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Abstract 

Motivated by a problem in the commodity transportation, a mathematical model is developed to calculate capacity 
of single-commodity network when the time reliability levels of transporting commodity between origin-destination 
pairs are constrained.  We use a hybrid intelligent algorithm, in which genetic algorithm is embedded with Monte 
Carlo simulation to solve the optimization model.  In the hybrid intelligent algorithm, the genetic algorithm is used 
to report the best path flow solutions and the Monte Carlo simulation is to check the feasibility of the chromosomes 
of genetic algorithm. With a computational experiment, the fact that network capacity decreases with the increase 
of the transportation time reliability level is validated. The efficacies of the developed procedures are examined by 
comparing the computational times of solving algorithm with that of previous work. 

Keywords: network capacity, transportation time reliability, single-commodity flow, genetic algorithm, Monte 
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1. Introduction 

Recently, considerable attentions have been given to 
study the determination of the Transportation Network 
Capacity (TNC).  Several researchers have proposed 
various methods for different type of networks1–3. 
Transportations on road network, communication 
network, and computer network are frequently suffered 
from serious congestions due to capacities constraints of 
the arcs4.  On the other hand, much less attention has 
been devoted to TNC in the context of network of which 
arc capacities are uncertain, where every arc in the 
network has an uncertain capacity to transporting 
commodity5.  The capacity determination problem in 

this type of network is similar to the maximal 
throughput problem in stomachic flow network6.    
In the daily lives, transporting commodity via 
commodity networks is a common occurrence.  
However, commodity transportation can be far from 
being pleasant due to a variety of reasons such as 
congestions, failures of facility function, and delays.  
The commodity transportation network consists of 
shippers, carriers, and transportation facilities including 
arcs, nodes and so on.  The carriers or the transportation 
agencies would like to attract more shippers by 
improving the level of service (LoS) of their 
transportation network.  On Time Transportation (OTT) 
(or On Time Delivery (OTD)) has been used as a key 
performance indicator of the commodity 
transportation’s LoS. From a shipper’s perspective, it 
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would count up what time the shipments are dispatched 
and what proportion is late. From a carrier’s perspective, 
if the customer wishes to change their order then it can 
often do this profitably with a time penalty.  Also if 
some circumstances occur whereby a carrier would 
know that it cannot deliver as originally intended, it may 
redefine the delivery schedule.  Transportation time 
reliability (TTR) (or Delivery time Reliability (DTR)) is 
a broadly used standard indicator measurement in 
freight transportation industry to measure the reliability 
of a carrier’s delivery time confirmation for a customers 
OTT requirement7.  
The objective of this paper is to determine the 
transportation capacity on a single-commodity network 
with required transportation time reliability level 
constraints on the condition of uncertain arc capacities.  
Taking into account of how reliable the commodity 
could be completely transported, we aiming to give out 
the maximum attainable throughput between Origin-
Destination pairs on the given commodity network on 
which capacities of arcs are stochastic.  Transportation 
Time Reliability is defined as the probability that the 
network could successfully transport a given amount of 
commodities at a certain time of interest.  This problem 
in this paper is named as Network Capacity with 
Transportation Time Reliability Constraints (NCTTRC).  
The network capacity determined model presented in 
this paper yield to both arc capacity constraint and TTR 
constraint in contrast to the algorithms developed in Ref. 
8 and Ref. 9 which only take account of one such 
constraint.  A solution technique using genetic 
algorithm (GA) embedded with Monte Carlo simulation 
(MCs) is employed to solve the presented formulation.  
The rest of this paper has been organized as follows.  In 
Sec. 2, we describe the studied problem firstly then give 
out the relevant mathematical formulation as well as the 
solution methodology for the proposed model is shown. 
Computational experiment and computational time 
analysis is presented in Sec. 3.  Conclusions and future 
research issues are outlined in Sec. 4. 

