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Abstract 

Traffic safety is of great significance, especially in urban expressway where traffic volume is large and traffic 
conflicts are highlighted. It is thus important to develop a methodology that is able to assess traffic safety. In this 
paper, we first analyze the time to collision (TTC) samples from traffic videos collected from Beijing expressway 
with different locations, lanes, and traffic conditions. Accordingly, some basic descriptive statistics of 5 locations’ 
TTC samples are shown, and it is concluded that Gaussian mixture model (GMM) distribution is the best-fitted 
distribution to TTC samples based on K-S goodness of fit tests. Using GMM distribution, TTC samples can be 
divided into three categories: dangerous situations, relative safe situations, and absolute safe situations, respectively. 
We then proceeds to introduce a novel concept of the percentage of serious traffic conflicts as the percentage of 
TTC samples below a predetermined threshold value in dangerous situation. After that, assessment results of 
expressway traffic safety are presented using the proposed traffic safety indictor. The results imply that traffic 
safety on the weaving segment is lower than that on mainlines and the percentage of serious traffic conflicts on 
median lane is larger than that on middle lane and shoulder lane. 

Keywords: Time to collision, Gaussian mixture model, Expressway traffic safety. 

1. Introduction 

Urban expressway is the highest urban road level in 
Chinese city and is a very important vehicular 
passageways for motorists and commuters. For example, 
Beijing urban expressway systems consist of 5 ring lines 
and 15 connecting lines, with a total length of about 380 
km. With the increasing traffic volume, traffic safety is 
more severe. Traffic safety of expressway is most 
commonly measured in terms of the number of traffic 
accidents and the consequences of accidents in terms of 

fatalities and injuries of differing severity. Whereas, 
traffic safety is a particularly difficult phenomenon to 
study, given the fact that accidents occur randomly in 
time and space thereby making measurement, 
assessment and comparison of this concept particularly 
difficult1. Thus, the underlying principle for a more 
effective safety evaluation strategy is to develop models 
based on proximal safety indicators that represent the 
temporal and spatial proximity characteristics of unsafe 
interactions and near-accidents. Research has shown 
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that proximal safety indicators have an established 
statistical relationship with accidents2-7. For expressway 
traffic safety studies that are aimed at assessing relative 
changes in levels of safety for different road 
environments or traffic conditions. It is necessary to use 
proximal indirect indicators of safety. These “safety 
indicators” are usually defined as traffic measures that 
are statistically correlated with the numbers of road 
traffic accidents at a particular location. These values 
are based on the temporal and spatial proximity between 
road-users during safety critical events. Svensson8 states 
that for proxy measures or indicators of safety to be 
useful they must: (a) Complement accident data and be 
more frequent than accidents; (b) Have a statistical and 
causal relationship to accidents; (c) Have the 
characteristics of “near-accidents” in a hierarchical 
continuum that describes all severity levels of road-user 
interactions with accidents at the highest level and very 
safe passages with a minimum of interaction at the 
lowest level. 
In the literature, there were many safety indicators 
applied for safety analysis such as time headway (TH)9, 
traffic conflict number (TCN)10, time-to-collision 
(TTC)11-13, extended time-to-collision (TET, TIT)14, 
deceleration rate (DR)15, proportion of stopping distance 
(PSD)16, and standard deviation of lateral position 
(SDLP)17. In these indicators, the TTC value is widely 
accepted as a highly useful and valid safety indicator for 
traffic conflicts on highways8, 13, 17. TTC between two 
consecutive vehicles is a common traffic parameter 
applied for safety estimation, obstacles avoidance, and 
collision warning system design. TTC is defined as "the 
time that remains until a collision between two vehicles 
would have occurred if the collision course and speed 
difference are maintained" by Hayward11, and it is 
discussed extensively in Hydén18. According to 
Svensson8, TTC is inversely related to accident risk 
(smaller TTC values indicate higher accident risks and 
vice versa). TTC has often been used as a safety 
indicator for certain maneuvers by determining the 
minimum TTC measured during the maneuver19-21. 
Furthermore, drivers are assumed to be motivated for a 
safety-related reason to exhibit an accelerating or 
decelerating response to TTC, and TTC was applied for 
modeling driving behavior by Van Winsum22, Jin et al.23, 

