
 

 

Adaptive Multiple-Model Control of A Class of Nonlinear Systems 

Chao Yang  

The Seventh Research Division and the Department of Systems and Control, Beihang University (BUAA), 
Beijing 100191, China 

Yingmin Jia 
The Seventh Research Division and the Department of Systems and Control, Beihang University (BUAA), 

Beijing 100191, China 
E-mails: yangchao_buaa@163.com; ymjia@buaa.edu.cn 

 

 

Abstract 

In this paper, an adaptive multiple-model controller is developed for nonlinear systems in parametric-strict-feedback 
form. Unlike the previous results, a switching scheme is not required here to switch the most appropriate model into 
the controller design. The new scheme reduces the number of identification models and uses information provided by 
all the models more efficiently than previous results by using the convex combination of estimates of parameters. The 
method guarantees parameter convergence and global asymptotic stability of the closed-loop system. The global 
boundness of closed-loop signals and asymptotic convergence to zero of tracking error are proved. A simulation 
example is included to demonstrate the effectiveness of the obtained results. 
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1. Introduction 

In recent years, adaptive control has been well 
investigated1-5. It is proposed to cope with the problem 
of parametric uncertainties in systems lager than 
traditional method can handle. The typical idea of 
adaptive control is estimating unknown parameters on-
line and designing controller with the estimates as the 
real ones2. Plenty of different stable adaptive controllers 
have been designed for linear or nonlinear uncertain 
systems7-9. A distinguished problem for adaptive control 
is that transient performance of the system may include 
unacceptable large peaks, especially when there exist 
large initial estimation errors. To overcome this 
drawback and enhance the transient performance, 
adaptive control using multiple models for linear 
systems was proposed in Refs.7, 8, 10and 11. The basic 
idea of Ref.10 was running in parallel multiple models, 
and design an index of performance based on 
identification errors, so that model closest to the real 
plant can be selected by switching quickly and transient 
response can be improved. Latter, the method was 
extended to switching and tuning in Refs.12 and 13. 
Numerous of simulations and applications have 

demonstrated adaptive multiple-model control can 
enhance transient performance significantly. 

However, the methods are mainly concentrated on 
linear systems. Adaptive multiple-model control for 
nonlinear systems is initially considered in Ref.14. Then, 
adaptive multiple-model control method for nonlinear 
requiring persistence of excitation is proposed in Ref.15, 
where the unknown parameters can be calculated in the 
first place.  

In Ref.16, a sufficient condition concerning the 
parameter convergence is given by constructing a global, 
explicit strong Lyapunov function. Inspired by this, we 
develop a novel multiple model adaptive controller for a 
class of nonlinear system in parametric-strict-feedback 
form. Unlike the usual hypothesis, the restrictive 
matching conditions are not required, but the 
persistency of excitation condition is assumed. The 
control scheme employs adaptive identification models 
based on adaptive parameters from a known compact 
parameter set and a virtual identification model, of 
which the estimation parameter is both adaptive and 
resettable. The algorithm reduces the number of 
identification models by using convex combination 
method to estimate parameter even as the system is in 
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operation. Also, global asymptotic stability of the 
closed-loop system is proved. 

This paper is organized as follows. The problem 
formulation and assumptions are given in Section 2. In 
Section 3, backstepping adaptive method and the new 
adaptive multiple-model method are introduced. In 
Section 4, the closed-loop system dynamics is analyzed 
including stability and parameter convergence. Section 
5 presents a simulation which compares the proposed 
method with single model adaptive control. 

2. Problem formulation 

Consider the following nonlinear systems in 
parametric-strict-feedback form [2]: 
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Where , 1, 2...ix R i n  i s  the state of  system,

u R is the control input , pRθ is  a n  
unknown parameter vector belonging to a known comp-
act set pRS  and y R is the output. The functions 

, 1,2, ,if i i  are known smooth functions. ry R is

 the reference signal to be  tracked. We suppose th
at the full system states are available. The object 
is to improve transient performance in the presence of 
large parametric uncertainties, and meanwhile, ensure th
e stability of the closed-loop system. 

It should be noted that in the classical backstepping 
adaptive control design, transient performance can be 
improved by choosing sufficiently large high-gain 
parameters2. However, a possible shortcoming of such 
method is that the resulting control efforts may be very 
large. Another way to improve transient performance is 
using multiple identifications models. 

Before the design of adaptive multiple-model 
controller, we need necessary assumptions which are 
useful in the following analysis. 
Assumption 1(A1) There is a known positive real-

valued constant B satisfying 

{| ( ) | ,| ( ) | }r rmax y t y t B               (2) 

Assumption 2(A2) 1( ( ))rf y t satisfies the classical 

persistent excitation condition，that is，for all tR, 

there  exist positive real-valued constants μ and T such 

that  
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3. Design of adaptive multiple model controller 

3.1 Introduction of backstepping adaptive control [2] 

The standard backstepping adaptive control and 

adaptation law for parametric-strict-feedback system are 

given by 
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where 0T    is the adaptation gain matrix, ry  is 

the reference signal to be tracked and 

0,1ic i n   are constants to be designed. The 

above control design is based on the Lyapunov function 
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The time derivative of nV , computed with (5)-(10) is 
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  .This implies the 

boundness of the state ,1iz i n  and̂ , which in turn 

indicates the boundness of system state 

,1ix i n  and control u . Under the standard 

arguments of adaptive control theory, it follows that 

( ),1iz t i n  tend to zero asymptotically, and thus 

1lim ( ) lim( ( ) ( )) 0.r
t t

z t y t y t
 

   Then asymptotic 

tracking can be achieved. 
Remark:  In addition to the boundness of the 
parameter estimation, there are seldom results about 
parameter convergence. Ref.6 provides sufficient 
condition for parameter estimates convergence, but the 
condition is difficult to verify. With assumptions (2) and 
(3), Ref.16 constructs an explicit, global, strong 
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Lyapunov function, and proves parameter estimation 
convergence. See Ref.16 for more details. 

