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Abstract—In practice many multi-objective optimization prob-
lems relying on computationally expensive black-box model
simulators of industrial processes have to be solved with limited
computing time budget. In this context, this paper proposes and
explores the uses of an iterative heuristic approach aiming at
quickly providing a satisfactory accurate approximation of the
Pareto front. The approach builds, in each iteration, a multi-
objective nonlinear programming (MO-NLP) surrogate problem
model using curve fitting of objectives and constraints. The
approximated solutions of the Pareto front are generated by
applying the ε-constraint method to the multi-objective surrogate
problem, converting it into a desired number of single objective
(SO) NLP problems, for which mature and computationally
efficient solvers exist. The proposed approach is applied to the
cost versus life cycle assessment (LCA)-based environmental
optimization of drinking water treatment chains. The paper
thoroughly investigates various settings choices of the approach
such as: the type of the polynomial function to be fit, the input
points, choice of weights in curve fitting, and analytical fit. The
numerical simulations results with the approach show that a
good quality approximation of Pareto front can be obtained with
a significantly smaller computational time than with the popular
SPEA2 state-of-the-art metaheuristic algorithm.

I. I NTRODUCTION

Nowadays there is a plethora of derivative-free meta-
heuristic algorithms (e.g. genetic algorithms, particle swarm
optimization, differential evolution, ant colony, etc.) [1],
[2]. These algorithms are suitable mainly for black-box
multi-objective optimization (MOO), since well-established
derivative-based mathematical programming methods cannot
be applied because either the problem formulation in analytical
form is unavailable or the problem features (e.g. non-convex,
discontinuous, etc.) make such methods impractical. Meta-
heuristic algorithms are reliable and can explore complex
optimal trade-off Pareto fronts in a single run, but also exhibit
some drawbacks such as: poor scalability with problem size,
slow convergence close to the optimum, and stopping criterion.

Two main classes of meta-heuristic algorithms can be dis-
tinguished:

• Pareto dominance-based, including elitism-based algo-
rithms such as: Non-dominated Sorting Genetic Algo-

rithm (NSGA-II) [3], Strength Pareto Evolutionary Algo-
rithm (SPEA2) [4], adaptive evolutionary algorithm [5],
etc.

• non-Pareto dominance-based, comprising e.g. MOEA/D
scalar objective function problem decomposition-based
algorithm [6], hybrid algorithms combining global and
local search [7], etc.

Many of these meta-heuristic algorithms have been devel-
oped aiming to accurately approximate complex Pareto fronts.
These algorithms performance is generally evaluated using
computationally inexpensive benchmark MOO problems and
allowing a large number of functions evaluations. However, in
many engineering fields, the simulation of the black-box model
can be computationally intensive while the computational
time budget may be limited. Under these stringent conditions
these well-established algorithms may not converge and hence
they may not provide a satisfactorily accurate and/or evenly
spread Pareto front. These computationally expensive MOO
problems with limited number of black-box model evaluations
call for the development of new algorithms with different
accuracy/speed trade-offs. In this emerging research field,
there exist only a few approaches [8], most of which rely
on Gaussian stochastic process modelling [9]–[11].

In this paper we propose a new approach for black-box
model expensive MOO problems. The approach builds, in
an iterative fashion, a MO-NLP surrogate model based on
(objectives and constraints) functions polynomial curve fitting,
taking advantage of the existing mature NLP solvers.

The interest of the proposed approach is demonstrated,
without loss of generality, for the bi-criteria (cost versus envi-
ronmental impact) optimization of drinking water production
plants. In this work the environmental impact is modeled
adopting a life cycle assessment (LCA) approach. LCA is a
standardized methodology [12] which analyzes the lifecycle
(generally from raw material extraction until the end-of-life
of the product) environmental performance of any industrial
process but without indicating per se optimal means for
reducing the environmental impact.

The extension of various industrial processes optimization
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to account for environmental impact has been extensively
explored up to now, e.g. [13], [14]. However,

• most of the previous works assume that the process can
be (approximately) modeled analytically allowing thereby
resorting to mathematical programming-based methods
such as: linear programming [15], NLP [16], MILP
[17], mixed-integer nonlinear programming [18], etc. As
will be explained later on these approaches cannot, or
are impractical to be, applied to our black-box MOO
problem.