24, and Bubb25. Another important research of TTC is to 
measure TTC threshold value for distinguish dangerous 

situation and safe situation. Different opinions can be 
found in the literature as to which value should be used 
as safety limit. TTC threshold value suggests range 
from 1.5 s in urban areas8 to 5s26, and 2.6 seconds for 
supported drivers and 3.5 seconds for non-supported 
drivers27. Thus, TTC threshold value is related to TTC 
distributions, and it is difficult for researcher to measure 
in different traffic conditions. Mainly for this reason, 
there is a need to further the concept of traffic safety 
indicator and assessment method that can indirectly be 
used to measure expressway traffic safety. 
The objective of this paper is to develop a novel method 
for traffic safety assessment in urban expressway based 
on TTC distribution. The TTC data was collected from 
traffic videos in Beijing urban expressway, and a 
Gaussian mixture model (GMM) based TTC 
distribution was proposed for estimating TTC 
parameters value with a given traffic flow condition. A 
novel traffic safety indicator was presented considering 
the percentage below TTC threshold in dangerous 
condition. Finally, a valid and reliable assessment 
method of expressway traffic safety was established and 
TTC indicators in different scenarios were analyzed and 
compared. 
The paper is organized as five sections, of which this is 
the first. The next section briefly describes collection of 
TTC data, the definition of TTC, and the basic statistical 
parameters of TTC. In Section 3, the GMM is built to 
establish the distribution of TTC. The Section 4 
describes in detail the development and discussion of 
the novel assessment method of traffic safety using 
GMM based TTC distribution. The last section 
concludes with a summary of the findings of this study. 

2. Data Collection 

2.1. Study sites 

The field data analyzed in this paper were collected 
through video survey between Si-tong Bridge and Lian-
xiang Bridge in Beijing North Ring Ⅲ  expressway. 
Ring Ⅲ  expressway built overhead is a vital 
infrastructure in Beijing’s road system, and has a total 
length of 48 kilometers. The data were collected with 
different traffic conditions from 7:00 am to 10:00 am 
(including morning peak hour) and from 16:00 pm to 
19:00 pm (including evening peak hour) on Jun. 20th 
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(Tuesday), 2006. Five locations are chosen as the 
studies sites. Location 1-5 are located on mainline at 
upstream of on-ramp (direction W→E), weaving 
segment at downstream of on-ramp (direction W→E), 
mainline at downstream of off-ramp (direction W→E), 
weaving segment at downstream of on-ramp (direction 
E→W), and mainline at downstream of off-ramp 
(direction E→W), respectively. Each location including 
three lanes named median lane, middle lane, and 

shoulder lane are chosen for this paper. The locations of 
these stations are shown in the red rectangles on Figure 
1. Using video image processing technology, it is easy 
to get traffic date including speed, traffic volume, and 
time occupancy. The video was Similarly, the dataset 
for calculating TTC is obtained including speed, 
headway, vehicle length, and classification of vehicle 
types. 

2.2. Basic statistical parameters of TTC 

TTC can be defined as the distance between a following 
and a leading vehicle divided by the relative velocity 
between two consecutive vehicles at a particular time. 
Thus, the formulation is shown as follows: 

 
1 1

1
1

( ) ( )
if ( ) ( )

( ) ( )( )

otherwise
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i ii
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where TTCi(t) is the TTC of following vehicle i at time t, 
xi－1(t) and xi(t) is the position of leading vehicle i－1 
and following vehicle i at time t, respectively, vi－1(t) 
and vi(t) is the speed of leading vehicle i－ 1 and 
following vehicle i at time t, respectively, and VLi－1 is 
the vehicle length of leader i－1. 
It is difficult for video to capture the positions and 
speeds of following vehicle and leading vehicle at a 
particular time, especially, the distance between two 
consecutive vehicles is large. Therefore, TTC should be 
calculated through fixed station traffic parameters. 
Assume that vehicles have a consistent travel speed 
through a fixed station in a short time interval, the 

distance headway xi－1(t) － xi(t) while following vehicle 
through the detector can be estimated by follower speed 
multiplying time headway13. Then, the expression of 
TTC in car-following scenario will be rewrote as: 

 1
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where TTCi is the TTC of following vehicle i at the 
particular station, vi－1 and vi is the speed of leading 
vehicle i － 1 and following vehicle i through the 
particular station, respectively, and THi is the time 
headway between two vehicles. 
Some basic statistical results of five locations’ TTC for 
different position, lane, and traffic flow level are shown 
in Table 1. 
From Table 1, 11389 TTC samples with respect to 
different traffic volume and conditions were collected. 
Each lane has nearly 800 TTC samples for analysis. 
According to the results of Tables 1, we can find that: (a) 
The means of TTC samples on different lanes are within 
a relatively large range from 13.19 to 23.14 and TTC 
samples have great variances at different locations. (b) 
The means of TTC on different lanes are with large 

