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Abstract 

In order to make the dynamic characteristic simulation of  the ordinary and planetary gears drive more accurate and 
more efficient , a generalized dynamic model of geared system is established including internal and external mesh 
gears in this paper. It is used to build a mathematical model, which achieves the auto judgment of the gear mesh 
state. We  do not need to concern about active or passive gears any more, and the complicated power flow analysis 
can be avoided. With the numerical integration computation, the axis orbits diagram and dynamic gear mesh force 
characteristic are acquired and the results show that the dynamic response of translational displacement is greater 
when contacting line direction change is considered, and with the quickly change of direction of contacting line, the 
amplitude of mesh force would be increased, which easily causes the damage to the gear tooth. Moreover, 
compared with ordinary gear, dynamic responses of planetary gear would be affected greater by the gear backlash. 
Simulation results show the effectiveness of the generalized dynamic model and the mathematical model.  

Keywords: geared system; the direction of contacting line; the variation of contacting line; generalized model; gear 
mesh force；axis orbits diagram.
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1. Introduction 

At present， it’s a global challenge for human to 
improve traffic safety and reduce traffic accidents. The 
traffic accident is associated with the road 
environment,the state of the driver,and the condition of 
the vehicle[1-2]. Vehicle as the carrier of  traffic safety，
its status directly determines the safety of driver and 

pedestrian. Geared systems are the most widely used 
power and motion transmission devices in various 
machines and mechanical equipments, whose mechanical 
behavior and performance have a critical impact on the 
entire machine[1-2]. With the increased demand for high 
speed machinery, mathematical modeling and dynamic 
analysis of gear drives gained importance[3].Therefore, 
the geared system dynamics has been widely concerned 
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over the past century, a lot of in-depth analyses and 
studies have made a considerable progress, and formed a 
complete theoretical system. 

The vibration of geared system has been studied by 
many researchers (for example, see [4-17]). Daniel 
R.Kiracofe and Robert G.Parker extends previous 
analytical models of simple, single-stage planetary gears 
to compound,multi-stage planetary gears.This model is 
then used to investigate the structured vibration mode and 
natural frequency properties of compound planetary gears 
of general description,including those with equally 
spaced planets and diametrically opposed planet 
pairs[6].Miroslav Byrtus and Vladimir Zeman presents an 
original method of the mathematical modeling of gear 
drive nonlinear vibrations using modal synthesis method 
with degrees of freedom number reduction[3].Chen Siyu 
and Tang Jinyuan investigated the effects of the friction 
and backlash on the muti-degree of freedom nonlinear 
dynamic gear transmission system.The differernce 
between the constant backlash and the ddynamic 
backlash models is also discussed[8].Cai-Wan and Chang-
Jian performs a systematic analysis of the dynamic 
behavior of a gear-bearing system with nonlinear 
suspension,nonlinear oil-film force,and nonlinear gear 
mesh force.The dynamic orbits of the system are 
observed using bifurcation diagrams plotted with both the 
dimensionless unbalance coefficient and the 
dimensionless rotational speed ratio as control 
parameters[9]. 

It is known that different simulation conditions 
determine the different directions and amplitudes of mesh 
forces. So it is generally requisite to complete the power 
flow analysis in order to determine the direction and 
formula of mesh force under a steady condition before 
dynamic modeling for a geared system. M Inalpolat and 
A Kahraman put forward the flowchart of the automatic 
transmission planetary gear dynamic modeling 
methodology which combined four different models[2] 
and the power flow analysis after kinematic analysis is 
necessary for geared system dynamic modeling in their 
researches. 

