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Abstract
In this paper, we propose a feature-weighted mountain clustering method. The proposed method can work well
when there are noisy feature variables and could be useful for obtaining initial estimat of cluster centers for other
clustering algorithms. Results from color image segmentation illustrate the proposed method actually produces better

segmentation than previous methods.
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1. Introduction

Cluster analysis is a method of clustering a data set
into groups. It is an approach to unsupervised learn-
ing and one of major techniques used in pattern recogni-
tion. Yager and Filev [7] proposed a simple and effective
algorithm, called the mountain method, as an approxi-
mate clustering technique. Chiu [1] modified the original
mountain method by considering the mountain function
on the data points instead of the grid nodes. The ap-
proach is based on the density estimation in feature space
with the highest potential value chosen as a cluster center
and then new density estimation is created for the extrac-
tion of the next cluster center. The process is repeated
until a stopping condition is satisfied. This method can
be used to obtain initial guesses of cluster centers for
other clustering algorithms.

Yang and Wu [6] created another modified mountain
clustering algorithm. The proposed algorithm can auto-
matically estimate the parameters in the modified moun-
tain function in accordance with the structure of the data
set based on the correlation of self-comparison method.
However, the modified mountain function treats all the
features of equal importance. In practice, there may be
some noisy variables in the data set in which these vari-
ables may influence the performance of clustering results.
To solve this problem, we propose a modified algorithm,
called feature-weighted mountain method. This method
can work well for noisy feature variables.

The remainder of this paper is organized as fol-
lows. In Section 2, we first describe Yang and Wu's
[6] mountain clustering algorithm. We then present the
feature-weighted mountain method. For estimating fea-
ture weights, we propose an attribute weight method
based on a variation approach. Image segmentation is
an important step for many image processing and com-
puter vision. The proposed algorithm is used to obtain
approximate cluster centers and applied it to color im-

age segmentation. The segmentation results with com-
parisons are given in Section 3. Finally, we make our
conclusions in Section 4.

2. The proposed feature-weighted mountain
method

Let X = {X1,---,X,} be a data set where X; =
(i1, Ti2, .- ., Tip), ¢ = 1,---,n are feature vectors in p-
dimensional Euclidean space RP. Yang and Wu [6] mod-
ified the mountain method (cf. [7]), and proposed the
modified mountain function for each data vector X; on
all data points as

M (X;) = Zexp ( —m||X; —Xj||2/02),
j=1
i1=1,---,n (1)

where
P

1Xi = X117 =D (@i — x)?
1=1
is the Euclidean distance between the ith data point Xj;
and the jth data point X;, o2 = Y1 ||X; — X||?/n,
with X = " | X;/n. The parameter m in Eq. (1) is
to determine the approximate density shape of the data
set. Thus, the role of m is similar to the bandwith in a
kernel density estimate defined on the data set X. The

kernel density estimate with kernel K and bandwith h is
defined by

A 1

o) = noPhP ilK(x ;};Xj)_

j=

In this section, we consider the standard multivariate
normal density function

K(x) = (2m) 7 exp (5 lalPP).
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If the underlying density is the multivariate normal, then
the optimal bandwith is given by (cf. [5])
0.96,

A:{(Z;H

Compared the estimated density function Eq. (2) with
the mountain function Eq. (1), we obtain

hope = A -~V @+,

where
if p=2,

1/(p+4)
) , if p> 2.

n2/ (p+4)
=g
We then choose
n2/(p+4)
mo = | "]

as the initial value in Yang and Wu’s correlation self-
comparison algorithm. To implement this algorithm, the
modified mountain method is rewritten as

M (X)) = exp (= mol X = X;1[2/0%),
j=1

and
M (X:) = Y exp (= mil X = X;12/0?).
j=1
where my = mg +t¢,t =1,2,3,---. The correlation self-

comparison procedure is summarized as follows.
S1. Set t =1 and p = 0.99.

S2. Calculate the correlation between { M, "~ (X;)|i =
e yn} and (M (Xpli = 1, ).