• the LCA optimization of drinking water production plants
has received little attention up to the present date, e.g.
[19] uses the Nelder-Mead local search method for the
SO optimization of a certain environmental impact, [20]
relies on global optimizers (e.g. SPEA2 and NSGA-II) for
the bi-criteria (cost vs LCA-based environmental impact),
and [21] uses a two-step hybrid algorithm combining
NSGA-II and the local search algorithm COBYLA for
three-criteria optimization (cost vs LCA-based environ-
mental impact vs water quality).

The paper is organized as follows. Section II briefly de-
scribes the potable water production plant simulator, called
EVALEAU, formulates conceptually the MOO problem and
presents the MOO - process engineering - LCA tool. Section
III describes the proposed approach for the MOO. Section IV
provides optimization results with the approach for a realistic
model of a real-world drinking water treatment chain. Section
V concludes.

II. LCA - PROCESSENGINEERING - MULTI -OBJECTIVE

OPTIMIZATION PROBLEM

A. EVALEAU Simulator

The EVALEAU simulator is a state-of-the-art process mod-
elling - LCA tool for prospective and retrospective simulation
of drinking water treatment chains [22]. The simulator com-
prises a certain number of unit processes for water treatment
which can be combined to simulate a specific treatment
chain (see e.g. Fig. 1). The simulator was developed in the
LCA software Umbertor and is linked to the Ecoinventr

database [23] for the life cycle inventory (LCI) of background
processes. It relies on the software PHREEQC [24] for water
chemistry calculation.

B. MOO Problem Abstract Formulation

The MOO problem corresponding to a relevant operating
scenario of a potable water production plant can be abstractly
formulated as follows:

min
x1,...,xn

{

f1(x1, . . . , xn); f2(x1, . . . , xn)
}

(1)

s.t. gq(x1, . . . , xn) = 0, q = 1, . . . , ng (2)

hr(x1, . . . , xn) ≥ hr, r = 1, . . . , nh (3)

xi ≤ xi ≤ xi, i = 1, . . . , n, (4)

where:x = [x1, . . . , xn] is the vector of decision variables
(e.g. design and operational parameters of the various unit

Fig. 1: Flowchart of the potable water production plant used
in the case study.

processes of the treatment chain), the goalf1 represents the
operational cost of the water plant (e.g. costs of raw materials,
chemicals, electricity, etc.), the goalf2 models the LCA-based
environmental impact of the water production plant.

Constraints (2) describe the input-output mass flow for each
unit process in the whole chain. Constraints (3) enforce outlet
water drinkability quality, according to the best water quality
class in France [25], modeled by a set of seven major aggre-
gated parameters1. Finally, constraints (4) represent physical
bounds of the decision variables.

C. High Level Software Architecture of the LCA - Process
Engineering - Multi-Objective Optimization Tool

Note that, tackling the MOO problem (1)-(4) by means of
classical mathematical programming methods is impractical
due to several reasons, such as: the constraints (2)-(3) possess
challenging features (e.g. non-linearity, non-convexity, bi-level
as they rely on the expert program PHREEQC for simulating
chemical reactions equilibrium in some unit process, being
thereby very difficult to fully express in analytical form, large
scale size, etc.) and the evaluation of all functions involved in
optimization depends on the outcome of the simulator run.

To overcome these challenges we adopt a solution, shown
in Fig. 2, which couples the EVALEAU simulator with a
multi-goal optimizer. The optimization problem is hence de-
coupled into two manageable sub-problems which are solved
iteratively: (a) solution of equality constraints (2) obtained by
running the simulator for a given vector of control variablesx,
and (b) improvement of the MOO problem solutions by the
optimizer, which is fed with the values of functionsf1(x),
f2(x), andhr(x) just evaluated by the simulator, and returns
to the latter new promising values for decision variablesx.

1E.g. total coliforms, total trihalomethanes, total organic carbon, Es-
cherichia coli, faecal streptococci, turbidity, and conductivity.
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Fig. 2: Software architecture of the integrated tool coupling
EVALEAU simulator with a MO optimizer.
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Fig. 3: Flowchart of the proposed approach.

