
On the Application of Evolutionary Computation Techniques in
Designing Stream Cipher Systems

Wasan Shaker Awad
Department of Information Systems, College of Information Technology,

University of Bahrain, Sakheer, Bahrain
Wasan_shaker@itc.uob.bh

Abstract
Encryption is an important mechanism used to protect private information from unauthorized access. Thus, cipher
systems play an important role in the communication and storage systems. But, designing a cipher system of good
properties, such as high degree of security and efficiency, is a complex process. Therefore, this paper considers
this problem, and presents an attempt to find a general approach for designing good cipher systems automatically.
In this paper we focus on an important class of cipher systems which is stream ciphers. The proposed approach is
based on the evolutionary computation techniques, and the method chosen here is the simulated annealing
programming which is an integration of genetic programming and simulated annealing algorithm. The proposed
algorithm has been implemented in order to test its effectiveness in solving the underlying problem.

Keywords: Genetic Programming; Simulated Annealing; Stream Ciphers; Automated System Design.

1. Introduction

The explosive growth in computer systems and their
interconnections via network has increased the
dependence of organizations on the information stored
and communicated using these systems. This, in turn,
has led to a heightened awareness of the need to protect
data. Therefore, a lot of work has been done information
security and cryptography, which is the science of
protecting private information against unauthorized
access by encrypting it.

Any cryptographic system (cryptosystem, or cipher
system) has five elements: plaintext (clear text),
ciphertext (encrypted text), encryption algorithm which
is a procedure used to encipher (encrypt) the plaintext
and transform it to ciphertext, decryption algorithm
which is the inverse of the encryption algorithm, and the
key which is a parameter used to prevent the plaintext
from being easily revealed by an authorized person.

Nowadays, you can find many cipher systems
(cryptosystems), used for encrypting the private
information, of different types, and a number of cipher
systems have been proposed which are of different

levels of security; these cryptosystems can be classified
into modern and classical systems. There are a number
of classical cipher systems, which are older than modern
systems, such as Ceasar, Playfair, and Hill systems.
Modern cipher systems are subdivided into block
ciphers and stream ciphers. Block ciphers divide the
plaintext into blocks and encipher each block
independently, such as Data Encryption Standard (DES)
and Advanced Encryption Standards (AES) systems,
which are iterated product systems combining
substitution and transposition [1,2]. Stream ciphers are
extremely fast and easy to implement. In addition, they
usually have very minimal hardware resource
requirements. Therefore stream ciphers are of great
importance in applications where encryption speed is
paramount and where area-constrained or memory
constrained devices make it impractical to use block
ciphers. Stream ciphers can operate one data unit as
small as a bit or a character.

Designing good stream ciphers is a complex process.
Therefore, this problem has been considered in this
paper. Of course, the only option we have for solving
this problem is the heuristic techniques. Thus, the main

International Journal of Computational Intelligence Systems, Vol. 4, No. 5 (September, 2011), 921-928

Published by Atlantis Press
 Copyright: the authors
 921

http://www.verypdf.com/
mailto:Wasan_shaker@itc.uob.bh
Administrateur
Texte tapé à la machine
Received 9 April 2010

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine
Accepted 11 September 2011

purpose of this paper is to present an automated general
approach for designing stream ciphers that satisfy the
desired properties. The proposed approach is based on
the evolutionary computation techniques. The general
algorithm will be presented in this paper, in addition to
a detailed algorithm which is based Simulated
Annealing and Genetic Programming. This algorithm
has been implemented to investigate the effectiveness of
evolutionary computation techniques in designing
stream ciphers automatically. So far as we know, no
such applications exist until now. Thus, this paper
presents an initial effort on the application of
evolutionary computation algorithms to design stream
ciphers.

