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Abstract 

Reliable vehicle localization is a basic requirement in many applications in transportation field. GPS-based 
localization is quite popular nowadays. However, in urban environments applications, signal of GPS is often 
blocked by surrounding objects like high-rise buildings, tunnels, overhead roads, etc, making localization 
information unavailable. This paper proposed a laser radar based map matching approach to address this problem, 
especially when GPS signal blocked area is large. The proposed approach includes mapping and localization. In the 
mapping, after map initialization sensor data constraints are linearized to formulate an optimal linear estimation 
based map optimization framework, which can improve map accuracy effectively. In the localization, vehicle pose 
is estimated by matching the current laser scan with the best submap and by a UKF (Unscented Kalman Filter) 
based fusion strategy. Results from both synthetic and real experiments show good performance of the proposed 
approach. 
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1. Introduction 

Vehicle localization is a fundamental task in many 
applications1. In-car navigation systems use its 
localization module to compute vehicle's current 
position and show it on a digital map to tell drivers how 
to get from one location to another efficiently. With a 
localization system, vehicle can communicate its 
position to a monitoring center, which will help 
operators to direct vehicle fleets as efficiently as 
possible since they know the traffic flow on different 
roads. Furthermore, vehicle localization is also quite 
important in intelligent transportation systems, such as 

Advanced Driver Assistance Systems and driverless 
vehicles. They require reliable and accurate localization 
to make intelligent decisions or realize automatic 
navigation. 

Global Positioning System (GPS) has been widely 
used in vehicle localization systems2,3. However, a big 
problem with GPS-based localization is that GPS signal 
is often blocked by surrounding objects, especially in 
urban environments4. For example, high-rise buildings, 
tunnels, overhead roads or even tall trees can block GPS 
signals seriously, making localization information 
unavailable. This is a quite critical problem, especially 
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in applications requiring reliable and continuous vehicle 
localization. 

Many efforts have been made to tackle this 
problem. Additional devices such as altimeters and 
precise clocks Ref.1 have been used to provide 
additional information. Ref.5 suggested a constrained 
method by modeling the traveling path as pieces of lines. 
In this method, the minimum number of satellites 
required is reduced to two. In Ref.6, authors used the 
constraints that the altitude of the vehicle and vehicle 
speed are approximately constant. Then they designed a 
localization algorithm requiring number of satellites 
fewer than 4. A more popular approach is the 
integration of GPS with Inertial Navigation Systems 
(INS) or dead reckoning sensors such as encoders to 
provide continuous localization information2. Although 
many approaches have been proposed, most of them 
assumed that the duration of the blockage of GPS 
signals is short (the GPS signal blocked area is small) or 
there is still several satellites can be viewed. How to 
localize a vehicle in a large blocked area without visible 
satellites? This is our motivation to carry out the work 
in this paper. 

In large GPS signal blocked areas, map matching 
can be used to address the localization problem. It 
should be noted that the map matching here is quite 
different from the one often used in vehicle navigation 
systems, in which map matching is realized by matching 
the current vehicle location and history trajectory with 
the road network of a digital map7. In our case, map 
matching is carried out by matching sensor 
measurements with an environmental map8, which is 
often used in robotic field. 

In map matching, one difficulty is how to create a 
precise map. Simultaneous Localization and Mapping 
(SLAM)9 is an attractive technique for vehicle 
navigation in an unknown environment. However it may 
not be suitable for real-time accurate localization if it’s 
applied in outdoor unstructured environments. 
Additionally, SLAM is not necessary for vehicle 
localization in urban environments (actually in GPS 
signal blocked areas) since the environments are known 
to us. Therefore, we can just first create a map and then 
use the map to localize a vehicle, which can ensure 
reliability and efficiency.  

The proposed approach for vehicle localization in 
GPS signal blocked areas includes two steps: mapping 
and localization. Mapping is done offline and 

localization is real-time. In the mapping step, a vehicle 
is manually guided to explore environment (blocked 
area), recording sensor data from laser radar and 
odometry with time stamps. Additionally, GPS data in 
entrance and exit of blocked area is also recorded for 
mapping. Mapping algorithm utilizes these sensor data 
and an optimization strategy to create a precise map. 
Optimization is achieved based on linearizing 
constraints from sensor data. In the next step, the 
created map can be shared with other vehicles to 
localize themselves by map matching. Map matching 
applies a robust version of ICP (Iterative Closest Point) 
algorithm registering the current laser frame with the 
best submap. A UKF (Unscented Kalman Filter) based 
fusion strategy is also designed to improve reliability by 
fusing map matching result with dead reckoning. 