In previous studies of gear dynamic modeling, the 
directions of gear mesh forces were always assumed 
unchanged under a steady condition, but during the actual 
gear meshing process, the direction of gear mesh force is 
more likely to change due to the vibration of gears. In this 
paper, firstly we define the gear mesh direction angle for 

determining the variation and direction of contacting line 
of internal mesh and external mesh gears. Secondly, a 
generalized calculation formula is proposed to determine 
the variation of the contacting line, which can be 
appropriate for not only external mesh gears but also 
internal mesh gears. And a calculation formula of mesh 
force can be derived, which involves the direction and 
amplitude of the mesh force. Therefore the complicated 
power flow analysis is avoided, especially for complex 
geared systems including planetary gears. Thirdly, a 
generalized dynamic model of geared system is 
established, and it is possible to build a mathematical 
model which do not need to distinguish active gears from 
passive gears. Thus a complex geared system model can 
be built with the generalized model. 

2. Modeling Theory 

A generalized geared system dynamic model will be 
proposed in this section. Lagrange theorem and 
D'alembert's principle are basic methods for building 
lumped mass dynamic models of geared systems. It is 
known that the model can be obtained by Lagrange 
theorem, which only needs a clear kinetic energy 
expression and a potential energy expression. In addition, 
it is necessary to finish the detailed mechanical analysis 
of nodes with D'alembert's principle for building a geared 
system model. D'alembert's principle is used to establish 
the generalized model in this paper. The flowchart of 
geared system dynamic modeling with generalized model 
is shown in Fig.1. This methodology combines as 
follows. 
(i) A kinematics formulation to compute the initial 

speeds and initial positions of the mesh gears，
which will be used as the initial values during a 
numerical simulation. 

(ii) Generalized models of typical parts which are  
corresponding  with nodes of the geared system 
model without power flow analysis.  

(iii) A complex geared system model based on these 
models of typical parts.  

(iv) Then the natural characteristic and dynamic response 
of a complex geared system can be achieved in the 
simulation. 
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Fig.1. Flowchart of modeling for a geared system with a 
generalized dynamic model 

2.1. Variation and direction of the contacting line 

It is known that the contacting line is defined as 
common tangent of two mesh gears. If two gears are 
external mesh gear, the contacting line is inner common 
tangent, such as line AB shown in Fig.2(a), if one of two 
gears is internal mesh gear, the contacting line is external 
common tangent, such as line AB shown in Fig.2(b). The 
dotted arcs present base circles of gears in Fig.2, and line 
AB is one of contacting lines. The position of the 
contacting lines indicates the direction of the mesh force, 
which determines the calculation formula of dynamic 
responses in translational directions. 

In the following dynamic modeling research of 
geared systems, the gear mesh model uses a simplified 
representation by considering a linear spring along the 
contacting line of gears as shown in Fig.3(a). Firstly, 
determine the contacting line direction or position, then 
make the projection of the translational and torsional 
displacement on the contacting line to get the variation of 
the contacting line, and finally, the mesh force formula 
can be derived by multiplying the variation of contacting 
line with the mesh stiffness. So, the actual dynamics of 
geared system is strongly affected by correct description 
of the variation and direction of contacting line, 
especially for bending-torsional coupled vibration 
analysis. It is very necessary to study the variation and 
direction of the contacting line. 
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Fig. 2. Mesh line of external mesh gears and internal mesh gears 
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Fig. 3.  Analysis of contacting line 