2. Problem Statements 

2.1. General Statements 

The capacity of a network indicates the maximum 
attainable throughput of the given network8. In the 

conventional network, the capacity problem is very easy 
to state: if a network has capacities on arc flows, how to 
send as much flow as possible from an origin node to a 
destination node without exceeding the capacity of any 
arc.  This is the well-known single commodity capacity 
problem of a network.  It has been well established with 
the mathematics model with its solution technique9-10. 
It the context of pervious researches, the networks 
involved capacity have been assumed having 
deterministic arc capacities. However, in real life, the 
arc capacities of networks are often random due to the 
uncertain events such as accidents, maintenances, 
capacity failures, etc.11. When dealing with the network 
with uncertain arc capacities, how to compute its 
capacity is a complex problem and always appeal to the 
TTR index11, which has been discussed elaborately in 
terms of various methods 12-13. Moreover, the network 
capacity computation with constraint of TTR has been 
proved to be a NP-hard problem 14. 
On the other hand, network capacity problem is an 
important issue with transportation time reliability 
constraints and worth to be researched for several 
reasons. First, it could be used to provide the shipping 
reliability information such as how many commodities 
could be transport certainly in a give time between 
Origin-Destination nodes. Second, network capacity 
considering the time reliabilities constraints between 
two nodes indicates the connectivity of this pair of 
nodes and is a key factor for adjusting the network 
configuration by the decision-maker. The network 
capacity with transportation time reliability 
requirements provides shipper the information of 
selecting carriers base on which carrier has the most 
reliable transportation capacity. Moreover, network 
capacity with transportation time reliability constraint 
problem could be used in conjunction with the carrier 
selection system. Finally, the problem is very useful 
extension of the maximal flow problem, in particular 
when considering stochastic networks and service 
performance evaluation. 

2.2. Mathematical Formulation 

Define a single-commodity network as graph G = (P, 
A), where P is the set of nodes, and A is the set of arcs. 

Denote A  as the total number of arcs of the network, N 
as the total number of origin-destination (OD) pairs, and 
n = 1, 2, …, N as index of the Origin-Destination pair. 
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Let qn be the amount of commodities transported 
between the nth Origin-Destination pair; 

 , 1, 2,...nq n N Q , be the matrix of commodities 

amounts transported between all Origin-Destination 
pairs in the network. Denote Kn as the number of paths 
connecting origin node and destination node of the nth 
Origin-Destination pair, and k as index of the path. Let 

k

nx  be the commodity flow on the kth path between the 

nth Origin-Destination pair, and xa be the commodity 

flow on arc a, n = 1, 2, …, N, a A ; 
k

nt  be the 

transportation time on the kth path between the nth 

Origin-Destination pair, and ( )a at x  be the 

transportation time on arc a when xa amounts of 
commodities are transported. Apparently, 

, ( ), 1, 2,..., , 1, 2,...,
k

n n

a k a a n
a A

t t x k K n N
 

   , 

,

n

a k  is the path-arc incidence variable, if arc a is 

included on the kth path between the nth Origin-
Destination pair, it equals to 1, otherwise, it is set as 0. 
Moreover, we consider the stochastic arc capacity and 
congestion effect on an arc, and represent the time of 
transporting xa units’ commodities on arc a by BPR 

function15: 0( ) 1 a
a a a

a

x
t x t






  
    
   

; where, 0
at  is 

the free-flow transportation time on arc a.  ,   are the 

BPR parameters15. 
Generally, TTR between the nth Origin-Destination pair 
is defined as qn units’ commodities could be 
successfully transported at Tn units’ time, and it could 
be displayed it as probability like： 

    1,2,...,
Prob , , = Prob max { }

n

n
n n n k n

k K
L = t q n T t T


 ζ  (1) 

where,  aζ ζ  denotes the stochastic arc capacity 
vector. Given the stochastic arc capacity vector ζ , let 
event {t(qn, ζ , n,) ≤ Tn} denote that network could 
successfully transport qn units’ commodities between 
the nth Origin-Destination pair in Tn unit’s time 
constraint. t(qn, ζ , n) is the maximal path travel time 
when transporting qn units’ commodities between the 
nth Origin-Destination pair under stochastic arc capacity 
vector ζ , and 

