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Abstract—the improvement of an air-fuel ratio model based on 

in-cylinder pressure measurement is presented. This model has 

been applied for calculation of static air-fuel ratio of spark 

ignition (SI) engines. In addition, it can be replaced the lambda 

sensors in feedback air-fuel ratio control systems. However the 
parameters of the model obtained from ridge regression method 

compose of few small coefficients, in practical applications, these 

small coefficients cannot be ignored because they affect the air-

fuel ratio calculation error. Therefore, the authors propose 

modification of the air-fuel ratio model structure and also the 
model identification method using a least absolute shrinkage and 

selection operator (LASSO). With the application of this method, 

some coefficients are shrunk to zero then the model structure is 

simplified. The results compared with ridge regression show that 

this proposed method can improve the structure of the air-fuel 

ratio model without increasing of the calculation error. 

Keywords-spark ignition engine; in-cylinder pressure; air-fuel  
ratio estimation; least absolute shrinkage and selection operator 

I. INTRODUCTION 

The possibility of sensing the air-fuel ratio of spark ignition  

(SI) engines leads to the development of effective air-fuel ratio  

control strategies. There are many researches that have been 
presented about in-cylinder pressure applications for internal 

combustion engines control and analysis [1-3]. For the air-fuel 
ratio estimation based on in-cylinder pressure measurement, 

there are many approaches that have been applied, for example 
[4].In previous work [5], we have been introduced the air-fuel 

ratio model based on in-cylinder pressure measurement for 

calculation of the static air-fuel ratio of the SI engine. The 
model requires engine speed, intake manifold pressure, 

including rapid burn angle and heat release as model inputs , 
while the model identification, a ridge regression has been 

applied. The implementation of this method can overcome the 
singular problem caused by an experimental data set. The ridge 

regression method is same as ordinary least squares except for 

shrinking the estimated coefficients towards zero and it also 
makes the problem nonsingular. This was the main motivation 

for the ridge regression when it was first introduced in statistics 
[6].The design of ridge coefficient can min imize a penalized  

residual sum of squares. However, the ridge regression has 

some drawbacks such as small calculated model coefficients in 

the model structure. We cannot ignore effects of these small 
coefficient values in the model because this will lead to air-fuel 

ratio calculation error. Furthermore, the ridge regression 
technique generally affects the squared bias compared with the 

ordinary least squares. 

Hence, we propose the improvement of the air-fuel ratio  

model identification by applying a least absolute shrinkage and 

selection operator (LASSO) method which was proposed by R. 
Tibshirani [7], this technique has more efficiency than the 

ordinary least squares and the ridge regression. It can shrink 
some coefficients and set other to zero, also retain the good 

features of both subset selection and ridge regression [8].W ith 
this identification technique, the results show that the model 

structure is simplified because some coefficients are shrunk to 
zero. Moreover, the sum of square error of model is not 

affected by this technique compared with the case of using 

ridge regression. 

This paper organized as follows: first, the relationship 

between in-cylinder pressure and air-fuel ratio is introduced 
and the polynomial approximation model of air-fuel ratio is 

presented. The system identification processes using ridge 
regression and LASSO are then expressed. Subsequently, the 

identification results for the model comparison are investigated. 

Finally, all research results are discussed. 

 

FIGURE I.  AIR-FUEL RATIO ESTIMATION MODEL 
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II. AIR FUEL RATIO MODEL 

The notion of the air-fuel ratio  calculation and some 

required inputs are shown in Fig. 1. The cylinder pressure-

based air-fuel rat io model inputs are the rapid burn angle, heat 
release, intake manifo ld pressure, and the engine speed. The 

dynamic behavior of each input is regarded as the selection of 
the input order in the model structure. The intake manifold  

pressure and engine speed have a strong effect on the air mass 
flow rate entering the combustion chamber. Additionally, the 

values of the heat release (Qtot ) and the rapid burn angle(∆θb ) 

are depending on the fuel mass injected into the cylinder. 
Therefore, the quantity of all inputs can be used to estimate the 

air-fuel ratio of SI engines. 

The total heat release for the air-fuel ratio model is obtained 
from the integration of the heat release rate from the start to the 

end of combustion [9].  In this work, the effects of crevice 
volumes and heat transfer are ignored. Hence, the total heat 

release denotes the total energy which calculates from the in-
cylinder pressure measurement during combustion period. The 

air-fuel ratio model is introduced with the combination of the 
Taylor series expansion as follows: 

 

 

 

(1) 

whereλ is air-fuel ratio, λ0 is the stoichiometric air-fuel ratio, 

i.e.,λ0 = f(pm ,0 , N0 , Δθb ,0 ,Qtot ,0). The subscript zero of each 

input, refer to the initial value at stoichiometric air-fuel ratio. 

