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Abstract

Gait recognition aims to identify people by the way they walk. In this paper, a simple but effective gait
recognition method based on outermost contour is proposed. For each gait image sequence, an adaptive
silhouette extraction algorithm is firstly used to segment the frames of the sequence and a series of post-
processing is applied to obtain the normalized silhouette images with less noise. Then a novel feature
extraction method based on outermost contour is performed. Principal Component Analysis (PCA) is
adopted to reduce the dimensionality of the distance signals derived from the outermost contours of sil-
houette images. Then Multiple Discriminant Analysis (MDA) is used to optimize the separability of gait
features belonging to different classes. Nearest Neighbor (NN) classifier and Nearest Neighbor classifier
with respect to class Exemplars (ENN) are used to classify the final feature vectors produced by MDA. In
order to verify the effectiveness and robustness of our feature extraction algorithm, we also use two other
classifiers – Backpropagation Neural Network (BPNN) and Support Vector Machine (SVM) for recogni-
tion. Experimental results on a gait database of 100 people show that the accuracy of using MDA, BPNN
and SVM can achieve 97.67%, 94.33% and 94.67%, respectively.

Keywords: Gait recognition, Outermost Contour, Principal Component Analysis, Multiple Discriminant
Analysis, Back Propagation Neural Network, Support Vector Machine.

1. Introduction

Gait recognition, aiming to identify individuals by
the way they walk, is a relatively new research di-
rection in biometrics. In comparison with the first
generation biometric traits such as fingerprint, face
and iris, gait has many advantages. It does not re-
quire users’ interaction and it is non-invasive. Also
it is difficult to conceal or disguise. Furthermore,
gait can be effective for recognition at a distance or

at low resolution, while other biometric traits are
not available. To the best of our knowledge, gait
is the only perceivable biometric trait from a great
distance. Therefore, gait receives increasing interest
from researchers and various approaches have been
proposed on gait recognition domain recently.

Current gait recognition approaches can be di-
vided into two categories: model-based ones and
model-free ones. Model-based approaches construct
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human model and use the parameters of the model
for recognition. An early such attempt 1 mod-
eled the lower limbs as two inter-connected pen-
dulum. Lee and Grimson 2 used seven ellipses to
model the human body. Yam et al.3 used dou-
ble pendulum to describe the thigh and lower leg
movements. However, the majority of current ap-
proaches are the model-free approaches which are
simple and fast. The model-free approaches do not
model the structure of human motion, but deal di-
rectly with image statistics. Murase and Sakai 4 pre-
sented a template matching method which used the
parametric eigenspace representation to reduce the
computational cost. Little and Boyd 5 used scale-
independent features from moments of the dense op-
tical flow to represent the shape of human motion.
Wang et al.6 extracted gait feature through upwrap-
ping the outer contour of each silhouette. Han et
al.7 represented gait image sequence by gait energy
image and synthetic template, and used fused fea-
ture for recognition. Chen et al.8 proposed frame
difference energy image to suppress the influence of
silhouette incompleteness in gait recognition.

All the proposed approaches promote the devel-
opment of gait recognition domain. However, there
are still many challenges in gait recognition, such as
imperfect segmentation of the walking subject, dif-
ferent walking directions of the subject, changes in
clothes, and changes of gait as a result of mood or in-
jury, or as a result of objects carrying. In this paper,
we propose a model-free gait recognition approach
which can tolerate imperfect segmentation to some
extent.

In fact, this paper is an extension of an earlier
version presented in paper 9. The main contribution
of paper 9 is a novel gait feature extraction method
based on outermost contour. This method is easy
to comprehend and implement, and has a very low
computational cost. Based on this contribution, we
make two main extensions in current paper. The two
main extensions are summarized as follows:

• In order to verify the effectiveness and the robust-
ness of the proposed feature extraction method,
we introduce other two classifiers – BPNN and
SVM for recognition.

• We carry out comparisons on recognition accu-

racy between our method and other state-of-the-
art gait recognition methods.

The overview of our gait recognition method is
shown in Fig. 1. It contains two major parts – the
training part and the testing part. In training part,
we first extract features from the input training gait
sequences. Then PCA is performed to reduce the
dimensionality of the extracted features. Finally,
one of the three classification approaches – MDA,
BPNN and SVM is used for training. In testing
part, we also extract feature of the test gait sequence
firstly. Then the model established in the training
stage is used to identify the feature of the testing gait
sequence.

Fig. 1. Overview of our gait recognition method.

The remainder of this paper is organized as fol-
lows: Section 2 describes the proposed feature ex-
traction method in detail. In section 3, we give
a brief introduction of the three classification ap-
proaches – MDA with NN or ENN, BPNN and
SVM. Experimental results are presented in Section
4, and Section 5 gives conclusions of the paper.

