. We study
its properties, consider the maximum likelihood estimation procedure and apply it on some real data sets from
reliability.
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1. Introduction

The standard two-sided power distribution, denoted by T SP, is introduced by [31] and defined by
the following probability density function (pdf)

fT SP(x;α,β ) =


α

(
x
β

)α−1

, 0 < x≤ β

α

(
1− x
1−β

)α−1

, β ≤ x < 1,

where 0 < β < 1 and α > 0. The distribution is denoted by T SP(α,β ). The parameter β is the
reflection parameter and α is the shape parameter. The T SP distribution is one of the beta-like
distributions. It is defined on a bounded support. The parameters in the distribution determine the
shapes of the distribution and they are similar to those of the beta distribution. For example, for
0 < β < 1 and α > 1, the distribution is unimodal; for 0 < β < 1 and 0 < α < 1, the distribution
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is U-shaped with mode 0 or 1; for α = 1, the distribution is uniform on (0,1); for α = 2, the
distribution is triangular. The T SP distribution is clearly more flexible than the power function
distribution which is obtained for the case β = 1. Compared to the beta distribution the T SP has the
advantage of having its cumulative distribution function (cdf) explicitly:

FT SP(x;α,β ) =


β

(
x
β

)α

, 0 < x≤ β

1− (1−β )

(
1− x
1−β

)α

, β ≤ x < 1

The T SP distribution is useful for modeling financial data where peaked cases are more fre-
quently observed (see [31], [32], [8], [27]). Kurtosis properties of the distribution were studied
by [9]. It can be easily seen that the T SP distribution is an open distribution to generalizations and
some of them were defined and studied by several authors e. g. [33], [19], [26], [3], [30]. Similar
to the way of the definition of the T SP, [34] defined and studied the two-sided generalized Topp
and Leone distribution. Recently, [7] considered the log transform of the distribution to obtain a
generalized exponential distribution, and studied the new distribution in detail.

On the other hand, the ordinary Weibull distribution with two parameters, denoted by W (γ,θ),
has the pdf

fW (x;γ,θ) =
γ

θ γ
xγ−1e−(x/θ)γ

, x > 0,

where γ > 0 and θ > 0 are the shape and scale parameters, respectively. For γ ≤ 1, the distribution
becomes J-shaped; for γ = 1, the distribution is reduced to exponential distribution and for γ > 1,
the distribution becomes bell-shaped. Weibull distribution is known to be one of the most commonly
used distributions in reliability and in life testing studies (see e.g. [4], [17]). It is flexible in the sense
that it has an increasing, decreasing or constant failure rate according to its shape parameter.

However, other hazard rate shapes, that is, non-monotone hazard rates are also common in
practice and Weibull distribution is insufficient at this point. To a remedy, several generalizations of
the ordinary Weibull distribution have been introduced in the literature. One approach to increase the
flexibility and allow for also non-monotone hazard rate modeling is made by adding an additional
shape parameter appropriately to the survival function. For example, the extended Weibull ( [13])
and the exponentiated Weibull ( [16]). Another approach can use transformed variates and this
procedure is usually resulted in models that can have different shapes from the untransformed one.
For example, logarithmic distributions obtained from log-transformations are useful in statistics (see
e.g. Chap. 12 in [14] and [25]). As another example, power transforms of random variables can be
given (see p. 148 in [6] and p. 228 in [14]). A good review on Weibull and its extensions is given
in [10].

The exponentiated Weibull distribution, denoted by EW (α,γ,θ), which was introduced by [16]
and has the pdf

fEW (x;α,γ,θ) =
αγxγ−1

θ γ
exp
[
−
( x

θ

)γ]{
1− exp

[
−
( x

θ

)γ]}α−1
, x > 0

where α > 0 and γ > 0 are the shape parameters and θ > 0 is the scale parameter. The authors
discussed some properties of this distribution and derived maximum likelihood estimators. [22]
discussed some statistical properties such as mode, moments, failure rate and mean residual life
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of the EW distribution. Recently, Bayesian estimation this distribution under type II progressive
censoring was considered by [5]. A survey paper on this distribution was given by [21].