For the model inputs, pm  is the intake manifold pressure (Pa), 
N is the engine speed (rpm), Qtot is the total heat release (kJ) 

and Δθb  is the rapid burn angle (degrees). This equation 

utilizes only linear terms of the intake manifold pressure and 

engine speed because their dynamic behaviors are slower than 
the combustion parameters obtained from in-cylinder pressure 

data. In the next section, the identification process for the air-
fuel ratio model is expressed. 

III. SYSTEM IDENTIFICATION 

In this identification, considering a steady state air-fuel 

ratio response, both the intake manifold pressure and the engine 
speed have a significant effect on the air mass flow rate. The 

fuel mass directly affects the total heat release and burn 

duration. The main air-fuel ratio oscillation is caused by the 
total heat release and the rapid burn angle because the changing 

rate of the manifold pressure and the engine speed are slower 
compared with the variation of the combustion parameters. The 

air-fuel ratio and four input values under various operating 
conditions are obtained from experiments by averaging over 

500 working cycles. During the torque constant mode 
experiments, both changing of fuel injection and engine speed 

are considered. According to the experimental conditions, the 

changing of the air-fuel rat io is assumed to be caused only by 
the fuel injection command. The air mass flow rate going 

through the combustion chamber is almost constant because the 

throttle angle is fixed. The polynomial parameter estimation for 
the model is created as follows: 
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The regression vector is 
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 (3) 

Define the parameter vector as 
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T
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Hence, the model output become 

   0 ,0 0 ,0 ,0, , , , , ,m b tot m b toty f p N Q f p N Q        
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From (5), the outputsy from measurement are collected in 

to an output vector Y and the regression vectors φ are collected 

into a regression matrixΦ. 

   1 2 3 1 2 3and
T T

n nY y y y y      
 (6) 

The estimated of model coefficients can be calculated by 
many methods. In this work, the implement of ridge regression 

and LASSO will be presented in the next section. 

A. Ridge Regression 

Ridge regression shrinks the regression coefficients by 
imposing a penalty on their size. The ridge coefficients 

minimize a penalized residual sum of squares  (RSS) 
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  (7) 

where  k ≥  0  is a complexity parameter that controls the 

amount of shrinkage; the larger the value ofk, the greater the 
amount of shrinkage.n is the number of measurements, yi is the 

response at observation i, xij  is data, at elementjof a regression 

vector at observation i, α0  and α are scalar and p is the number 

of vector elements, respectively.α0  is estimated byy =
1

n
 yi

n
1 . 

We can write the criterion (7) in matrix form 

   ( ) ,
T TRSS k Y Y k      

  (8) 
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The ridge regression is applied to this problem for 
estimating the model coefficients because the determinants of 

ΦTΦis close to zero. The coefficients of the air-fuel ratio  
model can be calculated by using the following close form 

solution: 

 
1

ˆ T T

ridge kI Y


   
   (9) 

where I is an identity matrix. 

B. LASSO 

LASSO is a regularizat ion technique, which uses to solve 

the problem as follows: 
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Notice that the similarity to the ridge regression problem (7) 
but the ridge L2  penalty term k  αj

2p
j=1 is replaced by the 

LASSOL1  penalty k   αj  
p
j=1 . This latter constraint makes the 

solutions nonlinear in the yi , and there is no closed form 

expression as in ridge regression. Computing the lasso solution 

is a quadratic programming problem with the same 
computational cost as for ridge regression [8]. 

IV. IDENTIFICATION RESULTS 

Two cases of identification method are applied. We 

consider the structure of the air-fuel rat io model as introduced 
in the previous section. MATLAB program is applied to 

calculate the solutions of both techniques. 

TABLE I.  EXPERIMENTAL DATA FOR SYSTEM IDENTIFICATION 

Condition No. λ-λ0 pm(kPa) N(rpm) Δθb(deg) Qtot(kJ)

1 -0.7747 44.877 979.2 20.25 0.4466

2 -0.4498 44.841 978.5 21.34 0.4451

3 -0.0074 44.79 977.6 21.19 0.4484

4 0.8568 45.659 954.2 20.37 0.4438

5 2.0011 46.827 919.3 21.38 0.4463

6 -0.9221 44.026 1036.2 21.08 0.4514

7 -0.5057 44.135 1032.3 20.43 0.4423

8 0.0000 44.397 1025.1 22.82 0.4469

9 0.6279 44.899 1013.9 21.15 0.4442

10 1.8810 46.429 977.8 21.60 0.4487

11 -1.0265 43.914 1084.7 21.59 0.4262

12 -0.6247 43.79 1085.9 21.78 0.4233

13 -0.2371 43.837 1081.7 21.95 0.4228

14 0.4747 44.275 1065.2 22.06 0.4236

15 1.6571 45.417 1034.4 22.65 0.4259  

A. Identification Using Ridge Regression 

For ridge regression, the determinant of the matrix ΦTΦ +
kI  is regulated by an adjustment of the complexity parameterk.  

