
Load Balancing of Peer-to-Peer MMORPG Systems
with Hierarchical Area-of-Interest Management

Satoshi Fujita 1

1 Department of Information Engineering, Hiroshima University
Higashi-Hiroshima, 739-8527, Japan
E-mail: fujita@se.hiroshima-u.ac.jp

Abstract

This paper studies the load balancing problem in distributed systems designed for massively multiplayer
online role-playing games (MMORPGs). More concretely, we consider a distributed system of master-
worker type in which each worker is associated with a particular region in the game field, and propose a
scheme to balance the load of workers as much as possible. The basic idea of the proposed scheme is to
dynamically adjust the number of workers associated with each region according to the number of players
in the region. The performance of the scheme is evaluated by simulation. The simulation results indicate
that it reduces the response time of a previous scheme proposed by Yu et al. by about 50%, which varies
depending on the mobility pattern of the players.

Keywords: Load balancing, master-worker model, MMORPG, area-of-interest.

1. Introduction

In recent years, online video games such as Fi-
nal Fantasy XI∗and EverQuest†have attracted many
game users. For example, it is reported that the
number of active users of Final Fantasy XI reaches
one million in 2014‡. These MMORPGs (massively
multiplayer online role-playing games) easily cause
a bottleneck at the servers since in these games,
a huge number of players interact with each other
within a virtual space in realtime. To overcome
such a crucial issue, MMORPGs supported by the
Peer-to-Peer (P2P) technology have been proposed
in the literature1,3,5,6,11. In this paper, we focus
on the management of the information on players

in such P2P MMORPGs. In particular, we con-
sider the distributed execution of the area-of-interest
management2,8 (AOIM, of short) in P2P environ-
ments.

AOIM is a technique to reduce the management
cost of the game server by restricting the field of vi-
sion of each player (see Figure 1 for illustration).
Such a restricted vision field is referred to as the AOI
of the player and it generally has a “circular” shape
centered at the player. The goal of AOIM is to con-
tinuously, selectively notifies game events occurred
in the AOI to each player (examples of game events
include the movement in the field and the conversa-
tion with other players). Since players move as the
game proceeds, the system should trace the position

∗http://www.playonline.com/ff11/index.shtml
†https://www.everquest.com/
‡http://www.hd.square-enix.com/eng/pdf/ar 2014 01en.pdf

International Journal of Networked and Distributed Computing, Vol. 3, No. 3 (August 2015), 177-184

Published by Atlantis Press
Copyright: the authors

177

S. Fujita

of all players to update their AOI, i.e., the set of play-
ers contained in the AOI, as well as the tracking of
game events related to these players. In order to re-
alize such a management task in a P2P environment
with no centralized control, we need to carefully de-
sign the way of notifying such events to the players,
i.e., who and when notifies the events to the players.

Player D!

Player A!
Player C!

Player B!

Area-of-Interest of Player A!

Fig. 1. Area-of-interest of Player A (Players B and C are
visible from Player A, but Player D is not).

In this paper, we propose a scheme to realize
a quick update of the AOI of players participating
in P2P MMORPGs. Our scheme is an improve-
ment of the scheme called MOPAR proposed by Yu
et al.10. As will be described later, MOPAR stati-
cally partitions the given game field into several sub-
fields called cells and delegates a part of the manage-
ment task to a peer selected from peers associated to
the cell. The selected peer is called the master of
the cell, and updates the AOI of players in the cell
through the communication with masters managing
adjacent cells. With such an approach, we could ef-
fectively delegate a part of the task of the server to
the participants. However, in the original protocol
proposed by Yu et al., the number of masters in each
cell is fixed to (at most) one, which causes a heavy
load if many players concentrate in a specific cell.
Such a heavy load of the master increases the re-
sponse time of the updates, which degrades the com-
fortability of the resulting game environment. The
basic idea of our scheme is to dynamically adjust
the number of masters in each cell using a threshold-
based merge-and-split mechanism. Here, in con-
ducting a splitting, we need to avoid a discontinu-
ous change of the AOI such that many players sud-
denly appears or disappears. In the following, we
propose several techniques to resolve such issues.
The performance of the proposed scheme is evalu-
ated by simulation. The simulation results indicate

that the proposed scheme reduces the response time
of the previous scheme by about 50%, which varies
depending on the mobility pattern of the players.

The remainder of this paper is organized as fol-
lows. Section 2 describes preliminaries. Section 3
describes the proposed scheme. Section 4 shows the
simulation results. Finally, Section 5 concludes the
paper with future work.