S3. IF the correlation is greater than or equal the spec-
ified p,

THEN choose {M;" """ (X;) to be the modi-
fied mountain function;

ELSE t =t + 1 and GOTO 52

After the parameter m is estimated by the correlation
self-comparison algorithm, the modified mountain func-
tion is obtained. Next, we will search for the kth clus-
ter center using the following modified revised mountain
function

Mip(Xi) = Mp-1(X;) -
Mi1(X0) - exp = |1 = Xi /o),

where X} _; is the (k — 1)th cluster center which satisfies

My 1(X_y) = max{My 1 (X0}, k=23, (4)

To determine the stopping condition for the modified
mountain method, Yang and Wu [6] proposed a valid-
ity function as follows:

MV(C):f:pot(k)7 c=23,---,n—1 (5)
k=2

where ¢ is the number of clusters. The function pot(k) is
the potential of the kth cluster center X} and is defined
as

M, (X3)

My(Xp) - WX

n-exp(—mdi/aQ), k=2,3,--- (6)

pot(k) =

where di is the minimum distance among X; and all
(k — 1) previous identified cluster centers, i.e.,

di = min{|| X7 — X5 |, [ X7 —XG %, | X5 —XT )

Thus, Yang and Wu’s [6] modified mountain cluster-
ing algorithm is summarized as follows:

S1. Obtain the modified mountain function using the
correlation self-comparison algorithm.

52. Fix the kth cluster center X; using the modified
revised mountain function Eq. (3) and condition
Eq. (4).

S3. Calculate MV (c), c=2,3,---,n— 1.

S4. Choose the cluster number estimate with the max-
imum value of MV (c) and select these ¢ extracted
cluster centers.

From Eq. (1), the modified mountain function treats
all features equal important. In practice, there may ex-
ist some noise variables in the data set and these vari-
ables may influence the performance of clustering results.
Figs.1.1 and 2.1 present an artificial data set shown in Ta-
ble 1 (cf. Table 1 in Huang et al. [2]) to demonstrate that
the performance of Yang and Wu’s [6] modified mountain
clustering algorithm is affected by diverse (or noise) vari-
ables. Fig. 1.1 shows the subspace of (20, 1) with three
normally distributed clusters. Fig. 2.1 presents the sub-
space of (20, z4) with uniformly distributed noise points.
Figs. 1.1 and 1.2 demonstrate Yang and Wu’s [6] mod-
ified mountain function with a good and poor density
shape when the data set with normally distributed and
the noise variable exists, respectively. These results illus-
trate that the noise variable influences the performance
of clustering results.
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Table 1. Centroid and Standard Deviations of Clusters in Different Variables

Cluster Cluster centroid

1 (0.547,0.728,0.424, 0.492, 0.561)
2 (0.299, 0.585,0.318, 0.555, 0.455)
3 (0.422, 0.452,0.636, 0.520, 0.536)

Standard deviations No. of points
(0.054,0.044,0.071,0.288,0.302) 100
(0.061,0.044,0.069, 0.269,0.274) 100
(0.055, 0.050, 0.075,0.263,0.274) 100

To overcome this problem, we proposed a feature-
weight mountain function as follows. Let W =
(wr,---,wp) be the weights for p variables. According
to Huang et al’s [2] W-k-means algorithm, the weighted
mountain function may be defined as

ME(X) = e (= AlIX - X112 /0%),
j=1
i=1,---,n (7)

where v > 0,
p
dw=10<w<1
=1

and ,
1X: = X112 = w) (@ — 23)?,
=1

where < 0 or B > 1. The weighted revised mountain
function

M (Xs) = M (Xi) -

My (X) - exp (11X = Xiall2/0?),
k=2, (8)
where X/ _, is the (k — 1)th cluster center which satisfies

My 4 (Xp_) = miaX{Mi"_l(Xi)}, k=23,---. 9)

To determine the stopping condition for the weighted
mountain method, we proposed a validity function as fol-
lows:

,n—1. (10)

Vie) = Zpotw(k), =2,
k=2

The function pot™ (k) is the weighted potential of the kth
cluster center X and is defined as

MO e -
1 1

n-exp(—v(d}f)Q/aQ), kE=2,---(11)

pot”(k) =

where (d)? is the minimum weighted distance among
X} and all (k—1) previous identified cluster centers, i.e.,

(di)? = min{]] X5 = X |15, 11X = Xl -,
X5 = X715

2.1. Variation approach to attribute weight

It is known that variation plays an important role in
statistics. Let us start from scratch and devise a mea-
sure of variability that uses a random sample of size n,
{z1,-+-,z,} C R, where R is the one dimensional Eu-
clidean space, it would logically indicate what we con-
struct should measure how the data vary from average.
The sample standard deviation, s, is an usual measure of
variability, defined as

In practice, Karl Pearson’s coefficient of variation (CV)
has been used extensively, defined by

CU =

SR

On the other hand, if we have a random sample X =
{X1,---,X,} C RP and X; = (®j1,---,Tp) represents
the ith sample, then the CV of the [th attribute is de-
fined as