The rest paper is organized as follows: section 2 
firstly discusses the pairwise range scans registration 
problem, which is a fundamental technique in our 
mapping and localization approach; then section 3 
describes how the recorded data is processed to create 
an accurate map. In section 4, a localization algorithm 
including map matching and fusion is presented. Next, 
section 5 shows experimental results with both synthetic 
and real data; finally, section 6 ends this paper with 
some conclusions. 

2. Pairwise Range Scans Registration  

Laser radar is used to collect environmental 
information in GPS signal blocked area. The laser radar 
was fixed on the top of the vehicle to reduce the effect 
of moving object. The output of laser radar is called 
range scan, which is a list of points corresponding to 
the intersection of a laser beam with objects in the 
environment. The laser beam rotates in a horizontal 
plane. Thus a range scan describes a 2D slice of the 
environment.  

Both mapping and localization in the proposed 
approach are based on pairwise range scans registration. 
This technique is usually applied to compute translation 
and rotation between two frames to estimate ego motion 
of a vehicle. ICP is a useful algorithm for addressing the 
pairwise registration problem10. It selects the closest 
point as corresponding point and then estimates 
registration parameters by minimizing the value of a 
given error function. These two steps are iteratively 
implemented to obtain an accurate result. 
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Establishing correct corresponding points is crucial 
in ICP. Here, we apply following three considerations 
for determining correspondences: 
1) Corresponding points has shortest Euclidean 

distance in world reference frame. Furthermore this 
Euclidean distance has to be within the uncertainty 
of odometry data (odometry data is used to predict 
vehicle poses). 

2) Corresponding points should have similar normal 
direction. 

3) Applying M-estimator within iterative procedure. 
Given h pairs of corresponding points {(Pk ,CPk)}, 

k=1,2…h. Let be (tx, ty, tr) the translation and rotation 
between two range scans. The objective of ICP is to 
estimate (tx, ty, tr) accurately. The error function of ICP 
is defined in the form of weighted least-square: 
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where ke  is the absolute value of residual error, µ  is 
the mean of ke  , σ is the standard variance of ke . 

A closed-form solution can be derived as: 
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The procedure of ICP algorithm is illustrated in Fig. 
1. Odometry data is utilized to give initial values of (tx, 
ty, tr) to start ICP. Proper threshold need to be chosen to 

stop the iterative procedure according to the accuracy 
requirement. Pairwise registration technique will be 
applied both in mapping and localization. In the 
mapping, corresponding points determined in the final 
iterative step are used in map optimization. In the 
localization, it is used as basic map matching technique 
to estimate vehicle poses. 

Pairwise registration may fail because of errors in 
sensor data acquisition and processing. If one of the 
following cases happens, the result of pairwise 
registration will be considered trustless: 
1) The number of corresponding points established in 

final iterative step is smaller than a threshold (for 
example, 25).  

2) The number of iterations exceeds the maximal one 
(for example, 30).  

3) Vehicle displacement computed by pairwise 
registration is larger than a predicted uncertainty 
(by using odometry data). 

 

Fig. 1 Illustration of ICP algorithm 

3. Mapping in GPS Signal Blocked Area 

If the duration of GPS signals blockage is short, we can 
integrate dead-reckoning with GPS system to obtain a 
reliable localization. However, if the blockage duration 
is long, we have to apply other technique. Here, we 
apply map matching based localization. Thus, the first 
problem we need to solve is how to create a precise map. 

3.1. Coordinate Systems 

Fig. 2 shows the world reference frame and vehicle 
reference frame denoted by XWOWYW and XVOVYV 
respectively. The origin of vehicle reference frame is in 
the middle of the rear axle. Vehicle pose is denoted by X 
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(x, y, r), representing position and orientation of a 
vehicle in the world reference frame. 