3.2 Design of adaptive multiple-model controller 
We will run in parallel (p+2) models. N (N=p+1) 

models are in the same structure but different initial 
parameter values (0), 1, 2...,j j N  . The initial values 
of (0), 1, 2...,j j N  are known and the region of 
uncertainty S of the plant parameter vector θ lies in their 
convex hull K (i.e. SK).The other one model called 
‘ virtual model ’ is designed with adaptive and 
resetting mechanism. The N models will run parallel 
and parameter estimates are evaluated online by a 
criterion function J(t).Define   

2 2

0
( ) ( ) ( )

t t
j j jJ t e t e e d             (11) 

as the criterion function for the j-th adaptive model, 

where 0, 0   are constants to be designed. Jc is the 

criterion function for virtual model. At each resetting 

time tr, if 
1{ , }, NcJ min J J   , where (0,1)  is a 

constant to be designed, reset the estimate parameter 

vector ( )e t  of virtual model by 
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Otherwise, the estimate parameters remain 
unchanged and the process repeats. An obvious problem 
is that whether the resetting is finite or infinite. In the 
following section, we will prove that only a finite 
number of resetting can occur. 

4. Stability analysis  

Theorem Suppose assumptions (2),(3) hold, and the 

adaptive multiple-model controller (4) and adaption law 

(5) in the paper are applied to system (1). Then, for all 

initial conditions only a finite number of resetting can 

occur, all closed-loop states and � , 1,2, ,j j n   are bounded, 

furthermore  asymptotic tracking is achieved ,i.e., 
lim( ( ) ( )) 0r
t

y t y t


   as t→∞. 

 
Proof.   First, we will prove that the number of 
resetting is finite. After the above analysis, we 

have ( ) [0, ), 1,2, ,j t L j n     , 

for 1,2, , , 0, [0, )ii n t      ò , such that | ( ) | ,i it t t   ò . 

Let tmax=max{t1,t2,…,tn}.  For 
,| ( ) | , 1, 2, , Nmax it t t i   ò . Based on the resetting 

mechanism, 1

( ) ( ) max{ ( ) , 1, 2,..., N} .
n

e j j j
j

t t t j   


    ò  Then the 
resetting adaptive model will estimate parameters with 
zero error. So, in the worst situation, the amount of 

resetting [ ]max
r

t
N

T
 , where T is the resetting interval, and 

[·] means the floor function. Thus finite number of 

resetting is proved. Further, after every resetting time rt , 

all adaptive models and the resetting model operate 
under respective control input and adaptation law, then 
all closed-loop state is bounded. Once

maxt t , the 

system will operate under the classical backstepping 
scheme, so we can further point out 
that lim( ( ) ( )) 0r

t
y t y t


  .This completes the whole proof. 

 

5. Simulation result 

The nonlinear system in parametric-strict-feedback 
form is as follows: 
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where [0.1,5.5]   is an unknown parameter. The 

output 1y x is to asymptotically track the reference 

signal sinry t . 

In simulation, the controller and adaptation law is 

developed as (4), (5). For all constant 1B  , (2) holds.  
For any 0 (0, )  , 

2
02

( )
t

rt
y l dl





 follows for 

all t R , then let 0 , 2T    , and (3) holds. The 
unknown parameter is 1  , 1 21.2, 1c c  , the adaptive 
gain 1  , initial state  1 2(0) (0) 0x x  ,and the initial 
estimates of parameter for classical adaptive control and 
adaptive multiple-mode control are 

1 2 3(0) 2.8, (0) 0.1, (0) 5.5, (0) 2.8        
As seen from Figure 1, the state x1 of the system is 

bounded, and asymptotic tracking is achieved. Adaptive 
multiple-model control (d) performs better than single 
model (a-c) especially when initial parameter estimation 
error is large (b and c). In Figure 2, all parameter 
estimations of θ asymptotically converge to its true 
value while the estimation in adaptive multiple-model 
control (d) is the fastest. Figure 3 illustrates 
the control input u is bounded in the two different 
control schemes.  Thus the scheme proposed in this 
paper is feasible and effective. 

 
Fig.1. Output and reference signal: (a), (b), (c) single model 
with (0) 0.1,5.5, 2.8  respectively, and (d) retting model 

with (0) 2.8   
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Fig.2. Parameter estimation: (a), (b), (c) single model 
with (0) 0.1,5.5, 2.8  , (d) retting model with (0) 2.8   

 
Fig.3. control input u: dashed line, dash-dot line and dotted 
line for single model with (0) 0.1,5.5, 2.8  , solid line for 

virtual model with (0) 2.8   

6. Conclusion 

In this paper, an adaptive multiple-model controller 

is developed for a class of nonlinear systems in 

parametric-strict-feedback form. Unlike previous 

results ， a switching scheme is not necessary to 

guarantee the model closest to the real plant to be 

switched into the controller design.  Global asymptotic 

stability of the closed-loop system, globally uniformly 

bounded of all the closed-loop signals and convergence 

of parameter estimates are proved. The simulation 

results illustrate the feasibility and effectiveness of the 

proposed method. 
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