2. Preliminaries

2.1. Model of P2P System

Consider a distributed system consisting of a central
server S and a set of peers P, where each peer in P is
identified with a player in the game field. The server
S plays the following two roles:

• Authentication server which securely manages the
charging information such as: 1) the purchase of
items and 2) the skill and the level of each player.

• Management server which maintains the set of
peers P with their attributes. It does not keep the
dynamic information such as game events and the
position of players in the game field.

Player in the game field

Cell

Area of interest

Fig. 2. Game field partitioned into hexagonal cells (yellow
circle means a player corresponding to an ordinary peer and
red circle means a player corresponding to a master).

The game field is partitioned into hexagonal cells as
shown in Figure 2, where the size of cells can be in-
dependent of the AOI of players. Let R = {R1,R2,
. . . ,Rn} be the resulting set of cells. At each point
in time, each player in P exists in a cell in R. Let Pi
be a variable representing the set of peers existing in
Ri.

Published by Atlantis Press
Copyright: the authors

178

Load Balancing of Peer-to-Peer MMORPG Systems

Server S
(Authentication
+Management)!

Peers associated
with a cell!

Periodic communication
with adjacent masters!

Periodic communication
with corresponding master!

Fig. 3. Communication among peers in the P2P model used
in MOPAR (peers with red circle represent masters).

Player in the game field

Master

Fig. 4. Communication with masters of adjacent cells.

2.2. Management of Dynamic Information

For each i with Pi ̸= /0, the server S selects a peer in
Pi according to an appropriate rule and promotes it
as the master of cell Ri.

The master of cell Ri maintains the information
on all peers existing in Ri, such as ID, current posi-
tion in Ri and IP address, where the position of each
player is periodically collected to the corresponding
master. The collected information is selectively no-
tified to the relevant peers. More concretely, upon
detecting that a player v enters the AOI of player
u existing in Ri, the master of Ri notifies the fact
to u with the IP address of v so that u can start the
direct communication with v which will (automati-
cally) terminate when the counterpart of communi-
cation leaves the AOI. See Figure 3 for illustration.
The change of AOI of players is detected by com-
municating with the masters of adjacent cells; i.e.,

it could be accurately acquired even if the AOI of
a peer intersects with more than one cell as shown
in Figure 2. Figure 4 shows the communication be-
tween adjacent masters. Note that we can bound the
number of adjacent masters to be communicated by
three, if the size of cells is sufficiently large com-
pared with the size of AOI.

In MMORPGs, each player walks around the
game field to meet other players or to clear spe-
cific missions. This causes a frequent crossing of
the boundary of adjacent cells. To correctly reflect
such a behavior of players to the set of masters, in
MOPAR10, player u conducts the following opera-
tions before leaving cell Ri

• If u is the master of Ri, it selects a random peer v
in Pi −{u} and hands over the role of master to v
(such a selection is not conducted if |Pi|= 1).

• Otherwise, it simply removes the information on
u from the master of Ri.

On the other hand, it conducts the following opera-
tions before entering cell R j

• If Pj ̸= /0, then u enters R j by sending its ID and
IP address to the master of R j.

• Otherwise, it simply becomes the master of R j.

Note that the master of each cell can be identified by
referring to the server S (in MOPAR, such a behavior
is realized by using the lookup to the Pastry9).

2.3. Model of Peers

Peers are modeled as follows (for simplicity, we as-
sume that the server S has a sufficiently high capa-
bility so that it can complete any computation and
communication within a unit time). In a unit time,
each peer executes the following sequence of opera-
tions:

• Receive messages from the input buffer;
• Conduct necessary computation; and
• Send messages to other peers.

Sent messages are delivered to the buffer of receivers
within a constant time; i.e., we omit the effect of
message routing and congestion avoidance. Each

Published by Atlantis Press
Copyright: the authors

179

S. Fujita

receiver receives a constant number of messages in
a unit time, while the size of buffer is not limited
to avoid overflow. Unreceived messages should be
processed in the next cycle.

3. Proposed Method

3.1. Classification of Game Events

At first, we classify game events into three types:

1. Type-A: Events which occur at a specific
point in the field, e.g., shopping at a market
and boss fight at a specific place (e.g., dun-
geon or bridge).

2. Type-B: Interaction with other players, e.g.,
conversation and fight, which can start after
receiving the IP address on the corresponding
peer.

3. Type-C: Change of AOI, e.g., the entering
and the leave of a player.

The objective of the proposed scheme is to support
Type-C events, where in the following, we assume
that Type-A events are handled by the server S and
Type-B events are realized by the local communi-
cation between peers. The reader should note that
the support of Type-C events is crucial to realize an
attractive online video game since the precise recog-
nition of AOI is a key issue to conduct a timely in-
teraction with nearby players.