Since the T SP distribution is well-known for its usefulness in modeling data with high kurtosis,
the aim of this paper is to propose a useful extension of Weibull distribution like the T SP in addition
to those existing ones. In order to obtain the new extension, we make the log power transformation
of the T SP. The new distribution has four parameters and it generalizes the exponential, Weibull,
generalized exponential introduced by [2], EW , Burr type X and two-sided generalized exponential
distribution (T SGE) introduced by [7].

The rest of the paper is organized as follows. In Section 2, we define the new distribution and
study its density shapes in detail. We derive the moments, hazard function and Rnyi entropy of
the distribution in Sections 3, 4 and 5 respectively. Section 6 is devoted to maximum likelihood
estimation procedure and a simulation study conducted to see the performance of the proposed
estimators. The two real data sets are analyzed in Section 7. Finally we end the paper with some
concluding remarks.

2. Definition of the New Generalized Weibull Distribution

2.1. Definition

Since the T SP distribution generalizes the uniform distribution we naturally use this generalization
in the derivation of the extension of the ordinary Weibull distribution. Consequently, we consider
making the transformation X = θ(− logY )1/γ , where Y ∼ T SP(α,β ). We then obtain the cdf of X
as

F(x;α,γ,θ ,β ) =


(1−β )1−α

{
1− exp

[
−
( x

θ

)γ]}α

, 0 < x≤ η

1−β
1−α exp

[
−α

( x
θ

)γ]
, η ≤ x < ∞,

and the pdf is given by

f (x;α,γ,θ ,β ) =



αγ(1−β )1−α

θ γ
xγ−1 exp

[
−
( x

θ

)γ]{
1− exp

[
−
( x

θ

)γ]}α−1
,

0 < x≤ η

αγβ 1−α

θ γ
xγ−1 exp

[
−α

( x
θ

)γ]
, η ≤ x < ∞,

(2.1)

where η = θ(− logβ )1/γ , α,γ,θ > 0 and 0 < β < 1. When α = 1, the pdf in (2.1) is reduced to
the ordinary Weibull distribution. Therefore, the distribution of X is a generalization of Weibull dis-
tribution. We call it two-sided generalized Weibull distribution and denote it by T SGW (α,γ,θ ,β ).
The parameters α and γ are the shape parameters, β is the reflection parameter and θ is the scale
parameter of the distribution. While the contribution of the first piece of the pdf is 1−β , the con-
tribution of the other part is β . Further, the T SGW distribution is in fact a mixture of the EW
distribution truncated above at θ(− logβ )1/γ and the W (θα−1/γ ,γ) distribution truncated below at
the same point, with the mixing parameter β , that is,

T SGW (α,γ,θ ,β ) = (1−β )EW(0,η)(α,γ,θ)+βW(η ,∞)(θα
−1/γ ,γ), (2.2)

where W(a,b) denotes the doubly truncated Weibull distribution with truncation points a and b, and
similarly for EW(a,b).
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2.2. Density Shape

The T SGW distribution becomes very different forms by varying the two shape parameters. The
density shape analysis of the distribution is given below. When x > η , (d log f )/dx = (γ − 1)/x−
αγθ−γxγ−1. Clearly, for γ ≤ 1, the pdf is the decreasing function on this part. For γ > 1, the root
of this derivative is x∗ = θ((γ − 1)/αγ)1/γ and at this point the value of the second derivative is
(d2 log f )/dx2 = −(γ − 1)/(x∗)2−αγ(γ − 1)θ−γ(x∗)γ−2 < 0. So, the function is unimodal (log-
concave) and x∗ is the mode of the pdf on this part. But, when x∗ < η for γ > 1, the pdf is again
decreasing (See Figure 1). On the second part of the support of the distribution, that is when x < η ,
(d log f )/dx = (γ − 1)/x− (1−α)γxγ−1e−(x/θ)γ

θ−γ(1− e−(x/θ)γ

)−1− γxγ−1θ−γ . Thus, the pdf is
decreasing for γ ≤ 1 and α ≤ 1. Otherwise, the mode is the solution of the following nonlinear
equation

αγ

( x
θ

)γ

+ γe(x/θ)γ
[
1−
( x

θ

)γ]
− γ− e(x/θ)γ

+1 = 0.