Fig.3 illustrates the relationship between world 
coordinates (xw, yw) and vehicle coordinates (xv, yv) of 
a scan point p (assume laser scan points have been 
transformed from laser coordinates to vehicle reference 
frame by calibration), which can be expressed as: 

cos( ) sin( )
sin( ) cos( )

xw r r xv x
yw r r yv y

−       
= ⋅ +       

         
Above equation can be rewritten as: 

[ , ] ( , , , , ) ( , , )Txw yw f x y r xv yv f X xv yv= =  (1) 
where f is a non-linear coordinates transformation 
function. 

  
     Fig. 2 Coordinates system    Fig. 3 Coordinates relationship 

3.2. Scan Data Preprocessing 

Although laser radar has been fixed on the top of the 
vehicle aiming to reduce the effects of moving objects, 
we still need a special consideration on data 
preprocessing to extract stable environmental 
information to create a stable map. Some isolated points 
in the scan data have to been removed since they may 
be noises. And some unstable natural objects like tree 
leaves, which may reduce reliability in range scans 
registration, also need to be removed. 

The first step of data preprocessing is clustering 
(also called segmentation). A cluster is a set of scan 
points close enough to each other that probably belong 
to the same object. The clustering method applied here 
is based on Ref.11. The main idea is to subdivide each 
scan into small sets of neighboring points (clusters), 
considering the proximity between two consecutive 
points of the scan. After clustering, clusters with small 
number of scan points (smaller than 5) are removed 
since they are objects far from current vehicle position 
or noises. Additionally, we analyze the standard 
deviation (x,y direction) of each cluster to check 
whether it belongs to natural object (like tree leaves). 
The basic idea is that, unlike man made object which 

has certain geometric shape, points from natural object 
are scattered due to its irregular geometric shape and 
will have high standard deviation values both in x and y 
directions12. Fig. 4 shows the clustering and standard 
deviation analysis results of one laser scan. Only 
clusters belong to man made objects remain for further 
processing.  

In section 2, we have mentioned that normal 
direction of scan point is used for determining correct 
correspondences in ICP algorithm. Point’s normal 
direction is computed by fitting to a neighborhood of 
points centered at that point13. Furthermore, points with 
large fitting error will be removed since this usually 
means the normal direction is poorly defined due to 
high-curvature points or highly noisy regions. Fig. 5 
displays the result, where points enclosed by circles are 
those with large fitting errors. 

  

Fig. 4 Clustering and          Fig. 5 Normal direction 
Standard deviation analysis                   of scan points 

3.3. Map Initialization 

The map is divided into lots of submap, which is called 
map frame, denoted by Mi ={Xi, Si}. Xi represents 
vehicle pose and Si represents laser scan data after 
preprocessing. Suppose there are n+1 map frames in the 
map and thus the entire map can be expressed as Map = 
{M1, M2,…, Mi,…, Mn}. Laser scan frame rate is 
important and can be set according to the vehicle speed 
to keep a suitable overlapping size between consecutive 
laser scans. This overlapping redundancy is essential to 
carry out following map optimization.  

The main difficulty in creating a map is how to get 
vehicle poses. This is an ego-motion estimation 
problem10. Here, we simply apply odometry based dead-
reckoning to estimate vehicle poses. However, large 
accumulative error will be introduced over long time. 
Therefore, we need optimization approach to improve 
map accuracy. 
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After vehicle poses has been estimated (may include 
large errors), we can group each vehicle pose with 
corresponding laser scan data. 

3.4. Map Optimization 

In Fig. 6, suppose curve AB is true trajectory of vehicle 
moved in GPS signal block area. Because of 
accumulated errors in dead-reckoning, the vehicle pose 
trajectory estimated in map initialization may be like 
curve AB’, which will result in large errors in a global 
map and make map matching based localization 
unsuccessful. So we need to improve vehicle pose 
accuracy to obtain a precise map. 