3.2. Load Balancing Scheme

In MOPAR, the number of messages handled by the
master of cell Ri is proportional to |Pi| and the load
of the master is proportional to |Pi|2 since it needs to
calculate the distance for all pairs of the players. Un-
der the model of P2P systems described in Section
2, such a load of masters directly affects the update
time of AOI. The key idea of the proposed scheme
is to dynamically adjust the number of peers man-
aged by each master. More concretely, we associate
several peers (masters) to each cell and each master
associated with cell Ri manages a subset of Pi.

(a) Split of subset! (b) Merge of subsets!

Peers associate
with the same cell!

Information on
managed peers!

Information on
managed peers!

Fig. 5. Split and merge operations.

Let U(u) denote the set of peers managed by
master u. Set U(u) dynamically changes by con-
ducting split and merge operations triggered by two
thresholds TU and TL. More concretely,

• if |U(u)|> TU , u equally partitions U(u) into two
subsets and hands over one subset to a new mas-
ter v which is randomly selected from U(u) (see
Figure 5 (a) for illustration).

• if |U(u)|< TL, then after identifying other master
v associated with the same cell Ri (if any), u asks
v to merge U(u) and U(v) into a single set (see
Figure 5 (b) for illustration).

If |U(u)∩U(v)| > TU , then the resulting set is split
into two halves again, so that the number of peers
managed by each master is always within the range
of [TL,TU]. In order to avoid unnecessary fluctua-
tion, we fix two thresholds to satisfy relation 2TL <
TU , e.g., TU = 3×TL. Recall that the list of masters
is maintained by the server S and is updated appro-
priately.

By applying split and merge operations, the num-
ber of “observable” peers in the AOI changes as fol-
lows§:

• A split reduces the number of peers to a half,
while it is still large enough since the size after
the split is at least TL.

• The number of peers increases by a merge, but it
is not too large since the size of the set after the
merge (and a subsequent split) is at most TU .

§The reader should note that once the IP address of a peer such as the partner in a party is known, it can communicate with the peer even
after being disappeared from the AOI due to split operation.

Published by Atlantis Press
Copyright: the authors

180

Load Balancing of Peer-to-Peer MMORPG Systems

3.3. Splitting Algorithms

This paper proposes three splitting algorithms. The
first algorithm splits the given subset U(u) by the
peer ID, the second algorithm splits U(u) in a ran-
dom manner and the third algorithm splits U(u) so
that pairs of peers which have recently interacted be-
long to the same subset as much as possible.

3.3.1. ID-based splitting

In the first algorithm, which will be referred to as the
ID-based splitting, the master u simply divides U(u)
into two halves after sorting it in a non-decreasing
order of the peer ID. If peer IDs are given in the or-
der of participation, it naturally realizes a situation
in which two peers which start the game almost at
the same time will be visible with each other even
when the game field becomes congested.

3.3.2. Randomized Splitting

In the second algorithm, the master u randomly se-
lects |U(u)|/2 peers from set U(u) and separates
them as a new subset. In other words, for each peer
in U(u), a half of peers in the AOI disappear after
splitting, independent of the participation order and
the frequency of interaction.

3.3.3. Cut-Based Splitting

The third algorithm is based on the bipartition of a
player interaction graph (PIG, for short) represent-
ing the interaction between players. PIG for the
master u has vertex set U(u) and an edge set E(u)
so that two vertices are connected by an edge if and
only if their corresponding players have interacted
within the past τ time units (note that u can con-
struct such a graph by collecting all game events
from players in U(u)). The graph bipartition prob-
lem is the problem of partitioning the vertex set so
that the size of each subset is (almost) equal and
the number of edges connecting two subsets is the
smallest. Although the graph bipartition problem
is NP-hard, there are several efficient local search
algorithms such as Kernighan-Lin (KL) algorithm4

which solve the problem in a heuristic manner. In

the proposed scheme, we use the KL algorithm to
realize a split of U(u) in a heuristic manner.

3.4. Efficient Communication with Adjacent
Cells

In MOPAR, the master of cell Ri periodically ex-
changes the position of players in Pi with masters
of adjacent cells so that the AOI of each player is
correctly updated. In the proposed scheme, we as-
sociate several masters for each cell and the number
of masters associated with Ri increases as the num-
ber of players in Pi increases. This means that we
need to take care of the tradeoff between traffic and
the freshness of the update of AOI.

Super-master!

Adjacent cell! Adjacent cell!

(ordinary) master!

Fig. 6. Proposed hierarchical P2P architecture (ordinary
master is marked with red circle and sups-master is marked
with orange circle).