CcCU;p =

Vais@a —3)?/(n-1) 1
Z; , Xy n ; €Tl

We know that attributes with small variations can
provide more reliable information than those with large
variations. Therefore, the attribute weight should be in-
versely related to its variation. It means that an attribute
that has a large variation receives less weight than the
attribute that has a smaller variation. Since attribute
weights are considered to be non-negative with summa-
tion to one, they could be defined as the inverse of abso-
lute CV values. However, we consider those applications
to color image segmentation in which all data points are
non-negative. Thus, the [th attribute weight w; is pro-
portional to 1/cv; and defined as

1/cu

W = ———mmm :]_... .
l Zle 1/cvt’ J ) P

(12)

After the attribute weight is determined by the vari-
ation approach, the next step is to find the value of 8
in the weighted mountain function Eq. (7). To find the
suitable value of 3, we use the synthetic data set shown
in Table 1 with three normally distributed clusters in the
two-dimentional subspace (see Fig. 3) and one noise vari-
able (see Fig. 4). The 3D plots of the weighted moun-
tain fountion Eq. (7) with 8 = —5 ~ 5 for each case
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are shown in Figs. 3.1~3.11 and Figs. 4.1~4.11, respec-
tively. From these figures, we find that, in Figs. 3.5 and
4.5 with § = —1, the weighed mountain function gives
a good density shape estimate whether the data set con-
tains noise variables or not. Therefore, we take 6 = —1
in applications to color image segmentation

3. Applications to color image segmentation

For most image processing and computer vision algo-
rithms, image segmentation is an important step. Thus,
in this section, we compare the proposed method with
Yang and Wu [6] with randomly generated initial clus-
ter centers on color image segmentation. We use three
color images shown in Figs. 5~7: butterfly with the size
127 x 96, clown with the size 128 x 128 from Kim et
al. [4] and snoopy with the size 128 x 96. We set the
parameters in W-k-means algorithm (see [2] as follows:
(i) the termination criteria e = 0.0001; (ii) the number
of clusters £ = 4 in butterfly image, ¥ = 8 in clown
image and k£ = 3 in snoopy image. For simplicity, we
choose the raw color data in the RGB color space. Thus,
we run the W-k-means algorithm to the RGB space of
these images with 10 sets of randomly generated initial
cluster centers, the proposed feature-weighted mountain
method and Yang and Wu’s [6] method. The segmenta-
tion results of these images are shown in Figs. 5.1~7.12.
Figures 5.1, 6.1 and 7.1 are segmentation results with the
proposed approach. Figures 5.2, 6.2 and 7.2 are segmen-
tation results with Yang and Wu’s [6] method. Figures
5.3~ 5.12, 6.3~6.12 and 7.3~7.12 are segmentation re-
sults using the W-k-means algorithm with the 10 sets of
randomly generated initial cluster centers. To evaluate
the results of color image segmentation, it is necessary
for us to make a quantitative comparison of segmented
images by different initial cluster centers in the proposed
algorithm.

The following evaluation function F(I) given by Liu
and Yang [3] is used for our comparisons

R
F(I)\/Exz(ei/?\/;@z,

where [ is the segmented image, R, the number of regions
in the segmented image, A;, the area, or the number of
pixels of the ith region, and e;, the color error of region
1. e; is defined as the sum of the Euclidean distance of
the color vectors between the original image and the seg-
mented image of each pixel in the region. In this paper,
R is equal to k. Note that the smaller the value of F(I)
is, the better the segmentation result should be. Figures
5.1~5.12, 6.1~6.12 and 7.1~7.12 also show the values
of F(I) corresponding to segmented images. According
to these values of F/(I) with segmented images, we find

that the proposed approach (Fig. 5.1, Fig. 6.1 and Fig.
7.1) has better segmentation results than Yang and Wu
[6] and the W-k-means algorith with randomly generated
initial cluster centers.

4. Conclusions

We proposed a feature-weighted mountain clustering
method so that it can work well for noisy feature vari-
ables. The proposed method can be also used for obtain-
ing initial estimate of cluster centers for other clustering
algorithms. Results from color image segmentation with
evaluation function illustrate the proposed method actu-
ally produces better segmentation than previous meth-
ods.
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Fig. 4.1 the weighted mountain
function with = -5

Fig. 4.2 the weighted mountain
function with S = -4

Fig. 4.3 the weighted

mountain function with 3= -3
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Fig. 4.4 the weighted mountain
function with = -2

Fig. 4.5 the weighted mountain
functionwith = -1

Fig. 4.6 the weighted mountain
function with 5 =0
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Fig. 4.7 the weighted mountain
function with S =1