Since the T SGW distribution is the mixture of the truncated EW and the truncated W distri-
butions, some shape properties of the distribution inherit from the known results in the literature.
According to [15], the EW distribution is the decreasing one for αγ ≤ 1, and increasing one for
otherwise. Hence, the T SGW distribution is bimodal for αγ > 1 provided that γ > 1. Also, it is
unimodal for αγ ≤ 1 provided that γ < 1 (on the first part) and αγ ≤ 1 provided that γ > 1 (on the
second part). The shapes of the pdf for selected parameter values are sketched in Figure 1.

Also, it can easily be seen that the right and left hand limits of the derivative of f at x = η

are equal to each other only when α = γ = 1, which is the case of the exponential distribution.
Otherwise, they are different and f

′
(η) does not exist. So the pdf has a corner point at η . On

the other hand, since these limits will be equal for γ ≤ 1 and when α → 0, this corner point will
disappear. Similarly, the same will also be true when γ → 0, for αγ ≤ 1 (See Figure 1 (a) and (b)).

Finally, we have the following limit cases from [22]. So the behavior of the pdf at the end points
of the support is given by limx→∞ f (x) = 0 and

lim
x→0

f (x) =


0, αγ > 1,

θ
−γ , αγ = 1,

∞, αγ < 1.

The scale parameter θ effects the tails of the distribution. So larger values of θ are associated
with the thicker tails of the distribution.

2.3. Special and Limiting Cases

The T SGW distribution contains many well-known distributions for special or limiting cases of the
parameters. They are given in the following.

• For α = 1, T SGW is the ordinary Weibull distribution W (γ,θ),
• For α = γ = 1, T SGW becomes the ordinary exponential distribution with scale parameter

θ ,
• For α = 1 and γ = 2, T SGW becomes the Rayleigh distribution with scale parameter θ ,
• For γ = 1, T SGW is reduced to the two-sided generalized exponential distribution intro-

duced by [7],
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Fig. 1. The graphs of the pdf of the T SGW with (a) γ = β = θ = 0.5, (b) α = β = θ = 0.5, (c) α = 0.1, β = θ = 0.5, (d)
γ = β = θ = 0.5, (e) α = β = θ = 0.5, (f) γ = 1.5, θ = 6, β = 0.1, (g) α = γ = 2, β = 0.5, (h) γ = 3, α = θ = 0.5.

• For γ = 2, T SGW is reduced to a distribution which we may call it the two-sided generalized
Rayleigh distribution,
• When β → 0, EW (α,γ,θ) is obtained. It is also a special case of the beta modified Weibull

distribution introduced by [29].
• When β → 0 and γ = 1, the generalized exponential distribution of [2] is obtained.
• When β → 0 and γ = 2, Burr type X distribution, also called the generalized Rayleigh

distribution, is obtained.
• When β → 1, we have W (θα−1/γ ,γ).

2.4. Percentiles and Random Variate Generation

The 100qth percentile xq of the distribution is defined by F(xq;α,γ,β ,θ) = q and is obtained as

xq =

θ

{
− log

[
1−
(
q(1−β )α−1)1/α

]}1/γ

, 0 < q≤ 1−β

θ
{
−α

−1 log
[
(1−q)β α−1]}1/γ

, 1−β < q < 1.
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A simple way of generating random variates from the distribution is performed by using the
inverse transformation method. Accordingly, if U is a uniform random variate on (0,1), then

X =

θ

{
− log

[
1−
(
U(1−β )α−1)1/α

]}1/γ

, 0 <U ≤ 1−β

θ
{
−α

−1 log
[
(1−U)β α−1]}1/γ

, 1−β <U < 1

has the T SGW distribution through the probability integral transform. Also, the mixture form in Eq.
(2.2) can be used to generate random variates from the distribution. This will be a two-stage process.
We first select either truncated EW or truncated W , with proportions (1−β ) and β , respectively.
Then a random number is generated from the selected distribution.