The problem considered here is the design
automation of cipher systems. This problem has been
considered by a number of researchers, In Ref. [3],
Genetic Algorithm (GA) is used to find a set of rules of
Cellular Automata (CA) suitable for cryptographic
purposes. In Ref. [4] GA is used for the construction of
Boolean functions for cipher systems, such as block
ciphers and stream ciphers. The design of Boolean
functions with properties of cryptographic significance
is a hard task. Therefore, this problem has attracted a
number of researchers, such as Millan, Clark, and
Dawson [5], they have proposed a GA-based method for
finding Boolean functions which are nearly always have
high degree of nonlinearity. However, this problem has
been reviewed in more details by Awad[6].

2. Stream Cipher Systems

Every stream cryptosystem consist of two parts, which
are:

• Keystream (random sequence) generator, and
• Mixer (XOR for the binary sequence).

A keystream generator, which is the heart of stream

ciphers, outputs a stream of bits (keystream) xored with
a stream of plaintext bits to produce the stream of
ciphertext, as shown in Fig. 1.

Fig. 1. Stream Cipher System

There are many stream ciphers which are currently
widely used in our day life. Mainly, stream cipher
systems can be classified into:

• Linear Feedback Shift Register (LFSR) based
stream ciphers, in which a LFSR or nonlinear
combination of LFSRS is used as keystream
generator. Fig. 2 presents a LFSR [1,2,7,8,9].

• Nonlinear LFSR (NLFSR), in which a
nonlinear feedback function is used [1,2,7,8,9].

• Feedback-with-Carry Shift Register (FCSR)
[10].

• (n.k)-NLFSR [11]
• Cellular Automata (CA) [3].
• Algebraic Shift Register [12].

Fig. 2. LFSR

The stream cipher system’s security depends entirely
on the inside of keystram generator. The security of this
generator can be analyzed in terms of randomness,
linear complexity, and correlation immunity[13,14,15].
Thus, good stream cryptosystems must have the
following features:

• They generate long period keystreams.
• Their keystreams are random.
• Large linear complexity.
• They have high degrees of correlation

immunity.

A binary sequence is said to be random if there is no
obvious relationship between the individual bits of the
sequence. Several research efforts exist in the literature
for developing suites of tests for evaluating random
number (Binary keystream) generators to be involved in
stream ciphers [13,14,15]. In all these methodologies
two criteria are used for the evaluation of the quality of
random numbers obtained by using some generator in
traditional applications such as simulation studies:
uniform distribution and independence. The most
important requirement imposed on random number
generators is their capability to produce random
QXPEHUV�XQLIRUPO\�GLVWULEXWHG�LQ�>���@��RWKHUZLVH�WKH
application’s results may be completely invalid. A
number of statistical tests are applied to examine

Published by Atlantis Press
 Copyright: the authors
 922

http://www.verypdf.com/

whether the pseudorandom number sequences are
sufficiently random or not, which are frequency test,
serial test, poker test, autocorrelation test and runs test.

i. Frequency Test: It calculates the number of

ones and zeroes of the binary sequence and
checks if there is no large difference.

ii. Serial Test: The transition characteristics of a
sequence such as the number 00, 01, 10 and 11
are evaluated. Ideally, it should be uniformly
distributed within the sequence.

iii. Poker Test: A N length sequence is segmented
into blocks of M bits and the total number of
segments is N/M. Within each segment, the
integer value can vary from 0 to m = 2M-1.
The objective of this test is to count the
frequency of occurrence of each M length
segment. Ideally, all the frequency of
occurrences should be equal.

iv. Runs Test: A sequence is divided into
contiguous stream of 1’s that is referred as
blocks and contiguous stream of 0’s that is
referred as gaps. If r0

i is the number of gaps of
length i, then half of the gaps will have length
1 bit, a quarter with length 2 bits, and an eighth
with length 3 bits. If r1

i is the number of blocks
of length i, then the distribution of blocks is
similar to the number of gaps.