 
1,2,...,

( , , ) max { }
n

n

n k
k K

t q n t


ζ  (2) 

For a decision-maker, it should make sure that the time 
reliability of transporting commodities between an 
Origin-Destination pair is higher than a confidence level 

n  to assure the service quality, such that 

 Ln=Prob{t(qn, ζ , n) ≤ Tn}=  maxProb n n nt T   (3) 

To evaluate the network transportation capacity, time 
reliability constraints for an entire network’s 
commodities transportation could be written as a matrix 
representation 

  Prob | ( , , )t N  L ζ Q ζ T γ  (4) 

where,  n
LL ,  n

qQ ,  n
TT ,  n

γ , 
 aζ , 1, 2,...,n N , a A  . 

Aiming at finding out the maximal commodity 
transportation capacity of the network under TTR 
constraint, a mathematical model is set as follow. 

 

 

1

1

,
1 1
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max

s t

Prob | ( , , )
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,
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
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

L ζ Q ζ T γ

. .

 (5) 

In the formulation above: 
 the objective function is to maximize the total 

amounts of commodities transported between all 
Origin-Destination pairs. 

 the first equation is the set of TTR constraints. 
They state that the probabilities which commodities 
are successfully transported during time between all 
Origin-Destination pairs should exceed the given 
confidence level. 

 the second and the third equations are the flow 
conservation constraints. 

 the fourth equation says that flow on an arc should 
not exceed its maximal practical arc capacity. 

 the fifth equation is the non-negative condition for 
the flow on each path between each Origin-
Destination pair. 
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In our model, the TTR constraints contain a series of 
uncertain variables, i.e., the uncertain arc capacities. 
Due to these uncertain variables, our model differs from 
those mentioned in the previous literatures. How to treat 
these uncertain variables and then solve the model has 
not been dealt with before. 

2.3. Solution Methodology 

Generally, the nonlinear programming with stochastic 
function constraints as Eq. (5) could not be converted 
into a deterministic form. There is limited deterministic 
algorithm to solve this type of formulation19. We design 
a hybrid intelligent algorithm (HIA) for it. This 
algorithm integrates MCs into GA. Genetic algorithm 
(GA) is a stochastic search method for optimization 
problems based on the mechanics of natural selection 
and natural genetics16. Detailed descriptions and 
applications of GA could be seen in Ref. 17. Monte 
Carlo simulation methods are a class of computational 
algorithms that rely on repeated random sampling to 
compute their results. Because of their reliance on 
repeated computation and random or pseudo-random 
numbers, MCs are most suited to be used when it is 
unfeasible or impossible to compute an exact result with 
a deterministic algorithm18. 
Here, the methods and procedures used to process the 
stochastic function are synthesized together in a MCs 
framework. By simulating the stochastic behaviour of 
the arc capacity through repeated sampling from 
random variables with the given probability distribution, 
MCs could be employed to analyse the TTR between 
the Origin-Destination pairs for solving the model of Eq. 
(5). Main steps of this algorithm are shown as follows. 
Step.1 Design the uncertain function as 

 ( ) : Pr | ( , , )L t N x x ζ Q ζ T . Denote the 
chromosome as v to represent a solution of the 
optimization problem x.  
Step.2 Randomly initialize pop_size chromosomes 
whose feasibilities should be checked via MCs. 
Step.3 Update the chromosomes by crossover and 
mutation operations in which the feasibilities of the 
offspring are also needed be checked.  
Step.4 Calculate the objective values for all 
chromosomes. 
Step.5 Compute the fitness of each chromosome based 
on the objective values.  