III. T HE PROPOSEDAPPROACH FOREXPENSIVE MOO
PROBLEMS

A. Flowchart of the Approach

Figure 3 shows the flowchart of the proposed MO-NLP
approach. The core of the approach is the way in which the
surrogate MO optimization problem is built.

The proposed approach has three main steps:

1) Curve fitting of objective functions and constraints.
2) Formulation of the MO-NLP problem approximation

relying on the functions fitting in the previous step.
3) Tackling the MO-NLP problem by theε-constraint

method described in Section III-D, which converts the
problem into a desired number of SO-NLP problems.

The method can work with any set of input points at hand.
The input points can be generated randomly, e.g. as in most
meta-heuristic algorithms, or in a pre-determined way, e.g.
as for a brute-force sensitivity computation of functions with
respect to decision variables.

Depending on the context and computational budget the
approach can be used either stand-alone or serving as input for
classical (global, hybrid, or local) meta-heuristic algorithms,
aiming to improve the accuracy/speed trade-off of the latter.
Also, the approach can be used either as a one-shot generator
of trial solutions, or, in an iterative fashion, by accumulating
points generated in previous stages until no significant im-
provement is obtained.

B. Functions Curve Fitting

The polynomial function to be fit can be expressed in the
following general form2:

f(x) = a0 +

n
∑

i=1

d
∑

k=1

aki x
k
i , (5)

where, for the polynomial to be fit,d is its degree anda0, aki ’s
are its coefficients.

Assumingt trial pointsx1, . . . ,xt and their corresponding
values

(

x
t, yt = f(xt)

)

, the coefficients of the function (5)
can be found solving the following unconstrained nonlinear
optimization problem which minimizes the weighted least
squares of the distance between the analytical function and
the real trial values:

min
a0,ak

i

χ2 =

t
∑

j=1

(

yj − a0 −
∑n

i=1

∑d

k=1
aki (x

k
i )

j

σj

)2

, (6)

whereσj is the weight associated to the trial pointj.
The value of the objectiveχ2 in (6) yields a measure of

the fit accuracy. If this value exceeds some threshold, e.g. the
simplest metric is the number of degrees of freedomt− n×
d− 1, then the curve fit is rejected.

Two chief aspects of the curve fitting procedure require
special attention:

• the a priori choice of the analytical function model to be
fit, which requires trading-off the number of required trial
points (and hence the computational burden to generate
them) and the expected approximation quality. The facts
that (i) we seek only a reasonable approximation of
functions needed by the surrogate MOO problem and
(ii) our simulator is time consuming limiting the type
of function to fit to those requiring a reasonably small
number of trial points such as: linear, quadratic, or cubic
polynomial functions, which requires to evaluate at least
n+1, 2n+1, and3n+1 trial points, respectively. Linear
functions are discarded as they may be too inaccurate
and we will focus hereafter only on quadratic and cubic
functions.

• the choice of the weightsσj ’s will also be investigated
aiming to force the curve to better fit the best solutions at
hand to the detriment of less good solutions, and hence
explore the most promising areas of the search space.

1) A Particular Case: Fitting Analytically Quadratic Poly-
nomials: An interesting particular case of curve fitting arises
if one choses to fit a quadratic polynomial function, by super-
posingn individual quadratic functions, each one expressed
as a function of a single decision variable, i.e.

f(x) =

n
∑

i=1

f(xi) =

n
∑

i=1

(a0i + a1ixi + a2ix
2

i ), (7)

2Note that fitting more complex polynomial functions may not be compu-
tationally affordable in our context. For instance, adding products of variables
xixj , i 6= j in a say quadratic polynomial function, will lead to the
evaluation of0.5(n2 − n) additional terms, whereas increasing the degree
of a polynomial leads only ton extra terms.
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and where the trial points are selected in a pre-determined way,
by using only 3 points per decision variablei which stem from
the shift of only the variablei (e.g. using minimum bound,
maximum bound, and the half of the physical range).

In these assumptions one can easily compute analytically
the3n unknown coefficients and build up the quadratic curve.