Linear complexity is a well-known complexity
measure in the theory of stream ciphers. Linear
complexity of a keystream s is the length of the shortest
LFSR which will produce the stream s, which is denoted
by L(s). If the value of L(s) is L, then 2L consecutive
bits can be used to reconstruct the whole sequence.
Hence, to avoid the keystream reconstruction, the value
of L should be large [16].

In order to obtain high linear complexity, several
sequences can be combined in some nonlinear manner.
The danger here is that one or more of the internal
output sequences can be correlated with the combined
keystream and attacked using linear algebra. A
keysream generator has a higher degree of correlation
immunity if there is no correlation between any internal
output sequence and the combined keytream.

3. Genetic Programming and Simulated Annealing

One of the component methodologies of computational
intelligence is evolutionary computation. Evolution is
an optimization process, where the aim is to improve the
ability of a system to survive in dynamically changing
environment. There are number of evolutionary
computation techniques, such as GA, Genetic
Programming (GP), Cultured Algorithms, and
Differential Evolution algorithms. Regardless of the

technique used, evolutionary computation applications
follow a similar procedure [17]:

a. Initialize the population.
b. Evaluate each individual in the population.
c. Select individuals.
d. Produce a new population by applying a

number of operations on selected individuals.
e. loop to step b until some condition is met.

As mentioned above, there are number of

evolutionary computation methods that can be applied
to solve the problem of designing stream cipher
systems. The proposed design algorithm is based on the
integration of simulated annealing (SA) and GP which
is called simulated annealing programming (SAP).

GP receives a high level statement of a problem's
requirements from the user and attempts to create a
computer program that provides a solution for the
problem. In this paper, the computer program to be
created represents a keystream generator. GP is the
extension of the genetic model of learning the space of
programs. These programs are expressed as trees. GP
invented by John R. Koza in 1990s [18] which is
regarded as an extension of GA [19, 20] attributed to
John H. Holland [21]. Both techniques are identical in
nature except for representation of individuals which in
case of GP is parse trees based computer programs
compared to fixed or variable length character strings in
genetic algorithms. Representation is a major difference
not only because it distinguishes the two techniques
from each other but also because it greatly extends the
problem handling capabilities of GP. It is one of the
most promising domains independent and object
oriented evolutionary computation techniques [22, 23,
24]. GP is used mainly for design automation and
automatic programming; such as the design of analog
and digital circuits [24].

On the other hand, SA, which has been introduced
by Kirkpatrik et al [25], is a general randomization
technique for solving optimization problems; it is a
recent technique for finding good solutions to a wide
variety of combinatorial optimization problems. This
technique can help to avoid the problem of getting stuck
in a local minimum and to lead towards the globally
optimum solution. It is inspired by the annealing
process in metallurgy. At high temperatures, the
molecules of liquid move freely with respect to one
another. If the liquid is cooled slowly, thermal mobility
is lost. In SA, the solution starts with a high
temperature, and a sequence of trail vectors are
generated until inner thermal equilibrium is reached.
Once the thermal equilibrium is reached at a particular
temperature, the temperature is reduced and a new
sequence of moves will start. This process is continued

Published by Atlantis Press
 Copyright: the authors
 923

http://www.verypdf.com/

until a sufficiently low temperature is reached, at which
no further improvement in the objective function can be
achieved. SA can be formulated as a graph with an
energy E assigned to each node. In SA parlance, the
nodes are called `states', the arcs represent `moves' from
one state to a neighboring state, and the energy is
sometimes called `cost'. Thus, SA algorithm consists of:
configurations, re-configuration technique, cost
function, and cooling schedule [26, 27].

Many researchers explored the application of SA on
many different types of problems. Furthermore, SA can
be integrated with GA or GP in order to work on a
population of individuals and to preserve good
individuals into the next generation [28, 29, 30, 31, 32].

4. The Proposed Method

The problem under study can be formulated as follows:

Given : Plaintext length in bits, which is the

keystream length size.
Output : A LSFR-based keystream generator, that

generate pseudorandom Binary sequence
(keystream) of length size, and passes the
randomness tests, such as frequency, serial,
and run test.