This is because, the diagonal terms of considered matrix is 
depended on the value of k. Therefore, we can solve the 

singular problem using the ridge regression. However, the 

value of parameter k affects the square bias of the estimation 

output. The experimental data for this identification is exhib ited 
in Table 1. For this experiment, the center of an operating point 

is set at a condition No.8. The results of identification using the 
ridge regression method with k = 0.06are shown in Table 2. 

TABLE II.  MODEL COEFFICIENTS CALCULATED BY RIDGE 
REGRESSION 

Coefficient name Value

α1 0.1053

α2 0.3144

α3 -0.0002

α4 -0.0010

α5 -0.0074

α6 1.2644

α7 0.0110

Intercept -0.1967  

From the identification results, there are few model 

coefficients which are closed to zero. The intercept in this table 
representsα0 in (7). In practical applications, we cannot omit 

these small coefficients because they will lead to the increasing 

in estimation error. 

B. Identification Using Ridge LASSO 

This section presents the identification results using 
LASSO technique. First, the cross validation is applied for 

investigation the relation between the complexity parameter k 

and the mean square error (MSE) for this data set. The cross 
validation plot is shown in Fig. 2. According to these results, 

we can design the value of complexity parameter using one 
standard error rule for increasing regularization. 

 

FIGURE II.  CROSS VALIDATION PLOT 

However, this parameter cannot minimize the MSE of 

estimation. This is caused by the number of non-zero  
coefficients, i.e., at the lowest MSE position, there are more 

non-zero coefficients than the prescribed period. Next, the 

relation between the complexity parameter and the number of 
non-zero coefficients is considered. The trace plot of scaled 

coefficients fit by LASSO is shown in Fig. 3. In this figure, the 
parameter df  denotes the number of non-zero  coefficients 

which depended on the complexity parameter that controls the 

amount of shrinkage. Finally, the calculat ion is performed  
using MATLAB program. The comple xity parameter is chosen 

as 0.06 and the estimated non-zero coefficients are five. Other 
coefficients are shrunk to zero. 
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FIGURE III.  TRACE PLOT OF MODEL COEFFICIENTS 

Both the model coefficients  multiplied with its scaling 

factor and the model intercept are exhib ited in the Table 3. 

TABLE III.  MODEL COEFFICIENTS CALCULATED BY LASSO 

Coefficient name Value

α1 69.8238

α2 -17.9928

α3 -37198.5403

α4 0.0000

α5 454.0999

α6 0.8527

α7 0.0000

Intercept -0.2216  

With the coefficients obtained by applying LASSO 

technique, the model is simplified and the structure is changed 

a little bit by adding an intercept term. Two terms of the 
original model are deducted and the values of remain ing 

coefficients are changed. The intercept term is the value of α0  

defined by (10). The model after simplified is as follows: 
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On the other hand, we can design the complexity parameter 

value for more shrinkage. This can be regarded based on cross 
validation and trace plot of coefficients. It will make the 

number of reduced non-zero coefficients but we have to 
consider about the increasing of MSE. 

C. MSE evaluation 

The air-fuel ratio model estimation error evaluation is 

investigated and the results of two identification methods are 
shown in Table 4. The model identification using LASSO has 

lower number of coefficients than the model identified by ridge 
regression. In addition, LASSO does not affect the mean square 

error of the estimated air-fuel ratio. The LASSO uses only the 

most important features thus simplify ing the model 

automatically. When the model has redundancy, i.e., the 
measurement data includes noise signal and we attempt to fit 

polynomial models of various orders , this technique can 
attenuate the risk of over learning issue. 

TABLE IV.  MODEL ERROR EVALUATION 

Ridge regression LASSO

Non-zero coefficient 7 5

Mean error -0.03 0.01

Minimum error -0.87 -0.76

Maximum error 0.47 0.54

 Squres error 2.26 2.26

Mean square error 0.15 0.15  

However, the over learning is not obviously affected in  this 

work because the mean-value data is applied. Therefore, the 
evident results show only the model simplification. The 

comparison of these two model performance in real t ime 
application is left as future work. 

V. CONCLUSIONS 

The identification results show that the application of 

LASSO technique can improve the air-fuel ratio model 
structure compared with identification using ridge regression. 

This technique can shrink two coefficients to zero at the 
specified value of the complexity parameter. Additionally, the 

magnitude of square bias  compared with the cause of using 

ridge regression is not caused by parameter shrinkage. Hence, 
we can apply the simplified model with five coefficients for 

air-fuel ratio calculation. 
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