C. Formulation of the MO-NLP Problem Approximation

Once trusted functions approximation of the objectives and
constraints have been built, the bi-objective constrained MO-
NLP surrogate problem can be formulated as follows:

min
x1,...,xn

{

f1(x1, . . . , xn); f2(x1, . . . , xn)
}

(8)

s.t. f1(x1, . . . , xn) = (a0)f1 +

n
∑

i=1

d
∑

k=1

(aki )
f1xk

i (9)

f2(x1, . . . , xn) = (a0)f2 +

n
∑

i=1

d
∑

k=1

(aki )
f2xk

i (10)

f1(x1, . . . , xn) ≤ fmax

1 (11)

f2(x1, . . . , xn) ≤ fmax

2
(12)

hr(x1, . . . , xn) = (a0)hr +
n
∑

i=1

d
∑

k=1

(aki )
hrxk

i ≥ hr,

r = 1, . . . , nh, (13)

xi ≤ xi ≤ xi, i = 1, . . . , n (14)

where new notations are self-explanatory.
Note that, with respect to the original problem formulation

(1)-(4) the equality constraints (2) have been dropped as they
are satisfied whatever the combination of decision variables
values within their physical range. This fact also significantly
relieves the MO-NLP formulation.

The MO-NLP problem (8)-(14) can be converted into a
series ofm SO-NLP problems, via theε-constraint method
described in Section III-D.

Furthermore, if quadratic functions fit is chosen, the prob-
lem becomes a quadratically constrained quadratic program
(QCQP) which exhibits some computational advantages (e.g.
all second order derivatives are constant) which can be better
exploited by a solver.

D. Solution of the MO-NLP Problem by the ε-Constraint
Method

The bi-objective MO-NLP problem is tackled using theε-
constraint method [26], which, in order to generate the desired
number of solutionsm, solves a series ofm single objective
slightly modified NLP problems, according to the following
algorithm:

1) Solve the SO-NLP problemfmin

1
= min f1 subject

to (9), (10), (13), and (14). Setfmax
2 to the value of

the objectivef2 given by (10) at the solution of this
optimization problem.

2) Solve the SO-NLP problemfmin
2 = min f2 subject

to (9), (10), (13), and (14). Setfmax

1
to the value of

the objectivef1 given by (9) at the solution of this
optimization problem.

3) Assuming, without loss of generality, that the objective
f2 will be modeled as constraint3:
For l = 3, . . . ,m, do:

a) Setfmax
2 ← fmin

2 +(l− 2)(fmax
2 − fmin

2 )/(m− 1)
in constraint (12).

b) Solve the SO-NLP problemmin f1 subject to (9)-
(14).

IV. N UMERICAL RESULTS

A. Brief Description of the Case Study and Simulation Tools

The proposed optimization approach is illustrated to a real-
world model of a French potable water treatment chain.
The treatment chain of the inlet river water contains the
major unit process shown in Fig. 1 such as: pumping, two
ozonation phases, coagulation/flocculation, settling, biolite fil-
tration, granular activated carbon (GAC) filtration, and bleach
disinfection.

The simulations are run on a 2.70GHz/8GB computer. The
EVALEAU simulator runs in Umbertor5.6 environment and
is linked to the Ecoinventr v2.2 LCI database for background
processes.

The environmental impact objective function focuses only
on climate change impact category (Global Warming Potential
- GWP - factors based on 100 years-time horizon) and is com-
puted using the Midpoint ReCiPe life cycle impact assessment
method [27]. The functional unit is 1m3 of treated water while
monetary units (m.u.) stand for euro.

B. Experiments Assumptions

The numerical experiments and comparisons conducted
hereafter rely on the following assumptions:

• We consider a set of 6 decision variables.
• One requires approximating the Pareto front by 24 solu-

tions.
• As baseline for performance comparison of the proposed

approach we use the benchmark elitist global meta-
heuristic evolutionary algorithm SPEA2 [4]. The algo-
rithm is run with the default values proposed on PISA
platform [28], using a population of 24 individuals.