Step.6 Select the chromosomes by spinning the roulette 
wheel19-20. 
Step.7 Repeat the third to the sixth steps for a given 
number of cycles. 
Step.8 Report the best chromosome as the satisfactory 
solution. 
Go into details, operations of the GA and MCs are as 
follows: 
 Operations of the GA:  
(i) Chromosome representation. Code the 

chromosome as v = [
1

1x , 
1

2x , …, 1

1

Kx ,…, 

n

kx ,…, N

N

Kx ] to represent a solution x = [
1

1x , 
1

2x , 
… 1

1

Kx ,…, 
n

kx ,…, N

N

Kx ] of the optimization 
problem, where 

n

kx  denotes the commodity flow on 
the kth path of the nth Origin-Destination pair. 

(ii) Chromosome feasibility checking. The feasibility 
of a chromosome is determined by both 
transportation time reliability constraint set and arc 
capacity constraint set. We employ a 0-1 function, 
Reliability_Check(v) to check whether a 
chromosome satisfies the transportation time 
reliability constraint. For a chromosome v, if 
Reliability_Check(v) = 1, and that the commodity 

flow on each arc, ax is smaller than its maximal 

practical capacity max

ac , such that max

a ax c , 

a A  . We could say that v is feasible, otherwise 
it is not. That is, feasibilities of the chromosomes 
are test via running the procedure of the function 
Reliability_Check(v), if the return value is 1, v is 
feasible, otherwise is not.  

(iii) Chromosome initialization. Define an integer 
pop_size as the population size of the 
chromosomes19. The pop_size chromosomes will be 
initialized in the following manner. Firstly generate 
a feasible initial chromosome, v0 = [ ..., ,...

n

kx ] via 
MCs. Then randomly select a direction d in Rn and 
define a chromosome v as v0 + M•d if it is checked 
to be feasible. Otherwise, set M as a random 
number between 0 and M until v0 + M•d is feasible. 
Note that a feasible chromosome can be found in a 
finite time by choosing a new random number M 
since v0 is an interior point. Repeat this process 
pop_size times and produce pop_size initial feasible 
chromosomes v1, v2, …, vpop_size. 

(iv) Another relevant operations in GA including 
Evaluation, selection, crossover and mutation 
operation are referred to Ref. 19 and Ref. 20. 

 Operations of the MCs: 
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(v) MCs is employed to initialize the chromosome set 
according to an Uniform distribution. v = 

[ ..., ,...
n

kx ], where  min max~ ,
n

kx u x x , 

1, 2,..., , 1, 2,...,nk K n N   represents that 
n

kx  

is generated uniformly from a space of which the 

lower bound is minx  and the upper bound is maxx . 

That is 
n

kx  follows an Uniform distribution, and is 

generated via MCs. 
(vi) MCs is used to generate the set of uncertain arc 

capacities, ζ .  

3. Computational Experiments 

3.1.  Computational experiment using a single 
network 

A single-commodity network shown in Fig. 1 is 
employed to test the proposed model. There are 9 
points, 12 arcs and 4 Origin-Destination pairs (1-8, 1-9, 
2-8, 2-9). Capacity of each arc is stochastic. The basic 
information of the arc is also shown in Fig. 1.  
In Fig. 1., the data on an arc, N(μ, σ2) denotes the arc 
capacity aζ  following a Normal distribution whose 
expected value is μ and variance is σ2. In this network, 
there are four Origin-Destination pairs. The first Origin-
Destination pair has 3 paths, and, the second and the 
third have two and the fourth has three. The details of 
the paths between Origin-Destination pairs are also 
shown in Figure 3. Then the chromosome for the GA in 
HIA could be designed as v = [

1

1x , 
1

2x , 
1

3x , 
2

1x , 
2

2x , 

3

1x , 
3

2x , 
4

1x , 
4

2x , 
4

3x ]. The detailed computational steps 

of GA in the HIA to solve the problem in this paper 
could be found at the website21, as well as the 
corresponding source code in C langue.  