3. Moments

The moment generating function is the expectation E[exp(θ t(− logY )1/γ)] which is obtained by a
straightforward calculation, and is given by

M(t) = β
1−α

∞

∑
k=0

(θ t)kΓ(k/γ +1,−α logβ )

αk/γk!

+
α

(1−β )α−1

∞

∑
k=0

∞

∑
j=0

(−1) j
(

α−1
j

)
(θ t)kγ∗(k/γ +1,−( j+1) logβ )

k!( j+1)k/γ+1 ,

where Γ(·, ·) is the incomplete gamma function (see formula 3.381.3 in [1]) and

γ
∗(ν ,u) =

∫ u

0
pν−1e−p d p, ν > 0

is another incomplete gamma function (see formula 3.381.1 in [1]).
The rth moment of the T SGW is given by

E(X r)≡ µr =
θ rα

(1−β )α−1

∞

∑
j=0

(−1) j
(

α−1
j

)
γ∗
(

r
γ
+1,−( j+1) logβ

)
( j+1)r/γ+1

+
θ r

αr/γβ α−1 Γ

(
r
γ
+1,−α logβ

)
. (3.1)

If r/γ is a positive integer, say n, then (3.1) is reduced to

θ rα

(1−β )α−1

∞

∑
j=0

(−1) j
(

α−1
j

)
n!

( j+1)n+1

[
1−β

j+1
n

∑
m=0

(−1)m[( j+1) logβ ]m

m!

]

+
θ rβ αn!
αnβ α−1

n

∑
m=0

(−α logβ )m

m!
, (3.2)

using the formulas 8.352.1 and 8.352.2 in [1].
For simplicity we may assume that the scale parameter θ = 1 since if X ∼ T SGW (α,β ,γ)

then θX ∼ T SGW (α,β ,γ,θ). In Table (1), we calculated the mean, variance, median, coefficient
of variation CV =(µ2−µ2

1 )
1/2/µ1, measure of skewness δ1=(µ3−3µ1µ2 +2µ3

1 )/(µ2−µ2
1 )

3/2 and
measure of kurtosis δ2=(µ4−4µ1µ3+6µ2µ2

1−3µ4
1 )/(µ2−µ2

1 )
2 for selected parameters using (3.1).

For β = 0.5 the median of the T SGW is equal to that of Weibull distribution, regardless of the values
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Table 1. The mean, variance, median (m), coefficient of variation (CV ), skewness (δ1) and kurtosis (δ2) of T SGW for
some selected parameter values.