We can apply the evolutionary computation general

algorithm as a general method for designing keystream
generators of the desired properties, as follows:

Algorithm: Keystream Generator Design
Input: Keystream Length
Output: Keystream Generator

Generate the initial population S1 randomly, the
individual members xi,i =0..population size, of the
population are candidate keystream generators;
Repeat
 Execute each xi in S1, to generate the Binary
 sequence of a given length;
 Measure the fitness value of xi;
 Adapt the current population S1 to produce S2;
 S1 ß 6��
Until (Maximum Number of generations);

In order to represent the candidate keystream

generators, two representation methods can be used:

i. Binary string representation to represent
the feedback function (linear or nonlinear)
of the shift registers, and the Boolean
functions which are used to combine a
number of shift registers. Variable length
chromosomes can be used.

ii. Executable structures (computer
programs), in which the primitive
functions are Boolean functions, and shift
registers as example.

The fitness of an individual population member is

measured by executing it to generate the keystream and
then apply different tests, such as statistical tests, to
measure the goodness of the keystream. These tests can
be compiled in the fitness function.

In this work, SAP has been applied to solve the
problem of designing stream ciphers (or more
specifically keystream generators). Automated design is
an essential part of GP paradigm.

The major steps for preparing GP for an application
are [18]:

• Determining the function library.
• Determining the representation scheme.
• Determining the fitness measure.

The description of these steps is given in the

following sub sections along the proposed algorithm
parameters.

4.1. Function Library

In GP, the structure under adaptation is a set of
programs representing the candidate keystream
generators. The keystream generators considered here
are LFSR-based generators. Thus, the important basic
function which is the shift register should be included.
The function library used in this work is presented in
table 1. The proposed function library is sufficient
since:

• It includes the LFSR function (SR), and there
is no need to include other types of shift
registers because for every shift register there
is an equivalent LFSR.

• Any combinational logical function can be
expressed using (AND) and (XOR) only, that
is because, any logical function can
constructed from (AND), (OR), (NOT), and

NOT x = x XOR 1 (1)
x OR y = NOT (NOT(x) AND NOT (y)) (2)

4.2. Representation Scheme

The population chromosomes (programs), that represent
candidate keystream generators, are strings of characters
which are expressions represented using prefix polish
notation. Fig. 3 shows the syntax of the population
programs. These syntactic rules should be preserved
during the generation of the initial population, and by

Published by Atlantis Press
 Copyright: the authors
 924

http://www.verypdf.com/

the genetic operations. Therefore, strongly-typed GP
[33] is used.

The initial states and feedback functions of the shift
registers are represented as strings of the letters 'a'..'p'.
These letters represent the numbers 0..15. Thus, each
letter is a sequence of four bits. The length of a LFSR is
determined by the number of letters which initially are
generated randomly. The number of these letters must
be even, half of them for the initial state, and the second
half for the feedback function.

For example, if the number of these letters is 8
letters, then the length of LFSR is 16 bits (4 x 4).
Furthermore, the first zeros of the feedback function are
ignored. For example, consider the following LFSR:
"> abid", 'i' is the number 8 = (0001)2, then the first three
zeros are ignored, and the length of this LFSR will be
five bits (1 + 4). Thus the feedback function will be
(11100).

Table 1. The function library used
Symbols Arty Format Description
SR 2 SR x Shift register where x

represents the feedback
polynomial and initial
state.

& 2 & x y Bitwise AND operation
between the two binary
sequences x and y.

^ 2 ^ x y Bitwise XOR operation
between the two binary
sequences x and y.

X 0 Sequence of characters
'a'..'p', representing
numbers 0..15.

| 2 | x y Bitwise OR operation
between the two binary
sequences x and y.

S à SR X | & S S | ^ S S | | S S

X à aX | bX | ... | pX | a | b | ... | p

Fig. 3. The syntax rules of GP language.