 

Fig. 1  Single-commodity network for computational 
experiment 

Versus different transportation time reliabilities 
confidence level vectors (γ) and different required 
transportation time vectors (T), several runs of the HIA 
(5000 cycles in Reliability_Check (v), 30 population 
size, 1000 generations, 0.1 crossover probability and 0.3 
mutation probability in GA) show the optimal solutions 
and the objective function values in Table 1. 

Table 1. The optimal solutions and the objective function values versus different γ and T 
Strategy 

 # 
T γ The optimal solution (x) 

The objective function
value (max z) 

1 [55, 55, 55, 55] [0.90, 0.90, 0.90, 0.90] No solution N/A 

2 [50, 60, 80, 80] [0.90, 0.90, 0.90, 0.90] [ 95.33, 0.47, 51.37, 13.29, 33.72, 30.76, 19.76, 119.97, 88.32, 37.10] 465.12 

3 [50, 70, 80, 80] [0.90, 0.90, 0.90, 0.90] [95.14, 2.36, 63.35, 10.55, 21.22, 35.85, 26.17, 119.94, 91.05, 24.96] 490.58 

4 [50, 80, 80, 80] [0.90, 0.90, 0.90, 0.90] [ 95.14, 2.36, 63.34, 10.54, 21.22, 35.85, 26.17, 119.94, 91.05, 24.96] 510.58 

5 [50, 75, 80, 80] [0.90, 0.90, 0.90, 0.90] [85.71, 30.89, 25.60, 38.22, 48.53, 16.43, 44.45, 119.74, 93.35, 25.38] 528.31 

6 [60, 80, 80, 80] [0.90, 0.90, 0.90, 0.90] [114.10, 33.11, 36.86, 41.74, 49.72, 17.15, 63.70, 119.96, 70.34, 25.68] 572.36 

7 [70, 70, 70, 70] [0.90, 0.90, 0.90, 0.90] [109.71, 49.02, 45.73, 16.28, 76.92, 29.67, 18.77, 119.88, 63.27, 41.82] 571.07 

8 [70, 80, 80, 80] [0.90, 0.90, 0.90, 0.90] [107.37, 38.79, 60.48, 22.55, 72.99, 25.14, 26.65, 119.98, 73.17, 46.77] 593.92 

9 [80, 80, 80, 80] [0.90, 0.90, 0.90, 0.90] [133.63, 51.67, 83.23, 31.05, 40.45, 26.97, 50.74, 110.72, 53.25, 41.05] 622.78 

10 [90, 90, 90, 90] [0.90, 0.90, 0.90, 0.90] [142.49, 79.18, 91.31, 15.18, 21.56, 2.12, 40.86, 119.99, 73.24, 56.53] 642.45 

11 [150, 150, 150, 150] [0.90, 0.90, 0.90, 0.90] [150.00, 50.08, 100.35, 50.45, 5.13, 12.65, 32.60, 120.00, 86.21, 42.52] 650.00 

12 [60, 60, 60, 60] [0.10, 0.10, 0.10, 0.10] [117.80, 15.60, 66.89, 27.91, 79.03, 43.52, 53.21, 109.23, 28.60, 27.20] 568.98 

13 [60, 60, 60, 60] [0.20, 0.20, 0.20, 0.20] [116.93, 14.73, 66.01, 27.03, 78.16, 42.64, 52.33, 108.35, 27.73, 26.32] 560.25 
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14 [60, 60, 60, 60] [0.30, 0.30, 0.30, 0.30] [116.40, 14.20, 65.49, 26.50, 77.63, 42.11, 51.80, 107.82, 27.20, 25.80] 555.01 

15 [60, 60, 60, 60] [0.40, 0.40, 0.40, 0.40] [114.95, 12.75, 64.04, 25.05, 76.18, 40.67, 50.36, 106.38, 25.75, 24.35] 540.47 