β α γ E(X) V (X) m CV δ1 δ2

0.1 0.5 0.5 2.7073 114.3693 0.1058 3.9501 11.1385 237.8726
0.1 0.5 2 0.7109 0.3468 0.5704 0.8283 1.3524 5.1089
0.1 0.5 5 0.7906 0.5704 0.7988 0.3904 -0.1889 3.1111
0.1 2 0.5 2.1433 6.7598 1.2346 1.2130 2.9256 19.8121
0.1 2 2 1.0584 0.1237 1.0541 0.3323 0.0865 2.6206
0.1 2 5 1.0079 0.0206 1.0213 0.1426 -0.4799 3.0868
0.1 4 0.5 2.6602 3.7038 2.2518 0.7234 1.0812 4.8599
0.1 4 2 1.2052 0.0647 1.2250 0.2111 -0.3269 2.6685
0.1 4 5 1.0712 0.0091 1.0845 0.0891 -06857 3.3320
0.25 0.5 0.5 4.0544 175.5937 0.1644 3.2683 8.9553 155.8528
0.25 0.5 2 0.8129 0.4443 0.6367 0.8199 1.1163 3.9541
0.25 0.5 5 0.8332 0.1072 0.8348 0.3920 -0.1912 2.8550
0.25 2 0.5 1.4731 3.5233 0.8981 1.2742 3.9256 34.3274
0.25 2 2 0.9705 0.0958 0.9735 0.3190 0.1401 3.0049
0.25 2 5 0.9448 0.0176 0.9893 0.1362 -0.4894 3.3586
0.25 4 0.5 1.4351 0.9918 1.2820 0.6939 1.7795 10.6898
0.25 4 2 1.0436 0.0387 1.0640 0.1886 -0.3048 3.2535
0.25 4 5 1.0125 0.0064 1.0251 0.0791 -0.7207 3.9028
0.5 0.5 0.5 5.6655 239.4315 0.4804 2.7311 7.6472 115.2935
0.5 0.5 2 0.9652 0.5149 0.8325 0.7345 0.7687 3.0891
0.5 0.5 5 0.9016 0.1123 0.9293 0.3717 -0.3879 2.7903
0.5 2 0.5 0.9401 2.1061 0.4804 1.5436 5.1455 54.9894
0.5 2 2 0.8520 0.0808 0.8325 0.3337 0.4798 3.5543
0.5 2 5 0.9248 0.0164 0.9293 0.1387 -0.2321 3.4170
0.5 4 0.5 0.6192 0.3040 0.4804 0.8903 3.5141 28.2507
0.5 4 2 0.8390 0.0273 0.8325 0.1971 0.3402 4.0107
0.5 4 5 0.9277 0.0055 0.9293 0.0799 -0.1786 3.9664
0.75 0.5 0.5 6.9289 284.5438 1.2069 2.4344 7.0125 97.8431
0.75 0.5 2 1.1087 0.5090 1.0481 0.6434 0.5563 2.9601
0.75 0.5 5 0.9719 0.1004 1.0189 0.3261 -0.6491 3.2841
0.75 2 0.5 0.6625 1.5608 0.2405 1.8855 5.9519 71.8038
0.75 2 2 0.7440 0.0833 0.7002 0.3879 0.7517 3.6752
0.75 2 5 0.8724 0.0188 0.8671 0.1575 0.0642 3.0317
0.75 4 0.5 0.2769 0.1448 0.1513 1.3745 4.9878 51.4105
0.75 4 2 0.6555 0.0295 0.6237 0.2622 0.9161 4.2610
0.75 4 5 0.8379 0.0074 0.8279 0.1026 0.4141 3.3878

of α and γ . The mean and median values decrease for fixed large α and fixed γ for increasing β . On
the other hand, for fixed α and fixed β (γ), skewness is negative for increasing γ (β ). The distribution
has large kurtosis for small values of α and γ , while it has small kurtosis for increasing α and γ .
When γ = 2 and β = 0.5, the kurtosis of distribution is first decreasing and then increasing. When
γ increases for its large values, the mean increases for fixed α and β , however the variance and CV
decrease. For small values of α and fixed γ , the mean and the median increase for increasing β . For
large α and γ , the variance gets smaller. Also, the variance increases for fixed and small α and γ
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for increasing β . In addition, for small β and fixed γ , we obtain negatively skewed distributions for
increasing α (see Figure 2).
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Fig. 2. Plots of the skewness and kurtosis values of the T SGW for γ = 2 and β = 0.1

4. Hazard Rate Function

The hazard function r(t) is very important in lifetime studies owing to the diversity of the given
data. Since the distribution is two-sided, it can be more useful to model hazard shapes with different
characteristics. The hazard function of the distribution is given by

r(t) =


αγ(1−β )1−αtγ−1

[
1− exp

(
−( t

θ
)γ
)]α−1 exp

(
−( t

θ
)γ
)

θ γ

{
1− (1−β )1−α

[
1− exp

(
−( t

θ
)γ
)]α} , t ≤ η ,

αγtγ−1

θ γ
, t > η .

The shape of the hazard function becomes different on the parts of the support. We see that on
(η ,∞) the hazard rate of distribution is the same with that of Weibull distribution. In that case, the
hazard function can be constant, decreasing or increasing for γ = 1, γ > 1 and γ > 1, respectively.
On the other part, the hazard function has the same shapes as that of the EW distribution which can
be found in [15]. Therefore, we may state the overall shape properties of the hazard function of the
T SGW distribution in the following theorem.

Theorem 4.1. r(t) of the T SGW distribution is

• monotone IHR (increasing hazard rate) function throughout its support if γ > 1 and αγ ≥ 1,
• monotone DHR (decreasing hazard rate) function throughout its support if γ ≤ 1 and αγ <

1,
• firstly IHR (DHR) then constant if γ = 1 and αγ ≥ 1 (αγ ≤ 1),
• firstly BHR (bathtube hazard rate) then IHR function if γ > 1 and αγ < 1,
• UHR (unimodal hazard rate) then DHR function, if γ < 1 and αγ > 1,
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• constant hazard rate function when α = γ = 1.