2. Feature Extraction

In this section, we first introduce the silhou-
ette segmentation and preprocessing methods, and
then present the proposed silhouette representation
method. Finally, we describe the method to obtain
gait feature of each gait sequence.
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2.1. Preprocessing

Silhouette segmentation is the first step to gait recog-
nition. We apply an existing adaptive gait silhouette
extraction algorithm using Gauss model proposed
by Fu10 to extract the walking subject for better seg-
mentation performance. Then for each binary sil-
houette image, we use morphological operators such
as dilation and erosion to fill the small holes inside
the silhouette and to filter small noises on the back-
ground area. A binary connected component analy-
sis is finally applied to extract the connected region
with the largest size for ignoring all the remaining
noises.

In consideration of the convenience of the fol-
lowing silhouette representation and time consump-
tion, we normalize the silhouette images to the same
size (Proportionally resize each silhouette image to
make all the silhouettes have the same height, and
align the normalized silhouette to the horizontal cen-
ter.). Every image was resized to 128×100 pixels in
this paper. It is to be noted that the height of each
silhouette is also 100 pixels. An example of silhou-
ette segmentation is shown in Fig. 2, from which we
can see that the silhouette segmentation procedure
performs well as a whole.

Fig. 2. An example of silhouette segmentation: (a) an orig-
inal image in gait database, (b) the normalized and aligned
silhouette of (b), (c)-(h) temporal changes of six successive
frames in a gait silhouette sequence.

2.2. Silhouette Representation

In a gait silhouette sequence, the only cue to iden-
tify the gait depends on temporal changes of the sil-
houette. In order to reduce the computational cost,
we propose a new silhouette representation method,
which only uses some of the pixels on the contour,
to describe the temporal changes of the silhouette.
For the sake of description, we make a definition as
follows:

Outermost contour: In each row of a normal-
ized silhouette image, the most right pixel and the
most left pixel on the contour belong to outermost
contour. Fig. 3(a) shows the schematic of outermost
contour. The bold boundaries in Fig. 3(a) belong
to the outermost contour, but the thin boundary be-
tween the two legs does not belong to the outmost
contour. Because all the silhouettes are normalized,
the number of pixels on the outermost contour is
definite (i.e., 2H where H is the height of the sil-
houette measured in pixels).

Fig. 3. (a) the schematic of outermost contour, (b) illustra-
tion of distance signal extraction.

Firstly, we compute the centroid (xc,yc) of the
outermost contour.

xc =
1
n

n∑

i=1

xi, (1)

yc =
1
n

n∑

i=1

yi (2)

where n is the number of pixels on the outermost
contour, (xi,yi) is the coordinate of pixel on the
outermost contour. Actually, n = 2H as mentioned
above.

Secondly, we compute the distance between each
outermost contour pixel (xi,yi) and the centroid
(xc,yc) row by row, as is shown in Fig. 3(b).
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di =

√
(xi− xc)2 + (yi− yc)2 (3)

Thus, for each silhouette image, we obtain a dis-
tance signal D = [d1,d2, · · · ,d2H] which is composed
of all the distances di.

Compared with the silhouette representation
method 6 which needs unwrap the outer contour and
normalize the computed distance signals, our sil-
houette representation method based on outermost
contour is simpler and easier to implement, and has
lower computational cost. Besides, the proposed sil-
houette representation method ignores the region be-
tween two legs where imperfect segmentation often
exists as a result of the shadow of legs, which is good
for recognition. Four images of this kind of imper-
fect segmentation are shown in Fig. 4.

Fig. 4. Four images with imperfect segmentation.

2.3. Gait Feature

Although we have enormously reduced the dimen-
sionality of the silhouette image in Section 2.2, the
dimensionality of the distance signal is still very
large. Therefore, we adopt PCA 11 to find transfor-
mation for dimensionality reduction. PCA is a clas-
sical linear approach to reduce data dimensionality
and has been effectively used in face recognition12

and gait recognition6 7 13. The process of PCA sim-
ilar to 6 is illustrated as follows:

Given c classes for training and each class repre-
sents a sequence of distance signals of one person.
Di, j is the jth distance signal in class i and Ni is the

number of distance signals in the ith class. The to-
tal number of training samples is NT = N1 + N2 +

· · ·+ Nc and the whole training set is represented by
[D1,1,D1,2, · · · ,D1,N1 ,D2,1, · · · ,Dc,Nc]. The mean md
of the set can be given by:

md =
1

NT

c∑

i=1

Ni∑

j=1

Di, j (4)

The global covariance matrix
∑

can be represented
by:

∑
=

1
NT

c∑

i=1

Ni∑

j=1

(Di, j−md)(Di, j−md)T (5)

If the rank of the matrix
∑

is K, we can compute
K nonzero eigenvalues λ1,λ2, · · · ,λK and the corre-
sponding eigenvectors e1,e2, · · · ,eK .