4.3. Fitness Function

The fitness value is a measurement of the goodness of
the keystream generator, and it is used to control the
application of the operations that modify a population.
There are a number of metrics used to analyze
keystream generators, which are keystream randomness,
linear complexity and correlation immunity. Therefore,
these metrics should be taken in our account in
designing keystream generators, and they are in general
hard to be achieved.

The fitness value is calculated by generating the
keystream after executing the program, and then the
generated keystream is examined. The fitness function
used to evaluate the chromosomes is to calculate at what
percentage the chromosome satisfies the desired
properties of the stream ciphers. For example, Eq. 3 is
fitness function which is used to evaluate of the
chromosome based on the keystream randomness tests:
frequency and serial tests. In which nw is the frequency
of w in the generated binary sequence, and size is the
keystream length. This fitness function is derived from
the fact that in the random sequence:

• Probability (no) = Probability (n1), and
• Probability (n01) =

Probability (n11) =
Probability (n10) =
Probability (n00)

4/4/4/4/1
)(

1110010010 sizensizensizensizennn
sizexfit

−+−+−+−+−+
=

 (3)

There is another randomness requirement which is
1/2i

* nr runs in the sequence are of length i, where nr is
the number of runs in the sequence, M is maximum run
length, and ni is the desired number of runs of length i.
Thus:

Mtoiforallnn iri 11

2
==











× (4)

This can be expressed in the fitness function as follows:

∑
=

−













×=

M

i
iri nnf

1 2
1 (5)

Then the fitness function can be modified to be as
follows:

fsizensizensizensizennn
sizexfit

+−+−+−+−+−+
=

4/4/4/4/1
)(

1110010010

 (6)

4.4. The Algorithm Parameters

The genetic operations used to update the population are
1-point crossover with probability 1.0 and mutation with
probability 0.05. The selection strategy, used to select
chromosomes for the genetic operations, is the 2-
tournament selection. The initial value of the SA
temperature is 250 which is updated by multiplying it
by 0.95. The decision of using these parameters values
was made based on the results of a number of

Published by Atlantis Press
 Copyright: the authors
 925

http://www.verypdf.com/

experiments that show that with these values the
proposed algorithm performance is the best.

The old population is completely replaced by the
new population which is generated from the old
population by applying the genetic operations.

Regarding the structure of each chromosome, the
maximum chromosome length is 300 characters, and the
maximum number of functions (except SR) is ten
functions. The probability of the function SR is 0.5, and
all other function are of probability 0.5. Finally, the
maximum LFSR length is 20 bits.

The run of GP is stopped after a fixed number of
generations. The solution is the best chromosome in the
last generation.

4.5. The Design Algorithm

The proposed algorithm for designing a keystream
generator that meets the desired properties is based on
the integration of SA and GP, i.e., simulated annealing
programming. The reason behind this integration is that,
the performance of the algorithm was improved with the
use of SA. That is because SA can help to avoid the
problem of getting stuck in a local minimum, and to
preserve good individuals into the next generation.

The following is the complete algorithm:

Algorithm: Simulated Annealing Programming
Input : Keystream length (size)
Output : LFSR-based keystream generator

Generate the initial population (pop) randomly;
Evaluate pop;
Temp ß �����������WHPSHUDWXUH
Repeat
 Generate a new population (pop1) by applying
 crossover and mutation;
 Evaluate the fitness of the new generated
 FKURPRVRPHV�RI�SRS��
 Calculate the averages of fitness values for pop and
 SRS���DY��DQG�DY��UHVSHFWLYHO\�
 If (av2 > av1) then replace the old population by the
 new one, i.e. pop ß SRS��
 Else
 Begin
 e ß av1-DY����������
 Pr ß e / Temp;
 Generate a random number (rnd);
 If (exp(-pr) > rnd) then pop ß SRS��
 End;
 Temp ß 7HPS�
������
Until (Max Number of generations);

As shown in the algorithm, SA is the technique used
for the construction of the keystream generators. The
structure under adaption is the set of GP expressions,
and the GA operations are used to update the population
of expressions.

