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Abstract— This paper addresses the multi-objective 

constrained optimization of a drinking water production plant. It 

reports the successful coupling between the Strength Pareto 

Evolutionary Algorithm (SPEA2), which is a well-established 

multi-goal elitist metaheuristic global optimizer, and EVALEAU, 

which is a state-of-the-art process modelling – life cycle 

assessment (LCA) tool for simulation of potable water treatment 

chains. The paper assesses as well the pros and cons of using 

midpoint versus single score as environmental goal metrics in a 

decision making process based on very challenging multi-goal 

optimization of potable water treatment chains. The proposed 

approach is illustrated using the model of a real-world drinking 

water production plant.   
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I.  INTRODUCTION  

Life cycle assessment (LCA) is a standardized 
methodology which analyzes the environmental performance 
of any industrial process during its entire lifecycle [1]. In order 
to offer decision makers efficient solutions for reducing the 
environmental impact of a process, LCA needs to be 
complemented by multi-goal optimization tools.  

The extension of industrial process optimization to further 
account for environmental constraints has been broadly 
investigated so far [2]. Most of the previous works assume that 

the process can be modeled analytically by a set of equations 
enabling thereby resorting to suitable mature mathematical 
programming-based methods [3],[4],[5]. However, the detailed 
simulation of water treatment chains involves a deep level of 
software embedding which precludes the use of classical 
derivative-based mathematical programming methods and 
hence calls for meta-heuristic algorithms [6] which are suitable 
for such black-box model multi-goal optimization. This is the 
case of the EVALEAU simulator, which is a state-of-the-art 
flowsheet-based process modelling - LCA tool for prospective 
and retrospective simulation of potable water treatment chains 
[7]. EVALEAU was developed in Umberto®, relies on the 
software PHREEQC® [8] for water chemistry calculation, and 
its modules are linked to the Ecoinvent® database [9] for the 
LCI of background processes. The EVALEAU library is 
composed of a certain number of unit processes for water 
treatment, which can be further combined to simulate a specific 
treatment chain, like e.g. the one in Fig. 1.  

On the other hand, comparatively with the previous works 
on LCA-based optimization, the optimization of potable water 
production plants taking into account the lifecycle impact has 
received very little attention up to now. The only existing work 
[10] performs a single-objective optimization of a water 
production plant by combining the Nelder-Mead local search 
algorithm and EVALEAU. However, it does not consider 
multiple objectives or water quality constraints, and the local 
search algorithm utilized may be trapped into local optima. 

 

Figure 1: Simplified model of the drinking water production plant used in the case study. “I” stands for “input” and “O” stands for “output”. 
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Aiming to mitigate these drawbacks, a first contribution of 
this paper is the successful coupling between a multi-objective 
global optimization tool and EVALEAU. Key design 
operational parameters of the potable water plant treatment 
chain are optimized by resorting to a metaheuristic global 
optimization algorithm, called Strength Pareto Evolutionary 
Algorithm (SPEA2) [11], which is a natural candidate for 
black-box multi-objective optimization.  

Furthermore, another contribution of the paper is the 
evaluation of the pros and cons of using midpoint versus single 
score as environmental goal metrics in a decision making 
process based on very challenging multi-goal optimization of 
drinking water treatment chains.  

The remaining of the paper is organized as follows. Section 
II states conceptually the optimization problem, describes the 
coupling approach and presents the global optimizer used. 
Section III discusses the pros and cons of various 
environmental metrics. Section IV provides optimization 
results with the SPEA2 algorithm for a model of a real-world 
potable water production plant. Section V concludes.   

II. OVERVIEW OF THE APPROACH COUPLING A GLOBAL MULTI-

OBJECTIVE OPTIMIZER AND EVALEAU SIMULATOR 

A. Abstract Problem Statement 

The basic multi-goal optimization problem in the context of 
potable water treatment plant can be formulated conceptually 
by the set of equations (1)-(4): 

min { f1(x) ,  f2(x) ,  f3(x), …}             (1) 

subject to:    

g(x)=0                (2) 

hmin<=h(x)<=hmax              (3) 

xmin<=x<=xmax              (4) 
 

The problem consists in finding optimal settings for some 
key decision variables, denoted by x, according to the trade-off 
between conflicting objectives such as the operational cost, 
denoted by f1(x), and some environmental impact metrics, 
denoted by f2(x), f3(x), …, etc. The optimization problem 
satisfies a set of constraints on the process unit input-output 
mass-flow balance (2), the output water quality (3) and design 
parameters physical range (4).  

In the above problem formulation the environmental impact 
metrics are calculated by the widely used ReCiPe Life Cycle 
Impact Assessment (LCIA) method [12], which is applied at 
either midpoint or endpoint levels.  

The water potability is enforced by constraints (3), 
focusing, at water production plant experts suggestion, on 
seven major aggregated parameters (e.g. total coliforms, total 
trihalomethanes, total organic carbon, Escherichia coli, faecal 
streptococci, turbidity, and conductivity).  