• Three comparison criteria4 are used:

– criterion C1: quality of approximated fronts after
(ideally) the same number of evaluations;

– criterion C2: computational effort (i.e. number of
evaluations) to reach a quasi-equivalent approxi-
mated front quality;

– criterion C3: the reduction of computational effort of
an evolutionary algorithm via the hybridization with
the proposed approach, the latter serving as an input.

3The objective that will be modeled as constraint can be selected as the
one with the largest normalized interval variation by comparing the ratios:
fmax

1
/fmin

1
and fmax

2
/fmin

2
in order to obtain a more even spread of the

Pareto front.
4Note that fronts comparison metrics (e.g. hypervolume indicator) are not

used here as the mere front visualization allows easily concluding.
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pre-determined points random points
type of curve fit

quadratic cubic quadratic cubic
t 30 78 73
p 13 19 13 19

χ2(f1) 0.01413 0.001169 0.005353 0.0003572
χ2(f2) 0.16970 0.027966 0.060445 0.0045585

TABLE I: Quality of the fit of two types of curves (quadratic
and cubic) by means of theχ2 value.
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Fig. 4: Quadratic vs cubic (curve fitting): fronts obtained with
the proposed approach, in one shot, for 30 pre-determined
input points.

• curve fitting unconstrained optimization problem (6) is
solved via the “curvefit” Python function while NLP
problem is solved by the IPOPT solver [29].

C. Choice of the Type of Curve to be Fit

Table I provides the quality of curve fitting for both goal
functions f1 and f2 according to theχ2 objective (6), for
two types of curve fit (quadratic and cubic), and two sets of
trial points (pre-determined and random). In this tablet is the
number of trial points used by the curve fitting procedure and
p the number of coefficients to be found by the curve fitting
procedure. The 30 pre-determined points are chosen in such
a way that each decision variable takes five values (minimum
bound, maximum bound, and then: a quarter, a half, and three
quarters of its physical range) while the other variables are
kept to their initial value. One can observe that according to
the curve fitting objective functionχ2, the cubic polynomial
function fits better the given datasets (as more degrees of
freedom are allowed) than the quadratic counterpart.

Figures 4 and 5 provide, for the cost vs. environmental
impact optimization, the approximations of the Pareto front
with both quadratic and cubic curves fitting and both pre-
determined and random points. The graphs in Figure 5 follow
the proposed approach, starting from the 25 random points
and iterating, accumulating newly generated points to the
existing ones, until no significant improvement in the front
approximation is obtained. Observe that, the cubic function
provides unexpectedly (according to results in Table I) poor

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

op
er

at
io

na
l c

os
t (

m
on

et
ar

y 
un

its
)

climate change - GWP100 (kg. CO2-Eq)

Pareto front
cubic fit 49 evaluations
cubic fit 73 evaluations

quadratic fit 78 evaluations

Fig. 5: Quadratic vs cubic (curve fitting): final fronts obtained
with the proposed approach, in iterative fashion, starting from
25 random points.

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.16  0.18  0.2  0.22  0.24  0.26  0.28  0.3  0.32

op
er

at
io

na
l c

os
t (

m
on

et
ar

y 
un

its
)

climate change - GWP100 (kg. CO2-Eq)

Pareto front
30 points
18 points

Fig. 6: Front approximation with quadratic fit for different
number of pre-determined input points.

quality fronts (in terms of sub-optimality and distribution of
solutions), whereas the quadratic approximation leads in our
example to much better approximations of the Pareto front.

This finding, corroborated by the fact that the larger the
polynomial degree to be fit the larger the computational effort,
suggests that, in the absence of a reasonable beforehand
guess of the real functions to be fit, one should keep the
polynomial function degree as small as possible. Consequently,
the quadratic curve fitting appears as a good candidate solution
for the trade-off between the approximation quality and the
computational effort. Furthermore, as Figure 6 shows for the
quadratic fit, adding more points does not necessarily improve
the quality of the results.

Figure 7 plots, assuming quadratic polynomial functions,
the fronts obtained with the curve fitting procedure using 25
points, and with the analytical formula (see subsection III-B1),
using 18 points (i.e. 3 points per decision variable). One can
observe that the use of the analytical approach produces in
this case slightly worse results.

Based on the results presented so far, we will proceed
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Fig. 7: Front approximation with quadratic functions fit vs
analytical fit.

hereafter assuming only quadratic curves to be fit.