 

Fig. 6 Vehicle trajectory error in initial map 

Some methods have been presented to improve 
map accuracy. Zhao14 first incrementally created a map 
by sequential matching. Because of error accumulation, 
there was a gap when closing a loop. Then Zhao 
distributed error (gap) equally in sequence to obtain a 
consistent map. This approach is direct and easy to be 
implemented but the accuracy is limit. Estrada.C15 
proposed a nonlinear constrained least-squares 
optimization approach. The solution was found by 
Sequential Quadratic Programming (SQP). This is an 
impressive method for efficient maintenance of loop 
consistency. However some complicated Jacobians need 
to be computed. Our map optimization approach was 
inspired by the approach proposed by Lu16. 
Nevertheless, we extended his approach to outdoor 
application and included two types of sensor data from 
laser radar and GPS (at the entrance and exit points of 
GPS signal blocked area) in the same optimization 
framework. In the following, we first explore two kinds 
of constraints and then linearize the constraints to 
formulate the definition of optimal linear estimation 
based map optimization. 

3.4.1 Constraint from range scans registration 

When vehicle moves, the same physical point p may be 
observed repeatedly in different vehicle poses, Xi, Xj for 
example (the repeatedly observed points are called 
corresponding points). According to equation (1), we 
can obtain following equation: 

( , , ) ( , , )p i i i j j j dd f X xv yv f X xv yv e= − =
 

where ed is a small value, representing errors in vehicle 
poses and laser scan measurements. The above equation 
indicates constraint on Xi , Xj by one scan point. If there 
are h points, constraint can be formulated by 
minimizing following expression: 

2 2

1 1

|| || || ( , , ) ( , , ) ||
h h

k k k k k
p i i i j j j

k k
d f X xv yv f X xv yv

= =

= −∑ ∑ (2) 

Unfortunately, because of non-linear function f, the 
constraint is also non-linear. In order to formulate a 
linear map optimization algorithm, the constraint should 
be linearized. 

Let ^ ^ ^ ^( , , )i i i iX x y r and ^ ^ ^ ^( , , )j j j jX x y r be some initial 
estimates of Xi and Xj with following equations: 

^

^

i i i

j j j

X X X

X X X

δ

δ

= −

= −
 

Measurement equation of linearized constraint is 
given by: 

,i j i i j jD H X H Xδ δ= −
 

The observation of Di,j and corresponding 
covariance matrix can also be derived, which are 
denoted by Di,j

* and Ci,j
*.  

Note that corresponding points used in formulating 
above constraint are determined by pairwise range scans 
registration described in section 2. Since one map frame 
can carry out valid pairwise registration with several 
other map frames (here “valid” means registration result 
don’t meet the conditions described in the end of section 
2), we can obtain a constraints network as displayed in 
Fig. 7. 

 

Fig. 7 Constraints network 
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3.4.2 Constraint from GPS data 

In GPS signal blocked area, GPS data is unavailable. 
However, at the entrance and exit points of this area, 
GPS data can be used to improve map accuracy. Two 
vehicle poses corresponding to these entrance and exit 
points are X0 and Xn in map frames M0 and Mn. Pose 
relations with these two vehicle poses can be derived as: 

0, 0( , ) ( , , )n nT g X X tx ty tr= =   (3) 

where: 

0 0 0 0

0 0 0 0

0

( ) cos( ) ( ) sin( )
( ) sin( ) ( ) cos( )

n n

n n

n

tx x x r y y r
ty x x r y y r
tr r r

= − ⋅ + − ⋅
 = − − ⋅ + − ⋅
 = −  
Suppose the pose relation obtained by GPS data is 

TGPS, so we can formulate constraint as: 

0,GPS n TT T e− =   (4) 

where eT is a small value, representing errors with GPS 
data. This constraint is also a non-linear one.  

Let ^ ^ ^ ^
0 0 0 0( , , )X x y r and ^ ^ ^ ^( , , )n n n nX x y r be initial 

estimates of X0 and Xn with following equations: 
^

0 0 0
^

n n n

X X X

X X X

δ

δ

= −

= −  
Measurement equation of linearized constraint is 

given by: 

,0 0 0n n nD H X H Xδ δ= −
 

The observation of Dn,0 and corresponding covariance 
matrix can also be derived, which are denoted by Dn,0

* 
and Cn,0

*. The result is the same with that of pairwise 
range scans registration constraint. Therefore, we can 
formulate a uniform map optimization framework. 