B. Proposed Approach and Software Architecture 

The proposed approach for multi-objective constrained 
optimization of the drinking water production plant is shown in 
Fig. 2 and consists in linking the EVALEAU simulator with 
the multi-objective global optimizer SPEA2. The advantage of 
this solution is that the optimization problem (1)-(4) is 
decomposed in two convenient blocks which are solved 
sequentially: (i) solution of equality constraints (2) obtained by 
running the EVALEAU simulator for a given value of decision 
variables x provided by the optimizer, and (ii) improvement of 
the current set of solutions of the optimization problem (1)-(4) 
by the global optimizer, which receives as input the values of 
functions f1(x), f2(x), and h(x) already evaluated by the 
EVALEAU simulator, returning to the latter a new promising 
value of decision variables x. The communication between 
EVALEAU simulator and SPEA2 optimizer is steered in 
Umberto® via a Python script, the automated communication 
with the simulator relying on the advanced-user functions 
which are available in Umberto®.  

 

Figure 2: High level software architecture of the coupling between 
a multi-objective global optimizer and EVALEAU simulator.  

 

SPEA2 [11] is a well-established elitist global evolutionary 
meta-heuristic derivative-free multi-objective optimizer which 
has been successfully applied to many black-box optimization 
problems in various engineering fields. It aims at finding or 
approximating the optimal set of trade-off solutions (i.e. the 
Pareto front). As any evolutionary algorithm, once an initial 
population is randomly generated, it repeats the following 
steps: evaluation, selection, crossover and mutation, until some 
termination criteria are met (e.g., generally a pre-defined 
number of generations is reached). SPEA2 is an improved 
version of the initial SPEA algorithm, incorporating, as 
described in [11], additional features such as a fine-grained 
fitness assignment strategy (which takes into account for an 
individual the numbers of individuals it dominates and is 
dominated by), a nearest neighbor based density estimation 
technique, and an enhanced archive truncation method which 
guarantees the preservation of boundary solutions. SPEA2 
operates with a population (archive) of fixed size, from which 
promising candidates are drawn as parents of the next 
generation. The resulting offspring then compete with the old 
ones for inclusion in the population. 

SPEA2 algorithm is provided as free source code on the 
PISA platform [13] and has been adapted to the optimization 
problem addressed in this paper.  
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III. PROS AND CONS OF ENVIRONMENTAL METRICS FOR THE 

WATER PLANT OPTIMIZATION PROBLEM 

We briefly discuss the pros and cons of two environmental 
metrics.  

Using ReCiPe single score indicator [12] as single 
environmental impact metric leads to a bi-objective 
optimization problem. This approach has two advantages: it 
facilitates decision making as the analysis is reduced to a two-
dimensional set of optimal solutions (i.e. the Pareto front), and 
the computational effort, although very significant, is the least 
one can expect for this type of multi-objective optimization 
problem. However, the decision making relies on questionable 
assumptions used to compute the single score, and may hide 
the effect of potentially significant impact categories due to the 
conversion to endpoints and to the arbitrary weights assigned 
in aggregation.  

Using some ReCiPe midpoint level impact categories [12] 
as independent environmental goals in the multi-objective 
optimization problem has the major advantage of reliance upon 
relatively widely accepted methods and indicators. However, 
the computational complexity (i.e. approximation of Pareto 
front and running time) of the multi-objective optimization 
problem grows dramatically with the number of conflicting 
objectives and may become unmanageable [14]. This critical 
issue gets even worse for time consuming simulators as 
EVALEAU, which takes around 180 seconds per simulation on 
a 2.70GHz/8GB computer. Furthermore, for the optimization 
of more than three independent objectives the visual 
interpretability of the Pareto front becomes problematic. 
Hence, decision maker-based careful reduction of the number 
of conflicting environmental goals to be optimized is desirable. 
This may benefit from the fact that some impact categories 
have the same trend while other environmental impacts of 
interest can be handled as constraints (but the optimization 
results may depend on their beforehand expert-based limits). 

IV. NUMERICAL EXPERIMENTS  

A. General Assumptions 

The proposed approach is illustrated using a realistic 

model of an existing French drinking water production plant 

shown in Fig. 1. The EVALEAU simulator runs in Umberto® 

5.6 environment and is linked to the Ecoinvent® v2.2 LCI 

database for background processes. The environmental impact 

objectives are computed using the ReCiPe LCIA method. The 

functional unit is 1m
3
 of potable water produced while 

monetary units (m.u.) stand for euro. 

We focus on optimizing the settings of the six most 

efficient design variables: the ozone transfer efficiency and the 

pure oxygen fraction in feed gas in both T4 and T17 ozonation 

unit processes (see Fig. 1), the coagulant dose in the 

coagulation/flocculation T7, and the granular activated carbon 

(GAC) regeneration frequency in the GAC filtration T20.   

 

 
Figure 3: SPEA2 convergence over generations: cost vs. midpoint 

GWP100 environmental metric.  

 

In the following experiments, without otherwise specified, 

the SPEA2 algorithm is run with default settings for a 

population size of 24 individuals during 50 generations (as the 

algorithm practically converged to the Pareto front).  