Both the ordinary geared system and planetary geared 
system are widely used in many applications due to their 
advantages, such as high power density and large 
reduction in a volume. The ordinary geared system can be 
considered as a special form of a planetary geared system 
when the planet carrier is fixed. So we can take the planet 
carrier as a reference part for planetary geared system, 
just like taking the earth as reference for ordinary geared 
system . In order to build a generalized model, absolute 
Cartesian coordinates are introduced for each part. For 
planetary gear, the origin of coordinate will be set on the 
planet carrier geometric center, while the origin of 
coordinate will be set on their geometric centers for the 
sun gear, the ring gear and the planet carrier, which are 
also suitable for ordinary gears. Take the planetary gear 
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as an example shown in Fig.3(a), both external mesh 
gears and internal mesh gears involved in this system. In 
order to make a detailed analysis of contacting line, the 
planetary gear is abstracted into two parts as shown in 
Fig.3(b) and Fig.3(c). O1 represents the sun gear and O2 
represents the planetary gear, while the dotted arc 
represents the planet carrier. AB and A B  are two 
possible locations of contacting line as shown in Fig.3(b). 
First, take O1 as the origin of the Cartesian coordinates to 
establish  1 1 1, ,x y  ,  2 2 2, ,x y  and  , ,c c cx y  ,which 
indicate the translational and rotational displacement of 
two meshed gear and the planet carrier, then transfer the 
rotational and translational displacement to the direction 
of the contacting line in Fig.3(b). After analysis of the 
variance of contacting lines both at AB and 
A B  direction, the formula of the contacting line 

variation for the external mesh gear can be derived as  

 
 

 
    
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   (2) 

Where 1 ， 2  represent the contacting line variations 
of gear 1 and gear 2 ；  1 2 1 2, ,, , ,c cx x x y y y  are the 
translational displacements; 1 2 c  ， ，  are the rotational 
displacements; 1 is introduced as the initial angle from 
x-axis to vector 1 2O O


, 2 is introduced as the initial angle 

from x-axis to vector 2 1O O


, and 2 1    ; 1 2,R R are 
the base circle radius; 1 2,r rR R are the radius from 
geometric centers of two gears to geometric centers of 
planet carriers; 1 2,  are the initial phases of two gears; E 
is the static transmission error which can be used to 
model the excitation due to profile modifications and 
manufacture errors; 1 2,  are defined as the direction 
angles of contacting line, whose absolute values are equal 
to the pressure angles of mesh gears. 

   1 1 2 2[ ] 1 2i c csign R R i           、     (3) 

Where is the pressure angle of the mesh gear, which 
is generally equal to 20 . 

As shown in Fig.3(c), O1 represents the planetary gear 
and O2  represents the ring gear , while the dotted arc 
represents the planet carrier, AB and A B  are two 
possible locations of contacting line for internal mesh 
gear. Take O2 as the origin of the Cartesian coordinates to 
establish  1 1 1, ,x y  ,  2 2 2, ,x y  and  , ,c c cx y  ,which 
indicate the translational and rotational displacement of 
two meshed gear and the planet carrier,then transfer 
rotational and translational displacement to the direction 
of the contacting line in Fig.3(c). Similarly, the formula 
of the contacting line variation for the internal mesh gears 
can be derived as 

 
 
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 (4) 
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    (5) 

where 1 2,  are defined as the direction angles of 
contacting line whose absolute values are individually 
equal to the pressure angles of mesh gears 

   1 1 2 2[ ] 1 2i c csign R R i           ，    (6) 

A generalized formula for describing the variation of 
contacting line is derived from Eqs (1)-(6), which is 
suitable for both the external mesh gear and the internal 
mesh gear 
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   (7) 

Where i  represents the variation of contacting line, 
which is suitable for both external mesh gear and internal 
mesh gear; ,i j c i j cx x x y y y， ， ， ， are the translational 
displacements; i j c  ， ，  are the rotational 
displacements; i is introduced as the initial angle from 
x-axis to vector i jO O


, j is introduced as the initial angle 

from x-axis to vector j iO O


, and j i    ; ,i jR R are 

the base circle radius; ,ri rjR R are the radius from the 
geometric centers of two gears to the centers of planet 
carriers ; ,i j  are the initial phases of two gears; E is the 
static transmission error which can be used to model 
excitation due to the profile modifications and the 
manufacture errors; i  is introduced to distinguish the 
gear mesh types, if gear i is an external mesh gear then 

1i  , else if gear i is an internal mesh gear then 
1i   ; i is defined as the direction angle of contacting 

line whose absolute value is equal to the pressure angle of 
mesh gears 

[ ( ) ( ) ( ) ( )]i i i i c j j j csign sign R sign R               (8) 