According to the theory of PCA, each distance
signal can be approximated by taking only the k < K
largest eigenvalues λ1 > λ2 > · · · > λk and the corre-
sponding eigenvectors e1,e2, · · · ,ek. Hence, we use
a threshold value T to ignore the small eigenvalues
and their associated eigenvectors:

Wk =

k∑

i=1

λi/

K∑

i=1

λi > T (6)

where Wk is the accumulated variance of the first
k largest eigenvalues with respect to all eigenval-
ues. The k eigenvectors associated with the k
largest eigenvalues spans the transformation matrix
[e1,e2, · · · ,ek]. Each distance signal Di, j can be pro-
jected to a point Pi, j in the k-dimensional eigenspace
by the equation

Pi, j = [e1,e2, · · · ,ek]T Di, j (7)

It is well known that k is usually much smaller
than the original data dimension. Therefore, the pro-
jection can drastically reduce the dimensionality of
distance signals. According to Equation (7), each
gait sequence can be projected to a series of points
in the eigenspace. And the projection centroid Ci
can be given by averaging all these points.

Ci =
1
Ni

Ni∑

j=1

Pi, j (8)
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The unit vector of the centroid is Ci
‖Ci‖ ,which is rep-

resented by ui. We call the unit vector ui gait feature
for each gait sequence.

3. Recognition

Once we obtain gait features, the next step is gait
recognition. In this section, we introduce three clas-
sification methods – MDA with NN or ENN, BPNN
and SVM. Firstly, we present the MDA method in
detail as it is the main classification method we
adopt. Then, we give a brief description of the
BPNN and SVM methods. It is to be noted that all
the three methods use the gait features produced by
Section 2 as input.

3.1. MDA Method

MDA11 is used to solve multiple-class classification
problems. It seeks a projection that best separates
data of different classes in the least-square sense.
Thus, MDA can optimize the class separability. Han
et al.7 and Huang et al.13 use MDA to achieve best
class separability in gait recognition. In this paper,
we adopt MDA as formers.

Suppose the n k-dimensional gait features
{u1,u2, · · · ,un} belong to c classes. The within-class
scatter matrix S W and the between-class scatter ma-
trix S B are defined as

S W =

c∑

i=1

S i, (9)

S B =

c∑

i=1

ni(mi−m)(mi−m)T (10)

where S i =
∑

u∈Di

(u−mi)(u−mi)T , mi = 1
ni

∑
u∈Di

u, and

m = 1
n

∑
u∈D

u, Di is the training set that belongs to

the ith class and ni is the number of samples in Di.
The purpose of MDA training is to maximize dis-
tances between different classes and minimize dis-
tances within each class, that is, to seek a transfor-
mation matrix W that maximize the function given
by

J(W) =
| S̃ B |
| S̃ W |

=
|WT S BW |
|WT S WW | (11)

In fact, J(W) is maximized when the columns of
W are the generalized eigenvectors that correspond
to the largest eigenvalues in

S Bwi = λiS wwi (12)

Thus, we can obtain no more than c−1 nonzero
eigenvalues and the corresponding eigenvectors
v1,v2, · · · ,vc−1 to form a transformation matrix. The
final feature vector Fi for each gait sequence is ob-
tained from the k-dimensional gait feature ui:

Fi = [v1,v2, · · · ,vc−1]T ui (13)

After the MDA training process, gait features are
transformed to a new space where it become eas-
ier to classify gait features belonging to different
classes.

Nevertheless, we still need classification method
to obtain the final recognition results. In this pa-
per, we choose two simple classification methods
– NN and ENN. In NN test, each gait sequence is
classified to the same class with its nearest neigh-
bor. In ENN test, each gait sequence is classified
to the same class with its nearest exemplar which is
defined as the mean of final feature vectors for one
given person in training set.

Let G represent a testing gait sequence, we can
compute the final feature vector FG according to
Section 2 and Section 3.1. G is classified to ωk when

d(FG,Fk) = minc
i=1d(FG,Fi) (14)

3.2. BPNN Method

Neural networks11 14, which have been widely used
in image and signal processing15 16, are very effec-
tive for solving multiple-class classification prob-
lems. Many researchers have successfully applied
neural networks to face/gait recognition17 18 19 20.
Chau18 notes that neural networks facilitate gait
recognition because of their highly flexible, induc-
tive, and non-linear modeling ability. In this pa-
per, we use one classical type of neural networks –
BPNN 21.