3.4.3 Map optimization with linear constraints 

Combining all linearized constraints from pairwise 
range scans registration and GPS data, map optimization 
can be formulated in an optimal linear estimation sense 
based on maximum likelihood criterion, which is to 
minimize the following Mahalanobis distance: 

1* * *
, , , , ,

0

( ) ( ) ( )T
i j i j i j i j i j

i j n
E D D C D D

−

≤ < ≤

= − −∑
 

Above equation can be rewritten as: 
1* * *

, , ,
0

( ( )) ( ) ( ( ))T
i j i j i j i j i j

i j n
E D V V C D V V

−

≤ < ≤

= − − − −∑
 

where i i iV H Xδ= . Furthermore, we can represent the 
above equation in matrix form: 

* * 1 *( ) ( ) ( )TE D GV C D GV−= − −  
By applying optimal linear estimation theory, the 

optimal solution for V which minimize E can be 
obtained: 

( ) 1* * 1 * 1 *( ) ( )T TV G C G G C D
−− −=

 
Separating Vi * from V *, we can derive following 

optimal vehicle pose: 
* ^ * ^ 1 *

i i i i i iX X X X H Vδ −= − = − ⋅
 

After optimization, map can be updated with new 
vehicle poses. Note that Taylor expansion based 
linearization is applied in our map optimization 
algorithm, in which accuracy of linearization depends 
on the accuracy of initial estimate of vehicle poses. 
Therefore, we can iteratively carry out the proposed 
algorithm with new derived pose estimates to get more 
accurate result. The iterative strategy converges very 
fast. Typically it usually takes three or four iterations to 
converge to the limit of machine accuracy. 

4. Vehicle Localization 

After mapping in GPS signal blocked area, the created 
map can be shared with other vehicles to localize 
themselves in this area. Localization is achieved by map 
matching, which is also a pairwise range scans 
registration problem between current laser scan and one 
map frame in the map. A UKF based fusion strategy is 
also applied to improve reliability. Sensor data utilized 
in the localization are laser scans and odometry. 

4.1. Vehicle Motion Model 

Fig. 8 illustrates the relationship between vehicle poses 
at time step i and time step i+1. ICR represents Instant 
Center of Rotation.  

Vehicle motion model can be derived from the 
geometry: 

     
1

1

1

cos( 2 2)
sin( 2 2)

i i i

i i i

i i

x x ds r dr
y y ds r dr
r r dr

π
π

+

+

+

+ ⋅ + +   
   = + ⋅ + +   
   +   

     (5) 

where (ds, dr) represents the odometry data between 
time step i and i+1, which can be obtained from optical 
encodes fixed on the vehicle. Equation (5) can be used 
to predict vehicle poses. 
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Fig. 8 Vehicle motion model 

4.2. Map Matching Based Localization 

The first problem in map matching is how to choose one 
best map frame as reference from entire map. To 
address this problem, we use predicted vehicle pose by 
equation (5). The map frame whose center is closest to 
the center of current laser scan in world coordinates is 
selected. By this idea, the selected map frame is the one 
who contains the largest part of the same environmental 
information with the current laser scan, which will 
improve the reliability of map matching. 

Because vehicle pose predicted by odometry is 
accurate within short period (interval between two 
successive laser scans), the above idea works well in 
practice. 

Localization is achieved by pairwise registration 
between the current laser scan (after preprocessing, 
represented by Scur) and the selected reference map 
frame (represented by Sref). Localization mainly 
includes three steps: 
1) Project Sref to the predicted vehicle pose (by 

equation (5)), denoted by Sref *. 
2) Matching Scur with Sref * by pairwise registration 

described in section 2. The matching result is (tx, ty, 
tr), representing the translation and rotation 
between two scans. 

3) Derive new vehicle pose as: 
*

*

*

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

x x r r tx
y y r r ty
r r tr

−       
       = + ⋅       
              

       (6) 

where (x, y, r) is the predicted vehicle pose. 

4.3. UKF Based Fusion 

Because of noises in data acquisition and errors in 

preprocessing and ICP registration, localization only by 
map matching is not reliable. Therefore, we fuse map 
matching result with odometry based dead-reckoning by 
UKF17. 

UKF is a nonlinear estimation algorithm, which 
utilizes a deterministic "sampling" approach to calculate 
the mean and covariance of the state. The state 
distribution approximated by Gaussian random 
variables is represented by a set of chosen sample points. 
These sample points capture the true mean and 
covariance of the state distribution, and when 
propagated through the nonlinear system, capture the 
posterior mean and covariance.  