An ordinary geared system can be seen as a special 
form of a planetary geared system when the planet carrier 
is fixed. So for an ordinary geared system, Eqs. (7) can be 
simplified as 

   
   

( )[ sin

cos ( )

( ) ]

i j i j i i i

j i i i i i i
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    (9) 

[ ( ) ( ) ]i i i i j j jsign sign R sign R            (10) 

2.2. Establishment of the generalized model 

It is necessary to make the detailed mechanical 
analysis of nodes with D'alembert's principle to establish 
the generalized model of a geared system. For a node 
with bending-torsional coupled degrees of freedom, the 
loads acted on the node can be as the inertial force, the 
inertia moment, the elastic bending force and elastic 
torsional torque of the shaft, the bearing reaction force, 
the gear mesh force, external forces and moments, etc. A 
detailed mechanical analysis is shown in the following 
section. 

2.2.1.  Inertial force and inertia moment 

 2 sin( )
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 

   

Where axF ,
 ayF are the inertial forces in x and y 

directions， aT is the inertial moment in the torsional 
direction；m is the mass of the node, J is the polar mass 
moment of inertia, and e is the eccentricity of the node, 
acx, acy are the centroid accelerations in x and y directions, 

i i 、  are the torsional displacement and torsional 
acceleration, i is the initial angle of eccentricity. 

2.2.2.  Elastic bending force and torque of shaft 
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

 

Where sxF , syF  are the elastic bending forces of shaft 
in x and y directions， sT is the torque caused by the 
elastic bending force of shaft. 1 2[ , , , , ]T

l nX x x x x   is 
x displacement vector, as the shaft is discrete into n 
nodes, 1 2[ , , , , ]T

l nY y y y y   is y displacement vector, 
i is the node number of one part, while l is the arrange 
number of node i on shaft. X , Y are the derivatives 
of X andY . i is the torsional displacement of node i. i  
is the initial phase of node i. ( ,:)K l  is the l-th row vector 
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of the bending stiffness matrix of shaft, ( ,:)C l  is the l-th 
row vector of the bending damping matrix of shaft.  

2.2.3.Elastic torsional torque of shaft 

   t ij i j ij i jT k c            

Where tT  are the elastic torsional torque of shaft， ijk
， ijc are torsional stiffness and damping of shaft from 
node i to node j, i , j are torsional displacements of 
node i and node j， i , j are torsional velocities of node i 
and node j. 

2.2.4.Bearing reaction force and torque 

Bearings are widely used in geared systems, there are two 
main types of the bearing support: fixed support and 
floating support. The locations of two parts supported by  
fixed bearing are fixed, for instance ball bearings are used 
to support the ordinary gear. At least one of two parts 
supported by floating bearing has a planetary gear 
revolution movement，for instance the needle bearing 
which is used to support the planetary gear and planet 
carrier.  

If there is a planetary gear revolution for node i, such 
as planetary gear, the needle bearing reaction forces are 
expressed as 
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Where bxF , byF are the bearing reaction forces, bT is 
the bearing torque caused by the bearing reaction force, 
and its amplitude is zero because the bearing reaction 
force was imposed on the geometric center of node i. 

,bx by bx byk k c c, , are the reaction stiffness and damping of 
bearings in x-direction and y-direction. i j i jx x y y, , , are 
the translational displacements of node i and j in x and y 
directions, while i j i jx x y y   、 、 、  are the translational 
velocities of node i and j in x and y directions. riR  is the 
revolution radius of node i relative to node j. j j 、 are 

the torsional displacement and rotational velocity of node 
i. i  is the initial phase of node i. 