Let Mi be the set of masters associated with cell
Ri (note that Mi ̸= /0 as long as Pi ̸= /0). In the pro-
posed scheme, we promote arbitrary peer in Mi as
the super-master and use it as a “contact point” for
the communication with adjacent cells, to keep the
load of each master sufficiently low. Figure 6 illus-
trates an overview of the proposed hierarchical P2P
architecture, where ordinary master is marked with
red circle and super-master is marked with orange
circle. Let s(u) denote the super-master associate
with master u. The concrete procedure for the com-
munication in the proposed hierarchical architecture
is as follows:

Step 1: u periodically notifies the list of current
positions of the players in U(u) to super-master s(u).

Published by Atlantis Press
Copyright: the authors

181

S. Fujita

Step 2: s(u) combines messages received from
the associated masters including itself into a single
message and periodically exchanges it with super-
masters of adjacent cells (note that s(u) does not
“manage” other masters in the same cell, i.e., it sim-
ply acts as a contact point to adjacent cells).

Step 3: Upon receiving a combined message
from adjacent super-masters, s(u) forwards it to all
masters associated with it. With such a scheme, ev-
ery master can acquire the information on adjacent
cells without directly communicating with the cor-
responding masters.

Step 4: After receiving the combined message,
each master u updates the AOI of the players in
U(u), and notifies the update to the corresponding
players, if necessary. If the number of peers in an
adjacent cell exceeds a certain threshold, u conducts
such a calculation merely on players which are close
to the boundary of the cell associated with u.

The effectiveness of the above notification
scheme is summarized as follows:

• By delegating the role of communication to the
super-master, the load of ordinary masters re-
duces;

• By combining messages received from several
masters into a single message, the load of super-
master also reduces while it causes a delay in the
notification to adjacent cells; and

• By limiting the number of players managed by
each master by TU and by limiting the number of
visible peers in adjacent cells by a constant, the
load of masters concerned with AOI management
reduces.

Finally, to reduce the load of masters concerned
with the management of players across boundaries,
the proposed scheme conducts a lazy judgement de-
scribed as follows. When a player v enters cell R j,
it selects a master u associated with R j according
to the rule described in Section 3.3 and becomes a
“tentative” member of subset U(u). It then becomes
a “normal” member if it arrives at an inside point of
R j at distance δ from the boundary.

4. Evaluation

4.1. Setup

The performance of the proposed scheme is evalu-
ated by simulation using PeerSim7. In the simula-
tion, we measure the response time of masters con-
cerned with the change of AOI; i.e., Type C events
in Section 3.1. The number of players is fixed in the
range from 100 to 700 and the game field is divided
into 10×10 hexagonal cells, where we assume that
the game field is topologically equivalent to the sur-
face of a ball. The length of each side of the hexagon
is 100 unit length and the AOI of each player is a cir-
cle of radius 50 unit length. In a unit time, each peer
conducts the following sequential steps:

1. Move to a point in the game field according to
the mobility rules described in Section 4.2;

2. Receive (at most) 50 messages in the input
buffer;

3. Conduct necessary computation; and

4. Send messages to other players.

More concretely, in Step (4), each peer notifies its
current position to all players in its AOI and the cor-
responding master. In addition to that, peers pro-
moted as a master or a super-master periodically is-
sues combined messages as was described in Section
3.4. Parameters used in the experiments are summa-
rized in Table 7.

Fig. 7. Parameters.

Parameter value
Number of players 100 to 700

Game field 10×10 hexagonal cells
Cell Hexagon with side length 100

Area-of-Interest Circle of radius 50
(TU ,TL) (12,5)

α 0, 50, 100

4.2. Mobility Patterns

As for the model of mobility of players, we consider
two mobility modes called Random and Straight.

Published by Atlantis Press
Copyright: the authors

182

Load Balancing of Peer-to-Peer MMORPG Systems

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200 300 400 500 600 700

A
v
e
ra

g
e
 u

p
d
a
te

 d
e
la

y
 [

ti
m

e
 u

n
it
s]

Number of peers

MOPAR

Proposed

(a) α = 100 [%].

0

1

2

3

4

5

6

7

8

100 200 300 400 500 600 700

A
v
e
ra

g
e
 u

p
d
a
te

 d
e
la

y
 [

ti
m

e
 u

n
it
s]

Number of peers

MOPAR

Proposed

(b) α = 50 [%].
—

0

5

10

15

20

25

100 200 300 400 500 600 700

A
v
e
ra

g
e
 u

p
d
a
te

 d
e
la

y

Number of peers

MOPAR

Proposed

(c) α = 0 [%].

Fig. 8. Result of simulations.