In our approach, system’s state is vehicle pose. 
System’s dynamic model is defined as: 

1 1

1 1 2

1 3

cos( 2 2)
sin( 2 2)

i i i

i i i i

i i

x x ds r dr q
X y y ds r dr q

r r dr q

π
π

+

+ +

+

+ ⋅ + +     
     = = + ⋅ + + +     
     +     

  (7) 

1 1

1 1 2

1 3

i

i i

i

x v
Z y v

r v

+

+ +

+

   
   = +   
      

                           (8) 

where equation (7) is derived from equation (5), 
representing odometry based dead-reckoning result. qi 
represents process noise with dead-reckoning in one 
time step, which is modeled as Gaussian distribution 
with zero mean and Cq covariance. Measurement 
equation is expressed by equation (8), given directly by 
vehicle pose added with noises denoted by vi, which is 
also modeled as Gaussian distribution with zero mean 
and Cv covariance. Observed measurement value is 
given by map matching based localization applying 
equation (6). Cq and Cv can be roughly estimated offline. 
If the result of map matching is trustless (meeting the 
conditions described in the end of section 2), Cv should 
be set to a very large value. 

5. Experiment 

5.1. Experiments with Synthetic Data 

A simulation system was developed to test and analyze 
our proposed approach. Fig.9 shows a simple synthetic 
environment, where polygons represent buildings, 
circles represent tree trunks and the black triangle 
represents vehicle. The vehicle can be controlled 
through keyboard. Configuration of laser radar was set 
as 80m of maximum measurement distance, 0~180 
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degree of angular range and 0.5 degree of angular 
resolution. Moreover, Gaussian noises with zero mean 
and standard deviation of 4cm and standard deviation of 
0.2 degree were added to each scan data point to 
simulate the noises may contained in real scan data. 

In the mapping, even small errors introduced in the 
vehicle pose (especially in the vehicle orientation) may 
result in large errors in a map. Here, we test the 
effectiveness of our mapping algorithm. Virtual vehicle 
was controlled to move along a waved curve and 
vehicle poses as well as laser scans were recorded for 
mapping. Additionally, odometry data was also 
generated by adding Gaussian noise to the relative 
vehicle poses. The true vehicle trajectory and trajectory 
by odometry based dead-reckoning are displayed in 
Fig.10, displaying large accumulative errors with dead-
reckoning. 

  

Fig. 9 Synthetic environment      Fig. 10 Vehicle trajectories 

 

Fig. 11 True map                  Fig. 12 Noisy map 

True map created with true vehicle poses (scan 
points were transformed and displayed in the world 
reference frame for a better visualization) is displayed in 
Fig. 11 and initial noisy map created with vehicle poses 
by dead-reckoning is in Fig. 12, showing considerable 
errors in initial map (please see the synthetic 
environment in Fig. 9 again for a better understanding 
of the mapping results). Total number of map frames 
was 154.  

Next step, we tested our map optimization 
algorithm. Totally 906 pairwise scans registration 
constraints and 1 “GPS data” constraint (by using the 

first and last true vehicle poses added with some 
Gaussian noise to simulate errors of GPS data) were 
established. The algorithm converges very fast. 
Typically it takes three or four iterations to converge to 
the limit of machine accuracy. Fig. 13 displays the map 
created with the new vehicle poses after map 
optimization, which is quite similar with the true map. 
Comparing with Fig.12, our proposed optimization 
algorithm achieved considerable improvement in map 
accuracy. 

 

Fig. 13 Optimized map 

5.2. Experiments with Real Data 

The proposed approach has been tested with real data 
from an intelligent vehicle developed at Shanghai Jiao 
Tong University. Laser range data was captured by 
SICK LMS 291-S05, with 80m of maximum 
measurement distance, 0~180 degree of angular range 
and 0.5 degree of angular resolution. Equipped GPS is a 
NTC2030W RTK-GPS supplied by NavCom company. 
Odometry data was obtained from two optical encoders 
equipped on driving motor and steering motor. 
Resolution of the former encoder is 2000 pulse/rotation 
and that of the latter encoder is 1000 pulse/rotation. 
These resolutions were quadrupled by DSP. Vehicle 
speed was about 2-4m/s. The vehicle is shown in Fig. 14. 