If there is a planetary gear revolution for node j，
which revolves along node i. Node i can be considered as 
planet carrier. For node i, the bearing reaction forces can 
be expressed as 
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Where axF , ayF are the bearing reaction forces, bT is 
the bearing torque caused by the bearing reaction force 
and its amplitude is non-zero ， because the bearing 
reaction force is imposed on the center of circle with 
radius rjR from the center of the node i. rjR is the 
revolution radius of node j relative to node i. 

,bx by bx byk k c c, , are the reaction stiffness and damping of 
bearing in x-direction and y-direction. i j i jx x y y, , , are the 
translational displacements of node i and j in x and y 
directions, while i j i jx x y y   、 、 、  are the translational 
velocities of node i and j in x and y directions. j j 、 are 
the torsional displacement and rotational velocity of node 
i. j  is the initial phase of node j. 

If node i is supported by fixed support bearing，the 
bearing reaction forces can be expressed as 

   
   

0

bx bx i j bx i j

by by i j bx i j

b

F k x x c x x

F k y y c x x

T

    
    
 

 

 

 

Where bxF , byF are the bearing reaction forces, bT is 
the bearing torque caused by the bearing reaction force, 
its amplitude is zero because the bearing reaction force 
imposed on the center of the node i. ,bx by bx byk k c c, , are 
the reaction stiffness and damping of bearing in x-
direction and y-direction. i j i jx x y y, , , are the translational 
displacements of node i and j in x and y directions, 
while i j i jx x y y   、 、 、  are the translational velocities of 
node i and j in x and y directions.  
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There may be many bearings for one node, such as 
planet carrier, where there are at least three needle 
bearings or more. So all bearing reaction forces must be 
considered during geared system modeling. 

2.2.5.Gear mesh force and torque 

   

   

 

( ) sin

( ) cos

( )

mx i m i m i c i i

my i m i m i c i i

m i m i m i i

F sign k c

F sign k c

T sign k c R

     

     

  

       
       


    










   

Where mxF , myF are the gear mesh forces of node i in 
x-direction and y-direction. mT is the torque caused by the 
gear mesh force. ,m mk c are individually the mesh stiffness 
and the mesh damping. i i , are the variation of the 
contacting line and its derivative. c  is the torsional 
displacement of the planet carrier，and it is equal to zero 
for node i if node i is an ordinary gear. i is the initial 
angle of node i. i is defined as the direction angle of the 
contacting line. iR is the base circle radius. The mesh 
force formula will be non-linear if we consider of the 
time-varying mesh stiffness and the gear backlash[3].In 
the following application sample ,the backlash function 
can be described as： 

( , ) 0

b b

f b b b

b b

 
 

 

 
   
   

 

Where ( , )f b is backlash function,  is the variation 
of the contacting line ， b is the backlash of gear. 

The generalized dynamic model for a geared system 
can be derived by above mechanical analysis. 

 
 
 

ax sx bx mx x

ay sy by my y

a s b t m

F F F F F t

F F F F F t

T T T T T T t

    


   
     

 (11) 

Where axF , ayF ， aT are the inertial forces and inertia 
moment， sxF , syF are the elastic bending forces of shaft, 

sT  is the torque caused by the elastic bending force of 
shaft, bxF , byF are the bearing reaction forces , bT  is the 
torque caused by the bearing reaction force, mxF and myF are 
the mesh forces, mT  is the torque caused by the gear mesh 

force, mT is the elastic torsional torque of shaft, 
 xF t and  yF t  are the external forces ,  T t

 
is 

 
the 

external  moment. 
The generalized model of a geared system can be 

changed into different kinds of models, such as a pure 
torsional linear model, a pure torsional nonlinear model, a 
bending-torsional coupled linear model.  

The variation and direction of contacting line can be 
clearly given by Eqs. (7)-(10), and the mesh force 
formula can be derived by multiplying the variation of 
contacting line with the mesh stiffness. Then the 
generalized geared system dynamic model can help to 
build a mathematical model which do not need to 
distinguish the active gears from the passive gears, so the 
complicated power flow analysis, especially for complex 
systems such as planetary drive would be avoided. 