B. Results using SPEA2 Algorithm 

Figure 3 shows the 2D Pareto front trading-off cost vs. 

environmental impact (focusing only on climate change 

impact category by means of the Global Warming Potential - 

GWP - factors based on 100 years-time horizon). One can see 

that the Pareto front is composed of three disjoint concave 

parts. Note that most trade-off optimal solutions allow a 

reduction of both objectives compared to the initial drinking 

water production plant operating point, which corresponds to a 

cost of 0.0578 monetary units (m.u.) and the GWP100 

environmental impact of 0.2158 kg CO2-Eq. In particular the 

solution with the lowest environmental impact leads to a 

reduction of the cost and the environmental impact of 9.7% 

and 18.0%, respectively. 

The figure also provides three snapshots of the front 

approximation during generations. As expected after only 10 

generations the front approximation is still far from the Pareto 

front and several solutions are dominated points. Then, the 

front approximation after 20 generations contains only non-

dominated solutions and approaches very closely the Pareto 

front. However, after 20 generations the solutions spread is 

still insufficient, see e.g. a small number of points in the right 

part of the figure.  

Note that the computational effort of the algorithm 

corresponds mainly to 24x50=1200 runs of EVALEAU and 

takes around 60 hours. This computational burden supports the 

a priori identification of the most effective decision variables. 

Although this computational effort is not a major concern at 

the planning stage, further speed-up of both the optimizer and 

EVALEAU tool are welcome. 
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C. Midpoint vs Single Score 
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Figure 4: Pareto front: cost vs. single score indicator.  

 

Figure 4 shows the 2D cost vs. single score optimal trade-

off Pareto front obtained with the SPEA2 algorithm when the 

single score is chosen as environmental metric. The single 

score indicator aggregates three impact categories, namely 

“ecosystem quality”, “human health”, and “resources” 

assigning them the following weights: 40%, 40%, and 20%, 

respectively. Figures 5 and 6 display LCA results for these 

impact categories, both overall and individually, specifically 

for the Pareto point in Fig. 4 which corresponds to the lowest 

environmental impact and largest cost.  
 

 
Figure 5: Single score overall impact per category for the point of the 
Pareto front with the lowest environmental impact.  
 
 

 
 
Figure 6: Single score impact detail per each midpoint impact category 
for the point of the Pareto front with the lowest environmental impact.  
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Figure 7: Pareto front: cost vs. climate change vs. particulate 

matter formation potential.  
Figure 7 shows the 3D cost vs. climate change vs. 

particulate matter formation potential trade-off Pareto front 

obtained with the SPEA2 algorithm when two midpoint level 

environmental goal metrics are considered. The two midpoint 

categories were chosen because of their relevance in the LCA 

of water treatment chains as well as due to their relatively 

more important impact (see Fig. 6).  

Looking closely at Figs. 3, 4 and 7 one can note that the 

Pareto fronts of single score and mid-point have quite similar 

shapes. This is due to the significant weight of the climate 

change in the single score (it counts overall for 46%, see Fig. 

6) as well as the common trend for most impact categories 

(e.g. the graph in Fig. 7 shows indeed that GWP100 and 

PMFP metrics are not in conflict).   

D. Impact of the Population Size in SPEA2 

We now run SPEA2 using a small population of 6 

individuals, like in a micro-genetic algorithm approaches.    

 
Figure 8: Impact of population size after 480 evaluations.  

 

Figure 8 provides the results obtained with SPEA2 

algorithm after 480 evaluations with both population sizes 6 

and 24 respectively. While one would expect that the smaller 

the population size the faster the convergence to the Pareto 

front, the figure shows that the contrary holds, i.e. as the 

population gets larger, it not only covers better (evenly) the 
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whole Pareto front, but also slightly dominates the small size 

population in the objective space.  

Finally we run SPEA2 with a population of 24 individuals 

but allowing only 12 parents to breed 12 children, instead of 

the default option which replaces the whole population (i.e. 

24/24 option). Figure 9 shows that, compared with the default 

option, the 12/12 option fails in this case and after 480 

evaluations to explore the upper part of the Pareto front.  

 
Figure 9: Impact of population replacement rate.  

 

V. CONCLUSIONS  

This work demonstrates the successful application of the 

global optimizer SPEA2 in combination with the process 

engineering - LCA simulator to provide optimal settings of 

design variables, according to the trade-off cost vs. 

environmental impacts, for a potable water production plant.  

Multi-goal optimizers could be easily combined to other 

LCA simulators targeting other industrial sectors.   

This work further offers a perspective of the approaches 

based on midpoint indicators versus those based on single 

score indicator for decision making from the viewpoint of 

challenging multi-goal optimization problems over 

computationally expensive “process modeling - LCA” 

simulators of potable water treatment chains. The results show 

that solving such optimization problems under both 

approaches is technically feasible provided that, for midpoint 

approach, a small number of key environmental impact 

metrics are carefully chosen. In the presence of adequate 

information, other midpoint impact categories can be 

straightforwardly incorporated into the optimization problem 

as constraints.  

Future work will explore the potential reduction of the 

computational burden of the algorithm for expensive black-

box optimization problems, e.g. by using hybrid algorithms 

combining suitable global and local search methods or relying 

on surrogate black-box models. 
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