 

Fig. 1.  Data collection sites from Si-tong Bridge to Lian-xiang Bridge in Beijing expressway. 
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differences. (c) The means of TTC at location 2 are also 
smaller than these at location 1 and location 3. In other 
words, traffic flow on weaving segment has more 
collision risks and leads to more dangerous situations. 
All of above results imply that means of TTC samples 
have strong correlations with locations, lanes, and 

traffic conditions. Consequently, it is unrealistic to use 
an uniform TTC threshold value for assessment of short 
term traffic safety with different road environment and 
traffic conditions. The distribution characteristics of 
TTC have great effect on TTC threshold value and 
assessment of traffic safety. 

3. Gaussian Mixture Model Distribution for 
TTC 

Gaussian mixture model is a parametric probability 
density function represented as a weighted sum of 
Gaussian component densities. GMMs are commonly 
used as a parametric model of the probability 
distribution of continuous measurements. GMMs have 
been successfully used in a wide variety of fields, such 
as speaker recognition systems28, 29, video image 
processing30, and pattern classification31, 32. 

3.1.  Gaussian mixture model 

A Gaussian mixture model for TTC distribution is a 
weighted sum of M component Gaussian densities as 
given by the equation33, 

   2 2

1

, , ( , )
M

k i i i i k i i
i

P TTC g TTC     


  (3) 

where TTCk is the TTC of the kth vehicle, ωi, i＝1, …, 
M, are the mixture weights, and ( , )k i ig TTC   , i＝

1, …, M, are the component Gaussian densities. Each 
component density is a one-variate Gaussian function of 
the form, 

  22
2

1 1
( , ) exp

22
k i i k i

ii

g TTC TTC  


 
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 
(4) 

with mean μi and variance σi
2. The mixture weights 

satisfy the constraint that 
1

1
M

i
i




  and indicate the 
percentage of TTC belonging to category i. The values 
of the mixture weights are associated with safety 
situations of traffic flow. The complete Gaussian 
mixture model is parameterized by the mean, variance 
and mixture weights from all component densities. 
These parameters are collectively represented by the 
notation  2, ,i i i   . 
There are several variants on the GMM shown in Eq. 
(1). The choice of model configuration (number of 
components and model parameters) is often determined 
by the amount of data available for estimating the GMM 
parameters and how the GMM is used in a particular 
application. 

Table 1.  Descriptive statistics of TTC. 

Study sites 
Number of 

samples 
Traffic Volume

(veh./h/lane) 
Mean

(s) 
SD
(s) 

Min 
(s) 

Max
(s) 

Location 1 
(upstream of on-ramp) 

Median Lane 713 995 16.79 14.38 0.02 76.36 

Middle Lane 780 1245 17.20 12.73 0.24 65.46 

Shoulder Lane 835 1410 15.81 10.52 0.01 53.74 

Location 2 
(weaving segment) 

Median Lane 951 1179 13.19 11.52 0.01 79.60 

Middle Lane 937 1294 15.75 11.93 0.03 64.44 

Shoulder Lane 885 1181 14.51 8.62 0.04 44.24 

Location 3 
(downstream of off-

ramp) 

Median Lane 660 1393 21.66 16.70 0.04 81.36 

Middle Lane 749 1467 14.96 9.74 0.04 47.64 

Shoulder Lane 799 1736 14.82 8.76 0.08 46.76 

Location 4 
(weaving segment) 

Median Lane 753 821 15.78 11.90 0.10 63.64 

Middle Lane 736 1105 15.55 11.67 0.08 60.92 

Shoulder Lane 762 1205 16.24 10.55 0.01 54.96 

Location 5 
(downstream of off-

ramp) 