3. Application of the Generalized Model 

The drive system is shown in Fig.4 which is used to  
verify the validity of the generalized model. 

13T

1T

 

Fig. 4.  Transmission diagram 

Both ordinary gears and planetary gears are included 
in this geared system as shown in Fig.4. Node 1 and node 
13 are respectively the input and output inertia disk. Node 
2 is the sun gear, node 3-6 are the planetary gears, node 7 
is the ring gear, node 8 is the planet carrier, both node 9 
and node 11 are the ordinary gears. There are four fixed 
bearing supports and four floating supports as shown in 
Fig.4. Node 1 and node 2 are considered as pure torsional 
nodes, node 7 is the fixed node, the other nodes are 
bending-torsional coupled nodes, node 8 and node 9 are 
supported by fixed bearings, node 10 and node 12 are 
fixed bearings.  
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3.1. The major parameters of the system 

There are 33 degrees of freedom in this model as 
shown in Table 1, which also shows the mechanical 

analysis of all nodes of system. The major parameters of 
this geared system are shown in Table 2. 

Table 1.  Degrees of freedom and mechanical analysis of the example system shown in Fig.2. 

Nodes 
Degrees of freedom Mechanical analysis 
x  y

   Fax,Fay,Ta Fsx,Fsy,Ts Tt Fbx,Fby,Tb Fmx,Fmy,Tm

1   √ Ta  Tt   
2   √ Ta  Tt  Tm 
3~6 √ √ √ Fax,Fay,Ta   Fbx,Fby Fmx,Fmy,Tm

7   √ Ta    Tm 
8 √ √ √ Fax,Fay,Ta Fsx,Fsy,Ts Tt Fbx,Fby,Tb Fmx,Fmy,Tm

9 √ √ √ Fax,Fay,Ta Fsx,Fsy,Ts Tt Fbx,Fby Fmx,Fmy,Tm

10 √ √ √ Fax,Fay,Ta Fsx,Fsy,Ts Tt Fbx,Fby  
11 √ √ √ Fax,Fay,Ta Fsx,Fsy,Ts Tt  Fmx,Fmy,Tm

12 √ √ √ Fax,Fay,Ta Fsx,Fsy,Ts Tt Fbx,Fby  
13 √ √ √ Fax,Fay,Ta Fsx,Fsy,Ts Tt   

Table 2.  Parameters of the example system shown in Fig.2 

Mass(kg) m1=2, m2=2.6779, m3=m4=m5=m6=0.5208112, m7=0.5208, m8=7.568, m9=2.83408, 
m10=1.15, m11=3.8637, m12=1.15, m13=2 

Mass moment of inetia(
2kg m ) J1=0.0044, J2=0.00369818, J3=J4=J5=J6=0.000200525, J7=0.000200525, J8=0.0156, 

J9=0.00413958, J10=0.002, J11=0.00767244, J12=0.002, J13=0.0044 
Module and number of teeth mn=3mm;z2=35,z3=z4=z5=z6=17,z7=69,z9=36,z11=42 
Mesh stiffnesses(N/m) km23=km24=km25=km26=km37=km47=km57=km67=km911=5.8e8 
Gear backlash(mm) b23=b24=b25=b26=b37=b47=b57=b67=b911=0.200 
Bearing stiffnesses(N/m) kb3=kb4=kb5=kb6=1.55e8, kb8= kb9=1.53e8, kb10= kb12=1.53e8 
Torsional stiffnesses(Nm/rad) k1,2=394488.78, k8,9=2366932.69, k10,11=10144083.62, k11,12=6238611.42, 

k12,13=12997107.13 
Bending stiffness 
matrices**(N/m) 1 2

1112114942.39 -2027130054.11 1396399324.54 -481384212.82

160261067.93 -160261067.93 -2027130054.11 4105982000.55 -3812533119.69 1733681173.25
,

-160261067.93 160261067.93 1396399324.54 -3812533119.69 566
K K

 
  
  0609233.81 -3244475438.66

-481384212.82 1733681173.25 -3244475438.66 1992178478.23

 
 
 
 
 
 

 

External moments(Nm) T1=1000,T13= 3466.67 
** Note:

1K  is bending stiffness matrix of shaft including node 8 and node 9.
2K  is bending stiffness matrix of shaft including node 

10, node 11, node 12 and node 13. 