D. Choice of Curve Fitting Weights

An essential aspect for improving NLP approach perfor-
mances is the choice of weights associated with thet trial
points according to the curve fitting optimization problem (6).
To this end we consider three sets of weights in (6):

• uniform weights (default) i.e.σj = 1, j = 1, . . . , t
• light weights i.e.σj = yj , j = 1, . . . , t
• heavy weights i.e.σj = (yj)2, j = 1, . . . , t

The purpose of light and heavy weights is to force the curve
fitted to stay closer (the heavier the weights the closer the fit)
to the given data, according to the objective value (i.e. the
better the objective, the closer the distance between the point
and the curve).

Let us first consider as input the set of 18 pre-determined
points obtained such that each decision variable takes three
values (minimum bound, maximum bound, and the half of
its physical range) while the other variables are kept to their
initial value.

Figure 8 shows that, given the restricted computational
budget, the fronts obtained with both light and heavy weights
lead to comparable good approximations of the Pareto front,
which are systematically better, in terms of optimality and
number of solutions provided, than the front obtained using
the default weights.

Figure 9 plots, for the sake of readability but without loss of
generality, only the non-dominated solutions obtained with the
proposed approach for the three sets of weights and starting
from 25 random points. The figure clearly shows that the fronts
obtained with both light and heavy weights outperform the
front obtained with default weights, the heavy weights leading
to slightly superior accuracy than the light weights.

These results highlight the importance of choosing weights
properly. We proceed hereafter assuming light weights only.

E. Starting from Randomly Generated Solutions

A major advantage of the proposed approach is the ability to
efficiently take advantage of a given set of (random) solutions
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Fig. 8: Impact of weights for pre-determined points.
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Fig. 9: Impact of weights for random points.

at hand. We illustrate this feature of the approach in an iterative
fashion starting from 25 points (the base case and the 24
random points generated by the SPEA2 algorithm in the initial
population).

For the sake of readability the solutions generated with the
NLP approach is limited to three iterations and are presented
in Figures 10 and 11.

Figure 10 displays the initial random points generated by
SPEA2, the Pareto front, and the first front approximation
of the MO-NLP approach. Note that, although the MO-NLP
produces initially only five different solutions instead of 24,
they are practically containing the initial random points and
are located closer to the Pareto front.

Figure 11 shows the Pareto front approximations obtained
with the NLP approach during the first three iterations. Note
that, thanks to the newly added five solutions at the first itera-
tion, in the second iteration the MO-NLP approach generates
24 distinct solutions, progressing quite well toward the Pareto
front. In the third iteration the new front produced by the
MO-NLP approach improves generally in both the optimality
and distribution spread. However, although not shown on the
figure for readability reasons, from the fourth iteration on the
front improves little emphasizing the limitation of the NLP
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Fig. 10: Approximated front for random starting solutions.
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Fig. 11: Approximated front in the first three iterations.

approach as a stand-alone technique.
In order to study the MO-NLP performance for another set

of input points, we remove the base case5 from the initial
set, and run the algorithm with only the set of 24 random
points generated by SPEA2 in the initial population. Figure
12 yields the Pareto front approximations obtained with the
NLP approach during iterations for the new set of input points.
One can observe that the NLP approach needs 103 evaluations
(distributed over five iterations) until the front approximation
starts taking an acceptable shape. Comparing Figs. 11 and 12
one can note that, using a slightly better set of input points
leads in less evaluations to a much better front approximation.
This experiment highlights the important influence of the
starting points set quality on the performances of the approach.

F. MO-NLP versus SPEA2

Figures 13 and 14 allow comparing the approximated fronts
produced by MO-NLP and SPEA2, according to criteria
C1 and C2. One can easily observe that MO-NLP clearly
outperforms SPEA2 in both cases. In particular it allows

5The base case is closer to the Pareto front than most other points from
the initial set.
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Fig. 12: Approximated front in the first five iterations for
SPEA2’ 24 input points.
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Fig. 13: MO-NLP vs. SPEA2: front approximation according
to criterion C1.

saving roughly 2.5 evaluations in order to achieve a front of
comparable quality according to criterion C2.