Fig. 4.8 the weighted mountain
function with =2

Fig. 4.9 the weighted mountain
function with S =3

Fig. 4.10 the weighted mountain
function with [ =4

Fig. 4.11 the weighted mountain

function with [ =5
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Fig. 5 the original butterfly image

Fig. 5.1 thesegmenttion result
of the proposed method,
F(l)=6.7999

Fig. 5.2 the segmenation result
of Yang & Wu’s method,
F(1)=6.8072)

Fig. 5.3 the segmentation result
of W-k-means with randomlu
initial cluster centers ,
F(1)=20.9213)

Fig. 5.4 the segmentation result
of W-k-means with randomly
initial cluster centers,
F()=6.7999)

Fig. 5.5 the segmentation result
of W-k-means with randomly
initial cluster centers,
F()=20.9213)

Fig. 5.6 the segmentation result
of W-k-means with randomly
initial cluster centers,

F(1)= 6.8044)

Fig. 5.7 the segmentation result

of W-k-means with randomly

initial cluster centers,
F(1)=6.8072)

Fig. 5.8 the segmentation result
of W-k-means with randomly
initial cluster centers,
F(1)=20.9213)

Fig. 5.9 the segmentation result

of W-k-means with randomly

initial cluster centers,
F(1)=20.9161)

Fig. 5.10 the segmentation result
of W-k-means with randomly
initial cluster centers,
F(1)=20.9161)

Fig.5.11 the segmenation result
of W-k-means with randomly
initial cluster centers,

F(1)=6.8072)

Fig. 5.12 the segmentation result

of W-k-means with randomly

initial cluster centers,
F(1)=20.9213)

Bold represents the smallest value
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Fig. 6 the original clown image

Fig. 6.1 the segmentation result of
the proposed method, F(I)=14.9012)

Fig. 6.2 the segmentation result
of Yang & Wu’s method, F(1)= 20.2506)

Fig. 6.3 the segmentation result of
W-k-means with randomly initial

cluster centers, F(I)= 18.5847)

Fig. 6.4 the segmentation result of
W-k-means with randomly initial

Fig. 6.5 the segmentation result of
W-k-means with randomly initial cluster

Fig. 6.6 the segmentation result of
W-k-means with randomly initial

cluster centers, F(I)= 14.9018)

centers, F(1)= 43.1246)

cluster centers, F(I)= 41.9133)

Fig. 6.7 the segmentation result of
W-k-means with randomly initial
cluster centers, F(I)= 23.8368)

Fig. 6.8 the segmentation result of
W-k-means with randomly initial cluster

Fig. 6.9 the segmentation result of
W-k-means with randomly initial

centers, F(I)=25.6799)

cluster centers, F(I)= 58.6490)

Fig. 6.10 the segmentation result of
W-k-means with randomly initial
cluster centers, F(I)= 49.6979)

Fig. 6.11 the segmentation result of
W-k-means with randomly initial cluster
centers, F(I)=26.4106)

Fig. 6.12 the segmentation result of
W-k-means with randomly initial
cluster centers, F(I)= 41.5850)

Bold represents the smallest value
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Fig. 7 the original snoopy image

Fig. 7.1 the segmentation result
of the proposed method,
F(1)=2.7514)

Fig. 7.2 the segmentation result
of Yang & Wu’s method,
F(I)=2.7598)

Fig. 7.3 the segmentation result
of W-k-means with randomly
initial cluster centers,

F(1)= 3.6509)

Fig. 7.4 the segmentation result
of W-k-means with randomly
initial cluster centers,

Fig. 7.5 the segmentation result
of W-k-means with randomly
initial cluster centers,

Fig. 7.6 the segmentation result
of W-k-means with randomly
initial cluster centers,

F(1)= 2.7598)

F(1)= 3.6509)

F(1)= 2.7598)

Fig. 7.7 the segmentation result
of W-k-means with randomly
initial cluster centers,

Fig. 7.8 the segmentation result
of W-k-means with randomly
initial cluster centers,

Fig. 7.9 the segmentation result
of W-k-means with randomly
initial cluster centers,

F(1)= 2.7598)

F(1)= 2.7598)

F(1)= 3.6676)

Fig. 7.10 the segmentation result
of W-k-means with randomly
initial cluster centers,

F(1)= 3.6676)

Fig. 7.11 the segmentation result

of W-k-means with randomly

initial cluster centers,
F(1)=2.7598)

Fig. 7.12 the segmentation result
of W-k-means with randomly
initial cluster centers,

F(1)= 3.6509)

Bold represents the smallest value
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