3.2. Results 

The ring gear is fixed as shown in Fig.4. The input 
rotational speed is 4200 r/min, the input torque acted on 
node 1 is 1000Nm and the resistance moment acted on 
node 13 is 3466.67Nm. After the numerical simulation 
with the fourth-order Runge-Kutta method, the solution 
results without damping are shown as follows. 

3.2.1.Axis orbits diagram 

Axis orbit diagram is one of phase diagrams, which 
plots the position of the objects. According to the 

theoretical analysis， the axis orbit is predictable for 
some nodes, which can be used to show the 
effectiveness of the model. 

If the contacting line direction is unchangeable for 
all gears in a steady condition simulation, the direction 
of the gear mesh force is also unchangeable. The carrier 
is imposed on the reaction forces of four needle bearing 
whose vector sum is equal to zero. So the axis orbit of 
planet carrier is mostly influenced by the direction of 
the gear mesh force of node 9. The theoretical axis orbit 
of carrier should be a straight line with 
expression tan(70* /180)*y pi x . Axis orbit of planet 
carrier with unchangeable contacting line direction for 
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all gears is shown in Fig.5.It is clearly that the axis orbit 
diagram of planet carrier is corresponding to it. 

It is assumed that the contacting line direction is 
changeable for all gears in a stable simulation on 
vibration and shock of gears, which is clearly more 
similar to the practical situation. Axis orbit of planet 
carrier with changeable contacting line direction for all 
gears is shown in Fig.6. The simulation curves 
dramatically fluctuate roughly along with the theoretical 
line, which is introduced by the reverse impact of gears. 
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Fig. 5.  Axis orbit of planet carrier with unchangeable 
contacting line direction for all gears 
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Fig. 6.  Axis orbit of planet carrier with changeable contacting 
line direction for all gears 

For planetary gears, absolute Cartesian coordinates 
are fixed on the point coincided with the planet carrier 
geometric center, so the planetary axis orbit is a circle 
with a radius of 0.078m. The dynamic response of the 
planetary gear is consistent with the theoretical analysis 
as shown in Fig.7.  
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Fig. 7.  Axis orbit of planetary gear with changeable 
contacting line direction for all gears 

From Fig.5-Fig.7, the axis orbits or the translational 
displacements of nodes are strongly influenced by the 
direction of contacting lines, which also indicates the 
direction of mesh force. Compared with Fig.5, Fig.6 
shows that the responses of translational displacement 
when considering the changes of the direction of 
contacting line are greater than that not considered. On 
the other hand ， simulation results also prove the 
validity of the generalized model. 