16 [60, 60, 60, 60] [0.50, 0.50, 0.50, 0.50] [114.30, 12.10, 63.39, 24.41, 75.53, 40.02, 49.71, 105.73, 25.10, 23.70] 533.98 

17 [60, 60, 60, 60] [0.60, 0.60, 0.60, 0.60] [113.42, 11.22, 62.50, 23.52, 74.64, 39.13, 48.82, 104.84, 24.21, 22.81] 525.10 

18 [60, 60, 60, 60] [0.70, 0.70, 0.70, 0.70] [112.99, 10.79, 62.08, 23.09, 74.22, 38.71, 48.40, 104.42, 23.79, 22.39] 520.87 

19 [60, 60, 60, 60] [0.80, 0.80, 0.80, 0.80] [112.77, 10.57, 61.86, 22.87, 74.00, 38.48, 48.17, 104.19, 23.57, 22.17] 518.64 

20 [60, 60, 60, 60] [0.90, 0.90, 0.90, 0.90] [112.52, 10.32, 61.61, 22.62, 73.75, 38.23, 47.92, 103.94, 23.31, 1.91] 516.13 

 
In Table 1, Strategy 2 denotes that we use transportation 
time vector T = [50, 60, 80, 80] and transportation time 
reliability constraint vector γ = [0.90, 0.90, 0.90, 0.90] 
for a run of HIA. Finally we get a feasible chromosome 
v as the solution x = [95.14, 2.36, 63.35, 10.55, 21.22, 
35.85, 26.17, 119.94, 91.05, 24.96]. The objective 

function value max
n

k

n n
n N n N k K

z q x
    

     = 490.58. 

It could be seen from Table 1 that the objective function 
values differ to each other. In the cases of fixed 
transportation time reliability constraints (Strategy 1-11), 
the objective function value (namely, the transportation 
capacity of network) increases when the required 
transportation time increase. It is easy to understand this 
situation that if the transportation time constraint is 
large, the decision-maker would have more flexibility to 
use the network resources. While if the transportation 
time is limited, the transportation mission might not 
been successfully finished on the network. In the cases 
of fixed transportation time constraints (Strategy 12-20), 
the objective function value decreases with the increase 
of the transportation time reliability. This tells us that 
network capacity would decreases if customers ask the 
high level reliabilities of successfully transporting 
commodities between all Origin-Destination pairs in 
limited time requirements. 

3.2.  Comparing with the published work 

In Ref. 19 and Ref. 20, Liu also developed a hybrid 
intelligent algorithm to deal with the optimization 
problem with stochastic constraints. This algorithm 
integrates a back-propagation neural network (BPNN) 
in GA. When solving an optimization problem with 
Liu’s HIA, the BPNN is firstly trained with a large 
number of sampling data. Then the trained BPNN is 
used in GA to approximate the stochastic function value 
instead of MCs in our HIA. Details of this HIA could be 
found in Ref. 19 and Ref. 20. Since that Liu’s HIA is 

 
similar to our algorithm proposed in this paper, and that 
it has been verified to have the better performance than 
other heuristic algorism (e.g. advance Tabu search, SA) 
when being used to solve the stochastic optimization 
problem20, necessarily, we could just compare our 
HIA’s performances than that of Liu’s.   
To validate the computational efficacy of the procedure, 
we compared our algorithm against Liu’s HIA using a 
real transportation network shown in Fig.2. 
This real transportation network is taken from the street 
network of New York City, USA. The area which this 
network is included has a ZIP Code ranges from 10001 
to 10036. In this street network, there are 790 number of 
nodes, 1,473 number of arcs, 20 number of origin-
destination nodes which consist of 20×20=400 Origin-
Destination pairs. For convenience, all the components 
of the transportation time vector are set as 100 unit 
times. That is, set T = [100, 100, …, 100]. At the same 
time, set all the components of the transportation time 
reliability constraint vector as 0.9, i.e., let γ = [0.90, 
0.90, …, 0.90]. 
The computing times of these two HIAs for network 
capacity calculation were obtained by changing a 
variety of parameters. The results of this computational 
experience are shown in Table 2. 
For this real commodity network, it can be observed that 
for small size problems tested, the computational time 
for the three procedures was relatively the same.  
However, as the problem size become relatively large, 
the HIA algorithm developed in this paper determining 
the network capacity much more rapidly in terms of the 
computational time than Liu’s HIA algorithms. The 
reason is that the back propagation neural network has 
too many drawbacks such as easily being trapped into a 
local minima. We change Liu’s solution technique via 
using MCs to approximate the uncertain functions so 
that the search capacity of the algorithm is enhanced. 
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Fig. 2 The real road network for comparative computational time analysis 