We note that the shapes of the hazard function depend on α and γ on the first part, but it only
depends on γ on the second part. Also, we have the following limiting cases of r(t).

lim
t→0

r(t) =


0, α > 1,γ > 1,

θ
−1, α = 1,γ = 1,

∞, α < 1,γ < 1.

lim
t→∞

r(t) =


0, γ < 1,

θ
−1, α = 1,γ = 1,

∞, γ > 1.

Thus, while γ > 1 and α > 1 the hazard function increases from 0 to infinity. On the other hand,
for γ < 1 and αγ < 1, the hazard function is non-increasing (See Figure 3).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

x

r(
t)

(a)

α=08
α=1.5
α=2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6

x

r(
t)

(b)

α=0.8
α=1.5
α=2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6
7

x

r(
t)

(c)

α=1.5
α=2.5
α=3.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

6

x

r(
t)

(d)

α=0.25
α=0.5
α=0.75

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

r(
t)

(e)

α=0.15
α=0.17
α=0.2

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

r(
t)

(f)

α=3
α=4
α=5

Fig. 3. The graphs of the hazard rate of the T SGW with (a) γ = 2, β = θ = 0.5, (b) γ = 0.25, β = θ = 0.5, (c) γ = 1,
β = θ = 0.5, (d) γ = 1, β = θ = 0.5, (e) β = 0.25, θ = 0.5, γ = 3.5 (f) γ = 0.6, θ = 0.5, β = 0.1.
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5. Rényi Entropy

The entropy of a random variable X is a measure of variation of the uncertainty. The Rényi entropy
of the distribution with pdf f (.) is given by the following integral

JR(σ) =
1

1−σ
log
∫

∞

−∞

f σ (x)dx.

for σ > 0 and σ 6= 1. [18] derived the entropies for several univariate distributions including the
T SP. Using Eq. (2.1), we obtain the Rényi entropy for the T SGW distribution as

JR(σ) =
1

1−σ

{
σ logα +(σ −1) log(γ/θ)+ log

[
Γ[(σ −1)(γ−1)/γ +1,−σα logβ ]

β σ(α−1)(σα)(σ−1)(γ−1)/γ+1

+
1

(1−β )σ(α−1)

∞

∑
j=0

(−1) j
(

σ(α−1)
j

)
γ∗((σ −1)(γ−1)/γ +1,−(σ + j) logβ )

(σ + j)(σ−1)(γ−1)/γ+1

]}

provided that (σ −1)(γ−1)≥ 0.

6. Estimation

6.1. Maximum Likelihood Estimation and an Algorithm

Let x1, x2, . . . , xn be a random sample of size n from the T SGW (α,γ,θ ,β ) and let x(1) ≤ x(2) ≤
·· · ≤ x(n) denote the corresponding order statistics. Then the log-likelihood functions is given by

l(α,γ,θ ,β ) = n logα +n logγ− γn logθ +(γ−1)
n

∑
i=1

logxi−
n

∑
i=1

(xi

θ

)γ

+(α−1) log


∏

r
i=1

[
1− exp

(
−
(

x(i)
θ

)γ)]
∏

n
i=r+1 exp

(
−
(

x(i)
θ

)γ)
(1−β )rβ n−r

 , (6.1)

where x(r) ≤ η < x(r+1) for r = 1,2, . . . ,n and x(0) ≡ 0, x(n+1) ≡ ∞.
The maximum likelihood estimates of the parameters maximize (6.1) globally. Note that we

must also estimate r which is implicitly defined above. We will first consider the estimates of α and
β . Taking the partial derivatives of (6.1) with respect to α and β , and then equating them to 0, we
get

α̂ =− n
logM(r̂,γ,θ)

,

β̂ = exp
[
−
(x(r̂)