In Random, each player conducts random walk.
More concretely, in each step, each player follows
the movement in the last step with probability 90%
and with probability 10%, it moves to a point at dis-

tance at most two [unit length] in a random direction.
In Straight, each player moves to a specific cell from
the initial (random) position with a speed of at most
two [unit length per unit time] and after reaching the
target cell, it conduct a random walk within the cell
until the end of simulation.

In the experiments, we assume that α [%] of
peers follow Random and 100−α [%] peers follow
Straight provided that the initial configuration of the
peers is randomly given.

4.3. Result

Figure 8 summarizes the simulation results. When
α = 100, the proposed scheme exhibits almost the
same performance with MOPAR for small number
of peers, since it does not cause the split of subsets.
However, as the number of peers increases, it re-
duces the response time of MOPAR by about 40%
on average. When α = 0, on the other hand, the
proposed scheme significantly improves MOPAR,
which is apparently due to the concentration of play-
ers to a specific cell. In fact, such a concentration de-
grades the performance of MOPAR and the split of
the subset associated with the target cell effectively
reduces the average response time. More specif-
ically, the response time of the proposed scheme
is bounded by seven [time units] regardless of the
number of peers, and it improves the response time
of MOPAR by 70% when the number of peers is
700. Similar phenomena could be observed for
α = 50. Although the amount of reduction is smaller
than the case of α = 0, it reduces the response time
of MOPAR by about 60% on average.

5. Concluding Remarks

In this paper, we propose a threshold-based load
balancing scheme for the distributed AOI manage-
ment in P2P MMPOPGs. The proposed scheme is
designed for three-tier P2Ps consisting of ordinary
peers, masters and super-masters, and the split of a
subset of peers is conducted by solving the graph
bipartition problem using KL algorithm. Simula-
tion results indicate that the proposed load balanc-
ing scheme reduces the response time of MOPAR
by about 50%.

Published by Atlantis Press
Copyright: the authors

183

S. Fujita

A future work is to conduct extensive simula-
tions to evaluate: 1) the continuity of the change of
AOI due to split-and-merge operations; 2) the im-
pact of two thresholds to the performance; and 3)
the response time of the proposed scheme in actual
distributed environment. Another issue is to enhance
the churn tolerance of the proposed scheme.

References

1. E. Carlini, L. Ricci and M. Coppola. “Reducing
server load in MMOG via P2P gossip.” In Proc. 11th
NetGames, 2012, pages 1–2.

2. S.-Y. Hu, J.-F. Chen and T.-H. Chen. “VON: A Scal-
able Network for Virtual Environments,” IEEE Net-
work, 20(4): 22–31, 2006.

3. T. Iimura, H. Hazeyama and Y. Kadobayashi. “Zoned
federation of game servers: A peer-to-peer approach
to scalable multi-player online games.” In Proc. the
3rd ACM NetGames, 2004, pages 116–120.

4. B. W. Kernighan and S. Lin. “An efficient heuristic
procedure for partitioning graphs.” Bell Systems Tech-
nical Journal, 49(2): 291-307, 1970.

5. B. Knutsson, H. Lu, W. Xu and B. Hopkins. “Peer-
to-peer support for massively multiplayer games.” In
Proc. IEEE INFOCOM, Vol. 1, 2004.

6. M. Merabti and A. El Rhalibi. “Peer-to-peer architec-
ture and protocol for a massively multiplayer online
game.” In Proc. IEEE GlobeCom Workshops, 2004,
pages 519–528.

7. A. Montresor and M. Jelasity. “Peersim: A Scalable
P2P simulator.” In Proc. of the 9th Int. Conf. on Peer-
to-Peer (P2P’ 09), 2009, pages 99–100.

8. A. El Rhalibi and M. Merabiti. “Interest management
and scalability issues in P2P MMOG.” In Proc. the
3rd IEEE Consumer Communications and Network-
ing Conf., 2006, pages 1188–1192.

9. A. Rowstron and P. Druschel. “Pastry: Scalable, dis-
tributed object location and routing for large scale
peer-to-peer systems.” In Proc. of IFIP/ACM Middle-
ware, 2001, pages 329–350.

10. A. Yu and S. T. Vuong. “MOPAR: A mobile peer-to-
peer overlay architecture for interest management of
massively multiplayer online games,” Proc. of NOSS-
DAV , 2005, pages 99–104.

11. A. Yu and S. T. Vuong. “A DHT-based hierarchical
overlay for Peer-to-Peer MMOGs over MANETs.” In
Proc. 7th IWCMC, 2011, pages 1475–1480.

Published by Atlantis Press
Copyright: the authors

184