G. Hybrid Algorithm: MO-NLP as an Input for SPEA2

Figure 15 plots the approximated fronts obtained with both
SPEA2 algorithm, initialized with default settings (see Fig.
10), and the proposed hybrid MO-NLP-SPEA2, where MO-
NLP approach starts from the same initial population as
SPEA2 and, after performing three iterations, provides its
final population as an initial population for SPEA2. One
can remark that, after the same number of evaluations, most
solutions provided by the hybrid MO-NLP-SPEA2 belong or
are very close to the Pareto front, while the original SPEA2
algorithm solutions are still lagging behind. This example
clearly demonstrates the interest of using a hybrid algorithm,
with MO-NLP as an input for an evolutionary algorithm to
speed up the convergence of the latter.

V. CONCLUSION

This paper has proposed an approach tailored especially
for expensive black-box model multi-objective constrained
optimization problems. The approach aims to quickly provide
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Fig. 14: MO-NLP vs. SPEA2: front approximation according
to criterion C2.
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Fig. 15: SPEA2 vs hybrid MO-NLP-SPEA2: front approxima-
tion (after 240 evaluations) according to criterion C3.

a sufficiently accurate approximation of the Pareto front and
relies on an NLP surrogate model, taking thereby advantage of
powerful existing NLP solvers, which are able to solve such
proxy models with negligible computational effort compared
to a single model simulation.

Numerical results have shown that the proposed approach
outperforms a classical state-of-the-art multi-objective algo-
rithms (e.g. SPEA2) in terms of front quality approximation
with limited computational time budget.

Depending on the computational time budget, the proposed
approach can be used as stand-alone or to assist a classical
meta-heuristic algorithm serving as an input for the latter
aimed to accelerate its convergence. The proposed NLP ap-
proach is an anytime versatile technique which can take advan-
tage of the set of solutions at hand. However, its performance
crucially depends on the quality of the input points. The
conducted numerical experiments suggest that a significant
improvement can be expected if the input trial solutions are
located far from the Pareto front. On the other hand, due
to the approximations used, and similarly to the evolutionary
algorithms, if the trial solutions are located close to the Pareto

front the improvement is expectedly marginal. Therefore the
approach is suitable in early stages of the solution space
search. We plan future work to integrate the NLP approach
within a state-of-the-art metaheuristic algorithm, using it as
an independent operator.

Although the proposed method has been applied to the
bi-criteria (e.g. cost versus life cycle assessment-based envi-
ronmental impact) optimization of drinking water production
chains at planning stage, it is generic to other application fields
addressing (expensive) multi-goal optimization problems, with
regard to the problem formulation and operational context (e.g.
from operational planning until close to on-line).

Last but not least, it is worthy remarking that, as regards
the treatment of the LCA-based environmental metric within
MOO problem, the proposed approach represents an important
leap forward with respect to the state-of-the-art, since the
calculation of the objective scores is based on a fully-fledged
LCA (based on the simulation of the operational chain) and not
just on the simplified calculation of an environmental metric
(e.g. CO2-Eq) based on the link between the optimization
algorithm and an inventory table.
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for multi-objective optimization”,Proceedings of the 30th International
Conference on Machine Learning, pp. 462-470, 2013.

[12] International Organization for Standardization,Environmental Manage-
ment: Life Cycle Assessment: Principles and Framework, ISO-14040,
1997.

17



[13] L. Jacquemin, P.-Y. Pontalier, and C. Sablayrolles, “Life cycle assess-
ment (LCA) applied to the process industry: a review”,The International
Journal of Life Cycle Assessment, vol. 17, no. 8, pp. 1028-1041, 2012.

[14] C. Pieragostini, M.C. Mussati, and P. Aguirre, “On process optimization
considering LCA methodology”,Journal of Environmental Management,
vol. 96, no. 1, pp. 43-54, 2012.

[15] A. Azapagic and R. Clift, “The application of life cycle assessment to
process optimization”,Computers & Chemical Engineering, vol. 10, pp.
1509-1526, 1999.

[16] B.H. Gebreslassie, G. Guillén-Gosálbez, L. Jiménez, and D. Boer,
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