Median Lane 496 1546 23.14 17.68 0.09 89.56 

Middle Lane 692 1321 16.88 11.58 0.19 66.40 

Shoulder Lane 641 1722 17.34 12.21 0.05 66.60 

All 11389 1308 16.34 11.79 0.01 89.56 
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One of the powerful attributes of the GMM is its ability 
to form smooth approximations to arbitrarily shaped 
densities. Due to their capability of representing a large 
class of sample distributions, we applied GMM to 
analyze TTC distribution data and capture the 
component Gaussian distribution patterns for different 
traffic safety situations. The use of a GMM for 
representing feature distributions of TTC may also be 
motivated by the intuitive notion that the individual 
component densities may model some underlying set of 
hidden classes. For example, it is reasonable to assume 
the TTC values corresponding to different safety 
situations, such as dangerous situations, relative safe 
situations or absolute safe situations. These safety 
situations classes reflect some general accident risks 
that are useful for characterizing safety situation identity. 
The ith TTC class can be represented by the mean μi of 
the ith component density and the variation σi

2. Thus, 
GMM can be used to group the TTC samples and 
describe the parameters of different classes. 

3.2. Maximum likelihood parameter estimation 

Given training samples and a GMM configuration, we 
wish to estimate the parameters of the GMM, Θ, which 
in some sense best matches the distribution of the 
training samples. There are several techniques available 
for estimating the parameters of a GMM34. By far the 
most popular and well-established method is maximum 
likelihood (ML) estimation. The aim of ML estimation 
is to find the model parameters which maximize the 
likelihood of the GMM given the training data. For a 
sequence of N training data TTCi, the GMM likelihood, 
assuming independence between the training samples 
TTCi, can be written as, 

 
1

( ) ( ) ( ).
N

i
i

p TTC p TTC L TTC


     (5) 

This function ( )L TTC  is called the likelihood of the 
parameters given the data, or just the likelihood function. 
The likelihood is thought of as a function of the 
parameters Θ where the data TTC is fixed. In the 

maximum likelihood problem, the goal is to find the Θ 
that maximizes L. That is, we wish to find Θ* where, 

 * arg max ( ).L TTC


   (6) 

Often we maximize log ( )L TTC    instead because it 
is analytically easier. Unfortunately, this expression is a 
non-linear function of the parameters Θ and direct 
maximization is not possible. However, ML parameter 
estimates can be obtained iteratively using a special case 
of the expectation-maximization (EM) algorithm. The 
EM algorithm35 is a general method of finding the 
maximum-likelihood estimate of the parameters of an 
underlying distribution from a given data set when the 
data is incomplete or has missing values. The basic idea 
of the EM algorithm is, beginning with an initial 
parameters Θ, to estimate a new parameters  , such 
that ( ) ( )p TTC p TTC  . The new parameters then 
becomes the initial parameters for the next iteration and 
the process is repeated until some convergence 
threshold or iteration number is reached. 
The EM algorithm first finds the expected value of the 
complete-data log-likelihood. The evaluation of this 
expectation is called the E-step of the algorithm, and the 
second step (the M-step) of the EM algorithm is to 
maximize the expectation computed in the first step. 
These two steps are repeated as necessary. Each 
iteration is guaranteed to increase the log-likelihood and 
the algorithm is guaranteed to converge to a local 
maximum of the likelihood function. The detailed 
descriptions of EM algorithm refer to Wu36, Redner and 
Walker37, Jordan and Jacobs38, and Jordan and Xu39. 
GMM parameters are estimated from training data using 
the iterative EM algorithm. In this study, the number of 
component M is set as 3 on empirical observation and 
analysis. Three categories of TTC data represent 
dangerous situations, relative safe situations, and 
absolute safe situations, respectively. Multiple normal 
distributions are applied to fit TCC data and mixture 
weight of each distribution reflects the percentage of 
different safe situations of traffic flow. 
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Figure 2 depicts three component Gaussian densities 
function and the observed data collected on shoulder 
lane, location 1. It is shown that the GMM has ability to 
fit two-peaks distribution of TTC data. Figure 3 shows 
the empirical cumulative distribution function (CDF) for 
TTC data samples with the fitted GMM distribution. 
The GMM fits to empirical data very well and has small 
error. To further verify the fitting results in statistically, 
Kolmogorov-Smirnov (K-S) test was adopted to 
perform the goodness-of-fit test40. In statistics, the K-S 
test is a nonparametric test for the equality of 
continuous one-dimensional probability distributions 
that can be used to compare a sample with a reference 
probability distribution (one-sample K–S test), or to 
compare two samples (two-sample K-S test). The K-S 
statistic quantifies a distance between the empirical 