θ

)γ
]
,

where r̂ = argmaxM(r,γ,θ)
r∈{1,2,...,n}

with

M(r,γ,θ) =
r−1

∏
i=1

1− exp
(
−
(

x(i)
θ

)γ)
1− exp

(
−
(

x(r)
θ

)γ)
 n

∏
i=r+1

 exp
(
−
(

x(i)
θ

)γ)
exp
(
−
(

x(r)
θ

)γ)
 .
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We will need an iterative procedure to find the estimates. The associated likelihood estimating equa-
tions for the other parameters are given by

∂ l
∂γ

=
n
γ
−n logθ +

n

∑
i=1

logxi−
n

∑
i=1

(xi

θ

)γ

log
(xi

θ

)
+(α−1)

×
r

∑
i=1

(
x(i)
θ

)γ

exp
[
−( x(i)

θ
)γ

]
log
(

x(i)
θ

)
1− exp

[
−
(

x(i)
θ

)γ] − (α−1)
n

∑
i=r+1

(x(i)
θ

)γ

log
(x(i)

θ

)
= 0, (6.2)

∂ l
∂θ

=
−γn

θ
+

γ

θ γ+1

n

∑
i=1

xγ

i −
γ(α−1)

θ γ+1

 r

∑
i=1

xγ

(i) exp
[
−( x(i)

θ
)γ

]
1− exp

[
−( x(i)

θ
)γ

] − n

∑
i=r+1

xγ

(i)

= 0. (6.3)

To compute the estimates iteratively we may give the following algorithm.
Step 1: Set k = 0 and put initial estimates γ̂(0) and θ̂ (0) for γ and θ in the log likelihood l.
Step 2: Compute estimates

α̂
(k+1) =− n

logM(r̂, γ̂(k), θ̂ (k))
,

β̂
(k+1) = exp

[
−
(

x(r̂)
θ̂ (k)

)γ̂(k)
]
,

where r̂ = argmax
r∈{1,2,...,n}

M(r, γ̂(k), θ̂ (k)) with

M(r, γ̂(k), θ̂ (k)) =
r−1

∏
i=1


1− exp

(
−
(

x(i)
θ̂ (k)

)γ̂(k)
)

1− exp
(
−
(

x(r)
θ̂ (k)

)γ̂(k)
)
 n

∏
i=r+1


exp
(
−
(

x(i)
θ̂ (k)

)γ̂(k)
)

exp
(
−
(

x(r)
θ̂ (k)

)γ̂(k)
)
 . (6.4)

Step 3: Update γ and θ by using (6.2) and (6.3) to find γ̂(k+1) and θ̂ (k+1).
Step 4: If |l(α̂(k+1), γ̂(k+1), θ̂ (k+1), β̂ (k+1))− l(α̂(k+1), γ̂(k), θ̂ (k), β̂ (k+1))| is less than a tolerance level,
say 10−2,
Stop
Else k = k+1 and Goto Step 2.

The expressions given in (6.2) and (6.3) can be easily differentiated, and hence the fixed point
solutions of γ and θ in (6.2) and (6.3) can also be considered with the Newton method. With a good
starting point of γ and θ , the convergence will hold. One should use a computer package such as
MATLAB to write the codes of the algorithm.

It is well known that the maximum likelihood estimators are asymptotically unbiased and have
an asymptotic normal distribution under some regularity conditions. The related information is con-
tained in the Fisher information matrix which is the matrix whose elements are negative of expected
values of the second partial derivatives of the log-likelihood function with respect to the parameters.
Since these cannot be derived in a regular way due to the r which is implicitly defined, we investi-
gate the bias properties empirically. So we perform a simulation study generating 10,000 samples
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of sizes 20 and 100 from the distribution. The results of the simulation are reported in Table (2). We
observe that the estimates approaches to true values as the sample sizes increase.

7. Data Analysis

In this section, we demonstrate to use of the T SGW and compare it with some generalized Weibull
distributions on two real data sets. The first data set is from [23] and it consists of 100 observations
on breaking stress of carbon fibres (in GPa). The data are: 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17,
1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80,
1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43,
2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82,
2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22,
3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38,
4.42, 4.70, 4.90, 4.91, 5.08, 5.56. [12] introduced the exponentiated generalized inverse Gaussian
distribution, fitted it to this data set and compared the result to the fits of several models. [28] derived
Fisher information matrix for the EW distribution under type II censoring and used this data set as
an application.
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Fig. 4. (a) Histogram of the carbon data set and the superimposed fits (b) Empirical and fitted cdf’s.