BPNN usually has input and output layers, with
some hidden layers in between. Actually, BPNN can
be likened to a flexible mathematical function which

Published by Atlantis Press 
      Copyright: the authors 
                   1094



L. Liu et al

has many configurable internal parameters18. In or-
der to accurately represent the complicated relation-
ships among gait variables, these internal parameters
need to be adjusted through training process.

In training process, gait features and correspond-
ing labels are input to the network, which iteratively
self-adjusts to accurately classify as many gait fea-
tures as possible. Training is complete when some
criterion is satisfied (e.g., interaction times reach a
preset value or prediction error falls below a preset
threshold).

Once the neural network is trained, we can use it
to predict the gait features of testing gait sequences.
It is to be noted that the trained neural network
simply performs function evaluation using the inter-
nal parameters established during training process to
produce an output.

3.3. SVM Method

The theory of SVM is based on the idea of structural
risk minimization22. In many applications, SVM has
been introduced as a powerful tool for solving clas-
sification problems23 24 25. Consequently, many re-
searchers have used SVM on gait recognition2 19 26.
However, it is to be noted that SVM is fundamen-
tally a two-class classifier.

SVM first maps the training samples into a high-
dimension space (typically much higher than the
original data space) and then finds a separating hy-
perplane that maximizes the margin between two
classes in this high-dimension space. Maximizing
the margin is a quadratic programming (QP) prob-
lem and can be solved from its dual problem by
introducing Lagrangian multipliers. Without any
knowledge of the mapping, the SVM can find the
optimal hyperplane by using the dot product func-
tions in original space that are called kernels. There
are several kernels proposed by researchers. Here,
we use radial basis function (RBF). Once the opti-
mal hyperplane is established, we can directly use a
decision function to classify testing samples.

For solving multi-class problems, various meth-
ods have been proposed for combining multiple two-
class SVMs in order to build a multi-class clas-
sifier, such as “one-against-one” and “one-against-
rest” methods. In this paper, we use the “one-

against-one” method27 in which k(k−1)/2 classifiers
are constructed and each one trains samples from
two different classes. In classification, we use a vot-
ing strategy: each two-class SVM is considered as
a voter (i.e. k(k− 1)/2 voters in all), and then each
testing sample is classified to the class with maxi-
mum number of votes.

4. Experiments

4.1. Gait Database

In our experiments, we use the CASIA Gait
Database (Dataset B)28 which is one of the largest
gait databases in gait-research community currently.
The database consists of 124 subjects (93 males and
31 females) captured from 11 view angles (ranging
from 0◦ to 180◦, with view angle interval of 18◦).
The frame size is 320×240 pixels, and the frame rate
is 25 fps. There are six normal walking sequences
for each subject per view. We use gait sequences
numbered from 001 to 100 (subject ID, i.e., 100 sub-
jects) of view angle 90◦ in Dataset B to carry out
our experiments. Because each subject has six nor-
mal walking sequences, we assign three sequences
to training set and the remaining three sequences to
testing set. Fig. 5 shows three images in this gait
database.

Fig. 5. Three images in CASIA Gait Database ( Dataset B)
with view angle 90◦.

4.2. Gait Feature Extraction

In our experiments, each gait sequence is firstly pre-
processed and converted into a sequence of distance
signals as described in Section 2.1 and 2.2. Then,
for training set, distance signals of 30 successive
frames of each subject are chosen for PCA train-
ing, and eventually 47 eigenvectors corresponding
to the largest 47 eigenvalues (computed according
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to the threshold T = 0.99) are kept to form the trans-
formation matrix. Finally, the gait features of both
training and testing sequences are computed using
the method described in Section 2.3.

4.3. Experimental Results

4.3.1. MDA Results

MDA training is carried out on all the gait fea-
tures of training sequences to form a transforma-
tion matrix. Then the gait features are projected
to a new eigenspace according to MDA projection
Equation (13). Actually, the points projected to the
new space are the final feature vectors of the train-
ing sequences. Fig. 6 shows the distribution of 15
final feature vectors belonging to five subjects re-
spectively. For visualization, only the first three-
dimensional eigenspace is used. The points with the
same shape belong to the same subject. From Fig. 6,
we can see that these final feature vectors can be sep-
arated easily.

−0.747−0.7465−0.746−0.7455−0.745

0.06

0.065

0.07

0.245

0.246

0.247

0.248

0.249

0.25

Fig. 6. The distribution of 15 final feature vectors belonging
to five subjects (only the first three-dimensional eigenspace
is used for visualization).