Table 2.  Computational times of HIAs in a real transportation network 
The real transportation network 
No. of common nodes 790 
No. of origin-destination nodes 20 
No. of OD pairs 400 
No. of arcs 1473 

The maximal practical capacity of each arc a∈A, 
max
ac  1.0 

The minimal practical capacity of each arc a∈A, 
min
ac  0.0 

Parameters in GAs of HIAs 
Cycles in Reliability_Check (v), 5, 000 
Population size 30 
Generations 2000 
Crossover probability 0.1 
Mutation probability 0.3 

Computing time of HIAS for NCTTRC 

For determining transportation capacity of a sub-network with one  
Origin-Destination pair between which there is one path 

Algorithm ① 30.54 sec 

Algorithm ② 36.10 sec 

For determining transportation capacity of a sub-network two Origin-Destination
pairs, between each Origin-Destination pair there are five paths 

Algorithm ① 350.61 sec 

Algorithm ② 389.95 sec 

For determining transportation capacity of a sub-network five Origin-Destination
pairs, between each Origin-Destination pair there are five paths 

Algorithm ① 800.03 sec 

Algorithm ② 1231.80 sec 

For determining transportation capacity of a sub-network ten Origin-Destination
pairs, between each Origin-Destination pair there are ten paths 

Algorithm ① 3569.48sec 

Algorithm ② 5688.22 sec 

For determining transportation capacity of a sub-network twenty Origin-
Destination pairs, between each Origin-Destination pair there are ten paths 

Algorithm ① 8002.33 sec 

Algorithm ② 13470.89 sec 

Algorithm ①=Our HIA Algorithm;  Algorithm ②=Liu’s HIA Algorithm20 
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4. Conclusions 

The focus of this paper is to develop a mathematical 
program to determine the maximal total throughput, that 
is the capacity of a transportation network and to study 
the impact of uncertainties on network capacity. The 
network capacity is defined as the maximum 
commodities which will be transported across every 
origin-destination pair in the network. A solution 
technique embedded genetic algorithm with Monte 
Carlo simulation is used to determine the capacity of a 
single-commodity transportation network. The 
computational time of the proposed algorithm has been 
compared with that of the previous work and finds that 
the performance of the algorithm in this paper is more 
or less improved. 
The second major contribution of this paper is to 
systematically study the impact of uncertainty of arc 
capacity in the single-commodity network. One should 
note that even though the transportation capacity will 
vary depending on the network configuration and 
demand levels, the fact that uncertain arc capacity 
occurs is valid for most networks. However such a 
situation has not been mathematically considered into 
the transportation network capacity determination.  
This algorithm is general and is applicable to any 
variation of the problem studied in this paper. The 
sampling based strategy can be easily extended to 
handle transportation time uncertainty also. This work 
could be extended in multiple directions. There is need 
for accounting for level of service constraints in the arcs 
in the network and to account for variation in arc 
performance based on flow using link performance 
functions22. In practice, we would look more closely at 
the following directions: 
(i) Network capacity computation with other 

constraints such as level of service or capacity 
robustness. 

(ii) Consideration of other stochastic events such as 
transportation accidents during determining the 
network capacity. 

(iii) Compatibility between the increase and the use of 
the network capacity. 
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