The second data are from the New York State Department of Conservation correspond to the
daily ozone level measurements in New York in May-September, 1973. The data are: 41, 36, 12,
18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23,
21, 37, 20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 16, 80, 108,
20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21, 9, 45,
168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13, 24,
16, 13, 23, 36, 7, 14, 30, 14, 18, 20. This data set is apparently more skewed than the carbon data
set. Recently, [20] and [11] analyzed these data using a truncated version of inverted beta and an
extended Birnbaum-Saunders distributions, respectively.

To see the performance of the T SGW , we fit it to both of these data sets. We also fit two Weibull
extensions: the exponentiated Weibull (EW ) whose pdf is given in Introduction Section and the
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Fig. 5. (a) Histogram of the ozone data set and the superimposed fits (b) Empirical and fitted cdf’s.

Table 3. Maximum likelihood parameter estimates, log-likelihood, AIC and K− S values of the T SGW and some other
existing methods for the Carbon data set. (The standard errors for the estimates and p-values of the K− S are given in
parentheses).

Model α̂ γ̂ θ̂ β̂ l AIC K-S

EW 6.8091 0.9628 1.0702 -148.0784 302.157 0.1370
(2.1364) (0.0193) (0.0224) (0.0426)

GPW 1.3212 3.0689 2.5561 -141.3300 288.660 0.0644
(0.5369) (0.5110) (0.5149) (0.8006)

T SGW 6.3043 0.6224 0.2615 1.9935 -139.9130 287.826 0.0444
(0.1823) (0.0014) (0.0071) (0.0051) (0.9875)

generalized power Weibull (GPW ) ( [24]) with pdf

fGPW (x;α,γ,θ) =
γ

αθ γ
xγ−1

[
1+
( x

θ

)γ]1/α−1
exp
{

1−
[
1+
( x

θ

)γ]1/α
}
,

where x,α,γ,θ > 0. They have both two shape parameters and one scale parameter and thus they
are two natural competitors for the T SGW .

We apply the MLE procedure and use the algorithm given above for computations of the esti-
mates obtained from the T SGW model. Tables (3) and (4) report the MLEs (and the correspond-
ing standard errors) of the model parameters of our model and its competitors with corresponding
log-likelihood values, AIC (Akaike Information Criterion) and K− S (Kolmogorov-Smirnov) test
statistic values for the data sets. We observe from Tables (3) and (4) that the T SGW distribution
has the smallest AIC values. So it could be chosen as the best model among the other models under
this criteria. The Figures 4 and 5 of the fitted densities and their empirical cdf’s also support this
observation. The T SGW fit successfully and nicely captures the peak. Also, our proposed model
performs better for the second data set than the other two distributions.
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Table 4. Maximum likelihood parameter estimates, log-likelihood, AIC and K− S values of the T SGW and some other
existing methods for the Ozone data set. (The standard errors for the estimates and p-values of the K− S are given in
parentheses).

Model α̂ γ̂ θ̂ β̂ l AIC K-S

EW 2.5805 0.8350 21.1821 -541.203 1088.405 0.0750
(1.6124) (0.2429) (13.1193) (0.5310)

GPW 2.3997 1.9158 19.849 -541.118 1088.236 0.0698
(0.9753) (0.4256) (6.5940) (0.6246)

T SGW 2.2314 0.8471 0.0219 25.1020 -536.5 1081.0 0.0797
(0.0785) (0.0182) (0.0306) (0.2862) (0.4519)

8. Conclusions

We introduce a new generalization of Weibull distribution. Our methodology is based on a trans-
formation of the standard two-sided power distributed random variate. We study its properties and
use it to model some real data sets. The proposed model contains not only the ordinary Weibull
distribution but also other some well-known generalized distributions, and it is proven that it is also
useful for modeling lifetime data.
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