 
Start End

 
     Fig. 14 Intelligent vehicle      Fig. 15 1st experimental place 

The first experimental place is displayed in Fig. 15. 
Vehicle moved along the red path. GPS information 
during this movement is shown in Fig. 16, where (a) is 
the number of visible satellites and (b) is GPS working 
mode (0-fix not available, 1-GPS fix, 2-Differential 
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GPS fix, 3-PPS fix, 4-Real Time Kinematic, 5-Float 
RTK). We used laser scans, odometry data as well as 
GPS data at “start” and “end” points to create a global 
map. Laser scans were recorded for mapping about 
every one meter along the path. 

 
(a) Number of visible satellites 

 
(b) GPS working mode 

Fig. 16 GPS information along the path 

Initial map without map optimization is displayed 
in Fig. 17 (scan points were transformed to the world 
reference frame), which contains 134 map frames. 
Optimized map created based on constraints from 
pairwise scans registration (791 constraints) and GPS 
data is displayed in Fig. 18. Comparing Fig. 17 and Fig. 
18, we can see large improvement in map accuracy by 
the proposed optimization algorithm. 
 

 

Fig. 17 Initial map           Fig. 18 Optimized map 

Second experiment was carried out in the place 
displayed in Fig.19, where vehicle moved along the red 
path. GPS information in this experimental place is 
quite good (almost in RTK or float RTK mode) and we 
used GPS data as ground truth. 
To test our proposed approach, we assumed the region 
between A and B in Fig. 18 was GPS signal blocked 
area. Vehicle localization in this area should be 
achieved by map matching. We used laser scans (every 
one meter along the path), odometry data as well as 
GPS data at A and B to create a map. Entire map 
contains 126 map frames. Initial map without map 

optimization is displayed in Fig. 20. Optimized map 
created by using pairwise scans registration constraints 
(812 constraints) and GPS data constraint is displayed in 
Fig. 21, showing good improvement in map accuracy.      

After a map has been created, localization can be 
achieved by map matching. Fig.22 shows the 
localization results. Ground truth is the trajectory by 
GPS data fused with odometry. These results prove 
good performance of the proposed approach. 

A

B

  

Fig. 19 2nd experimental place  Fig. 20 Initial map 

 

Fig. 21 Optimized map of the second experiment 

 

    Fig. 22 localization results     Fig. 23 Effectiveness 

We also compared map matching result with that of 
map matching & UKF, displayed in Fig. 23. Because of 
the noises in measurements and pairwise registration, 
localization only by map matching was not smooth 
enough. However, map matching fused with odometry 
by UKF gave a more reliable result, showing good 
effectiveness of the proposed fusion strategy. 
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6. Conclusion 

GPS-based approach is popular in vehicle localization. 
However this approach is sensitive to surrounding 
environmental conditions. Many objects like high-rise 
buildings, tunnels, overhead roads or even tall trees can 
block GPS signals seriously, making localization 
information unavailable. If GPS signal blocked area is 
small, Inertial Navigation Systems or dead reckoning 
can be integrated with GPS to provide continuous 
localization information, whereas if blocked area is 
large, other techniques have to be applied. This paper 
proposed a laser radar based map matching approach to 
address the localization problem in large GPS signal 
blocked area.  

One difficulty in map matching is how to create a 
precise map. By linearizing constraints from sensor data, 
we designed an efficient optimal linear estimation based 
map optimization algorithm, which improves map 
accuracy greatly.  

Localization is achieved by map matching, which 
is a pairwise range scans registration between current 
laser scan and one map frame in the map. Because of 
noises in data acquisition and errors in data 
preprocessing and pairwise registration, localization 
only by map matching is not reliable. Therefore, we 
fuse map matching result with odometry based dead-
reckoning to improve reliability. Experimental results 
show the good performance of the proposed approach. 
This approach can be integrated with existing GPS-
based technique to provide continuous localization 
information.  

Future work will mainly focus on the further 
improvement in reliability and accuracy. Fusing with 
other sensors, like camera, is also an emphasis in our 
future work. 
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