distribution function of the sample and the CDF of the 
reference distribution. The null distribution of this 
statistic is calculated under the null hypothesis that the 
sample is drawn from the reference distribution. 
Table 2 shows the estimated Gaussian distribution 
parameters and results of K-S test for sample data with 
all lanes of five location. As can be seen from Table 2, 
the K-S goodness of fit tests suggest the GMM performs 
well. All of samples from 15 stations are demonstrated 
that the samples are drawn from the GMM distribution 
statistically at significance level α = 0.05. The estimated 
component weighs of different Gaussian distributions 
also indicate that percentages of TTC data in different 
traffic situations are related to sampling stations and 
traffic conditions. TTC data in dangerous situation is 
nearly range from 50% to 60%. 
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Fig. 3.  Empirical CDF and GMM’s CDF on shoulder lane, 
location 1. 
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Fig. 2.  GMM fits with TTC data on shoulder lane, location 1. 

Table 2.  Results of GMM distribution parameters and K-S test. 

Study sites Weights ωi Means μi Variances σi
2 K-S value Critical value 

T-test 
at significance 
level α = 0.05 

Location 1 

Median Lane (0.545, 0.287, 0.168) (8.2, 19.0, 40.7) (21.0, 56.5, 248.2) 0.022 0.051 0 

Middle Lane (0.614, 0.256, 0.130) (9.7, 23.4, 40.6) (23.5, 51.6, 140.4) 0.021 0.048 0 

Shoulder Lane (0.646, 0.256, 0.099) (9.9, 21.5, 39.6) (16.9, 33.0, 46.1) 0.015 0.047 0 

Location 2 

Median Lane (0.651, 0.272, 0.078) (7.4, 19.0, 40.9) (16.2, 50.5, 227.0) 0.025 0.044 0 

Middle Lane (0.544, 0.289, 0.167) (8.0, 19.4, 34.6) (18.5, 41.0, 142.6) 0.025 0.044 0 

Shoulder Lane (0.442, 0.326, 0.232) (8.0, 14.9, 26.2) (15.0, 20.1, 45.9) 0.032 0.045 0 

Location 3 

Median Lane (0.599, 0.247, 0.154) (11.7, 26.4, 53.0) (29.6, 61.8, 190.5) 0.040 0.053 0 

Middle Lane (0.561, 0.316, 0.123) (8.8, 18.6, 33.5) (14.8, 36.4, 58.9) 0.030 0.049 0 

Shoulder Lane (0.510, 0.335, 0.155) (8.7, 17.1, 30.2) (9.2, 17.7, 55.4) 0.021 0.048 0 

Location 4 

Median Lane (0.560, 0.319, 0.121) (8.4, 19.5, 40.0) (17.1, 41.1, 111.0) 0.031 0.049 0 

Middle Lane (0.559, 0.335, 0.107) (8.4, 19.6, 40.2) (17.3, 45.6, 119.6) 0.024 0.050 0 

Shoulder Lane (0.556, 0.355, 0.089) (9.7, 20.8, 39.3) (19.0, 40.9, 81.2) 0.028 0.049 0 

Location 5 

Median Lane (0.612, 0.295, 0.093) (12.6, 31.9, 64.8) (38.5, 76.2, 153.2) 0.023 0.061 0 

Middle Lane (0.558, 0.284, 0.158) (10.3, 19.3, 35.8) (22.4, 38.6, 176.8) 0.022 0.051 0 

Shoulder Lane (0.522, 0.340, 0.138) (9.3, 20.6, 39.6) (16.5, 38.8, 154.2) 0.029 0.053 0 
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4. Assessment of Traffic Safety using a Novel 
Safety Indicator 

4.1. Percentage of serious traffic conflicts 

In Section 3, we use GMM based TTC distribution to 
divided TTC samples into three categories. Each TTC 
category i (e.g. dangerous situation) belongs to a normal 
distribution with parameters (μi, σi

2) and the percentage 
of category i equals to weigh ωi. 
We define percentage of serious traffic conflicts as the 
percentage of TTC samples below a predetermined 
threshold value in dangerous situation. Thus, the 
percentage of serious traffic conflicts can be quantified 
as follows: 

  ( )sc ds dsL p TTC x     (7) 

where Lsc is the percentage of serious traffic conflicts, 
ωds and pds() are the weigh factor and CDF of TTC 
samples in dangerous situations, respectively, and τ is a 
predetermined TTC threshold value. 
This indicator can be as a novel safety indicator for 
assessment of expressway safety. Having had the TTC 
distributions of expressway sections with different 
environments, the percentage of serious traffic conflicts 
can be calculated for safety assessment. 