For each testing sequence, we firstly compute
the gait feature by the feature extraction method de-
scribed in Section 2. Then we compute the final
feature vector by directly using the MDA projection
Equation (13). Finally, we use NN or ENN classifier
to classify the testing set.

The CCRs (Correct Classification Rate) are
shown in Table 1. We compute the CCRs by four
strategies: directly using NN and ENN on the gait
feature data; and using NN and ENN on the final
feature vector data produced by MDA projection.

Table 1. CCRs of the four strategies.

Recognition Methods CCR(%)
NN 72.33
ENN 69.00
MDA+NN 96.67
MDA+ENN 97.67

Fig. 7 shows the cumulative match scores for
rank from 1 to 50 of the four strategies. It is to be
noted that the cumulative match scores of Rank = 1
is equivalent to the CCRs as shown in Table 1.
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Fig. 7. Cumulative match score of the four strategies.

For completeness, we also estimate FAR (False
Acceptance Rate) and FRR (False Rejection Rate)
in verification mode. The ROC (Receiver Operat-
ing Characteristic) curves are shown in Fig. 8, from
which we can see that the EERs (Equal Error Rate)
are approximately 16%, 11%, 8% and 5% for NN,
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ENN, MDA+NN and MDA+ENN, respectively.
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Fig. 8. ROC curves of the four strategies.

4.3.2. BPNN and SVM Results

In order to verify the effectiveness and robustness
of our proposed feature extraction method, we also
test recognition performance using BPNN and SVM
classifiers.

In training process, unlike MDA which learns a
transformation matrix and projects gait features to a
new space, both BPNN and SVM learn a discrimina-
tion function which can be directly used to classify
the testing sequences. Testing results of BPNN and
SVM methods are shown in Table 2.

Table 2. CCRs of BPNN and SVM methods.

Recognition Methods CCR(%)
BPNN 94.33
SVM 94.67

From Table 1 and Table 2, we can conclude
that: (1) The outermost contour is discriminative,
and our feature extraction method is effective; (2)
The three classification approaches – MDA with NN
or ENN, BPNN and SVM have similar high CCR,
which demonstrates our proposed feature extraction
method is robust.

4.3.3. Comparison

In this section, we compare the performance of
the proposed method with two typical model-free
methods6 28.

In paper 6, Wang et al. propose a feature extrac-
tion method based on outer contour. This method
needs to unwrap the outer contour and to normal-
ize the extracted distance signals, which is compli-
cated and difficult to implement. And they use the
NLPR database to carry out their experiments. The
NLPR database contains 20 subjects and each sub-
ject has four sequences. In their experiments, three
sequences are assigned to training set and the re-
maining one is assigned to testing set.

In paper 28, a feature extraction method based on
gait energy image is applied, and the CASIA Gait
Database (Dataset B) is used for experiments. The
CASIA Gait Database (Dataset B) contains 124 sub-
jects and each subject has six normal walking se-
quences. In their experiments, four sequences are
assigned to training set and the other two sequences
are assigned to testing set.

In our experiments, we test our proposed method
on a subdatabase of the CASIA Gait Database
(Dataset B) containing 100 subjects. And we assign
three sequences to training set and the other three
sequences to testing set as described in Section 4.1.

The CCRs of the three different gait recognition
methods are shown in Table 3. It is to be noted that
the CCRs are compared on side view database (i.e.
view angle 90◦). Although some experiment condi-
tions of the three methods are different, the compar-
ison result can reflect the excellent performance of
our method to some extent.

Table 3. CCRs of the three recognition methods.

Recognition Methods Best CCR(%)
Wang6 75.00
Yu28 97.60
Our Method 97.67

5. Conclusions

In this paper, we propose a novel and simple gait
recognition method based on outermost contour. An
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adaptive silhouette extraction algorithm and a series
of postprocessing is applied to segment and normal-
ize all frames of each gait sequence. Then, after
carrying out the proposed feature extraction method
based on outermost contour, we perform PCA to re-
duce the dimensionality of the distance signals de-
rived from the outermost contours of silhouette im-
ages and then compute gait feature for each gait se-
quence. Three classification methods – MDA with
NN or ENN, BPNN, and SVM are used for recogni-
tion. Experimental results show that all these three
approaches can achieve similar high accuracy which
indicates the outermost contour feature is robust
and our feature extraction method is effective. The
best accuracy 97.67% achieved in this paper and the
comparisons with the state-of-the-art gait recogni-
tion methods demonstrate that our proposed method
is a very encouraging gait recognition method in gait
recognition community.
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