3.2.2.Dynamic mesh force response 

Node 3 is a planetary gear. The relation between 
mesh force and direction angle of contacting line of 
node 3 is shown in Fig.8~Fig.11. The theoretical 
direction angle of the contacting line of node 3 is -20°
for the external mesh gear and 20° for the internal 
mesh gear. Fig.8 and Fig.10 show that if we do not 
consider the direction changes of the contacting line, 
there is no obvious impact force during the process of 
power flowing through the geared system. On the 
contrary, if we consider the direction changes of 
contacting line, as shown in Fig.9, the alternating 
changes from -20°to 20°of contacting line direction 
for the external mesh gear will occur because of the 
impact of mesh gear during power flowing through 
geared system，while the direction of the contacting 
line for the internal mesh gear changes from  20°to -20
°as shown in Fig.11. At the time range of 0.05~0.07s 
as shown in Fig.9 and Fig.11, the impacts of gears occur 
frequently, which can be explained by the angle of the 
contacting line. The contacting line angle changes more 
frequently, the amplitude for mesh force will be greater, 
which easily causes damage to the gear tooth. The mesh 
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forces of both the external mesh gear and the internal 
mesh gear when considering the changes of contacting 
line reach peaks almost at the same time, when the 
simulation time is about 0.06s, the maximum dynamic 
load coefficients are 18.77 for the external mesh gears 
and 18.81 for the internal mesh gear, while the 
maximum dynamic load coefficients are only 2.23 for 
the external mesh gear and 2.31 for the internal mesh 
gear if we do not consider the change of the contacting 
line direction. So the changes of the contacting line 
direction have an important influence on dynamic 
response of the geared system and that must be 
considered in the modeling of geared system, especially 
for the bending-torsional coupled model. 
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Fig. 8.  External mesh force and contacting line direction of 
node 3 with unchangeable contacting line direction for all 

gears 
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Fig. 9.  External mesh force and contacting line direction of 
node 3 with changeable contacting line direction for all gears 
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Fig.10.  Internal mesh force and contacting line direction of 
node 3 with unchangeable contacting line direction for all 

gears 
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Fig. 11.  Internal mesh force and contacting line direction of 
node 3 with changeable contacting line direction for all gears 

The relation between the mesh force and the 
direction angle of contacting line for node 11 is shown 
in Fig.12 and Fig13. Node 11 is an ordinary gear. 
Compared with Fig.12, Fig.13 shows that reverse 
impact forces will be caused for mesh gear under the 
impact of power flowing through geared system. The 
maximum dynamic load coefficient is 1.92 for node 11 
if we consider the changes of contacting line as shown 
in Fig.13, while the maximum dynamic load coefficient 
is 1.83 for node 11 if we do not consider of contacting 
line changes as shown in Fig.12. The gear backlash has 
a greater impact on dynamic response of the planetary 
gear than that of the ordinary gear compared with the 
maximum dynamic load coefficients, which changes  
over eight times under two conditions: the changes of 
contacting line are considered conditions or not. 
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Fig.12.  Mesh force of node 11 with unchangeable contacting 
line direction for all gears 
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Fig. 13.  Mesh force of node 11 with changeable contacting 
line direction for all gears 

4. Conclusions 

(i) The formula of the contacting line variation is 
derived by the introduced definition of the direction 
angle of contacting line, and it becomes possible 
not to distinguish the internal mesh gear from the 
external mesh gear. It establishes the foundation for 
the derivation of the generalized model of a geared 
system.  

(ii) According to the analyses of the variation and 
direction of the contacting line for the internal mesh 
gear and external mesh gear, the generalized 
dynamic model of a geared system is established. 
The dynamic model can help to build a 
mathematical model, and do not need to distinguish 
active gears from passive gears, so complicated 
power flow analysis, especially for complex 
systems including planetary gears will be avoided 
which will greatly improve the efficiency of 
modeling . 

(iii) The mathematical model of a geared system 
including both the ordinary gears and the planetary 
gears is established with the generalized model. 
Through the consideration of the unchangeable and 
changeable contacting line direction, the validity 
and applicability of the generalized model is 
verified based on the dynamic analysis. The impact 
response of the geared system caused by the change 
of contacting line direction angle is researched. The 
contacting line angle changes more frequently, the 
amplitude of the mesh force will be greater, which 
easily causes the damage to the gear tooth. The gear 
backlash has a greater impact on the dynamic 
response of the planetary gear than that on the 
ordinary gear. 

(iv) In the future study, the generalized model also can 
be used to build the model of a system with a 
double-planet set or a complex-compound gear set. 
The generalized model can be further used to 
automatically build the model of a geared system to 
meet different transmission routes for different 
shifts in the gear shifting process. 
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