4.2. Analysis of traffic safety 

According to Eq. (7), the percentage of serious traffic 
conflicts in dangerous situations could be calculated as a 
safety indicator for assessment of expressway traffic 
safety in a specific time period. Using the field TTC 
data mentioned in Section 2, the percentages of serious 
traffic conflicts are reported in Table 3 where 2 s, 3 s, 4 
s, and 5 s are considered as the TTC threshold values. 

Table 3.  Assessment results of expressway 
safety with different TTC threshold values. 

Sites 
TTC threshold values 

2 s 3 s 4 s 5 s 

Location 1 

Median Lane 4.71% 6.87% 9.65% 13.04%

Middle Lane 3.49% 5.19% 7.45% 10.31%

Shoulder Lane 1.75% 2.98% 4.84% 7.47%

Location 2 

Median Lane 5.77% 8.81% 12.81% 17.74%

Middle Lane 4.47% 6.71% 9.64% 13.27%

Shoulder Lane 2.62% 4.26% 6.55% 9.54%

Location 3 Median Lane 2.26% 3.32% 4.75% 6.60%

Middle Lane 2.10% 3.60% 5.82% 8.89%

Shoulder Lane 0.70% 1.56% 3.13% 5.73%

Location 4

Median Lane 3.33% 5.26% 7.91% 11.34%

Middle Lane 3.41% 5.35% 8.00% 11.42%

Shoulder Lane 2.21% 3.54% 5.42% 7.96%

Location 5

Median Lane 2.67% 3.72% 5.06% 6.74%

Middle Lane 2.24% 3.46% 5.14% 7.37%

Shoulder Lane 1.87% 3.13% 4.98% 7.52%

According to Tables 3, there are some important 
characteristics of expressway traffic safety can be found 
that: 
(1) With the increasing of TTC threshold values, the 
percentages of serious conflicts also increase. TTC 
threshold value has a great impact on assessment of 
safety and should be calibrated and validated by a large 
number of field data. 
(2) The percentage of serious traffic conflicts between 
different locations have a great difference. The 
percentages of serious traffic conflicts collected on the 
weaving segment are larger than these collected on 
mainlines. Furthermore, expressway traffic safety on the 

downstream section of off-ramp is better than that on 
the upstream section of on-ramp. These results is mainly 
due to that traffic flow on the weaving segment is more 
unstable and a large number of lane changing behavior 
leading to less TTC value and more serious conflicts. 
(3) We further analyze the differences of expressway 
traffic safety between different lanes. Figure 4 shows 
the relationship between TTC threshold values and 
percentages of serious traffic conflicts with different 
lanes at location 1. From Figure 4, we can find that the 
percentage of serious traffic conflicts on median lane is 
larger than that on middle lane and shoulder lane. The 
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Fig. 4.  TTC threshold values - percentages of serious traffic 
conflicts relationship. 
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same results can also be found obviously at location 2-5. 
The main reason is that the on-ramp and off-ramp 
vehicles have greater effect vehicles on shoulder lane 
than these on median lane. Thus, vehicles on median 
lane have higher travel speeds and more serious traffic 
conflicts. 

5. Conclusions 

In this study, an assessment method of expressway 
traffic safety is proposed to estimate the vehicle crash 
frequency in different environments. TTC samples data 
was collected at 5 locations in Beijing expressway. 
Some basic descriptive statistics of 5 locations’ TTC for 
different position, lane, and traffic flow level are shown 
and analyzed. We conclude that Gaussian mixture 
model distribution is the best-fitted distribution to TTC 
samples based on best-fit analysis and the K-S goodness 
of fit tests suggest the GMM performs very well. 
Accordingly, GMM is applied to establish the 
distribution of TTC samples under different traffic 
conditions. TTC samples are divided into three 
categories: dangerous situations, relative safe situations, 
and absolute safe situations, respectively. A novel 
concept of percentage of serious traffic conflicts is 
defined as the percentage of TTC samples below a 
predetermined threshold value in dangerous situation. 
Using this new safety indicator, assessment results of 
expressway traffic safety are presented. It is found that: 
(1) TTC threshold value has a great impact on 
assessment of safety. (2) expressway traffic safety on 
the weaving segment is lower than that on mainlines. (3) 
the percentage of serious traffic conflicts on median 
lane is larger than that on middle lane and shoulder lane. 
These conclusions are of great significance for analysis 
of expressway traffic safety and improvement of traffic 
safety. 
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