5. Results

The main purpose of this paper is to design an effective
algorithm for designing keystream generators, and also
to study the effectiveness of GP and SA to solve this
problem. Therefore, the proposed method has been
implemented using C++ programming language. The
proposed method has been applied to design keystream
generators of different values of keystream length (size),
and population size. The results are presented in tables
2, 3, and 4. These results are derived from running the
algorithm 100 times.

Also, to make a comparison between simple GP and
SAP, GP has been applied. Fig. 4 presents the results as
the average of best fitness values in 100 runs for
different values of pop. Size (100-550) and the
keaystream length is 200 bits. It is clear that the
performance is highly improved by applying SAP.

Fig. 4. Comparison between GP and SAP

Table 2. Best chromosome (solution)
Keystream
Length
(size)

200 100 50

Pop. Size Fitness value
 Keystream generator

100 48.3019
SR hgjj

26.5285
SR almj

11.0535
 SR haih

200 48.3019
SR kehe

26.5285
SR cnkc

11.1986
SR jekdjfge

300 48.3019
SR dhjj

26.5285
SR cfkc

11.1986
SR jekdjfge

400 48.3019
SR cddd

26.5285
SR jkpl

11.1986
SR cmdlljbp

0

10

20

30

40

50

100200300400500

GP

SAP

Published by Atlantis Press
 Copyright: the authors
 926

http://www.verypdf.com/

500 48.5308
SR bjpoa

26.5285
 SR cfjf

11.1986
SR chbhik

Table 3. Average of best fitness values

Keystream
Length
(size)

200 100 50

Pop. Size Average
100 34.01549 21.8774534 10.008671
200 35.87525 24.436832 10.313523
300 38.72688 24.972075 10.503324
400 39.03217 25.401894 10.601804
500 41.31128 25.726553 10.800264

Table 4. Frequency of the best chromosome

Keystream
Length (size)

200 100 50

Pop. Size Frequency
100 3 5 0
200 9 15 8
300 11 21 9
400 26 30 10
500 23 39 34

According to the results, the population size and

keystream length affect the effectiveness of the
proposed method. Table 2 shows that the fitness value
of the best chromosome increases as population size
increases, and longer keystream yields better solution.
Also, we can see from table 2, all solutions are linear
keystream generators. That is because; the linear
complexity has not been taken in our consideration in
the evaluation of the chromosomes. Table 3 presents the
averages of the fitness values of the best chromosomes
in 100 runs. It is clear that increasing the population size
improves the effectiveness of the algorithm.

Example: The following chromosome that represents a
keystream generator is of fitness value 50.66:

SRphikje

The following Binary keystream that is generated by
this linear generator is of period length greater than 200
bits:
11111110000011011101000000000010101110000110101010
10110011110101110011001100010000011000010001000101
10101000101001011010011100110100110110001101111011
10010001110100011111000010010111100101111110101101

6. Conclusion

In this paper, a new approach for designing keystream

generators automatically is presented, which is a new
promising direction for stream cipher design. It has been
shown the capability of GP and SA in designing the
desired stream ciphers. Stream cipher design method
presented here can be used for evolving any generator
that satisfies the given requirements, such as period
length, and randomness. These requirements are
expressed mathematically in the fitness function. The
experiments have shown the feasibility of the proposed
method. Furthermore, the evolved keystream generators
in the most cases are linear. However the results
obtained can be improved by considering more factors
in the fitness evaluation such as linear complexity, other
randomness tests, and correlation immunity.
Furthermore, other techniques and genetic operations
can be examined and compared in order to find the best
algorithm for solving the underlying problem.

References
1. B. Schneier, Applied cryptography (John Wiley and

Sons, NY, 1996).
2. B. A. Forouzan, Cryptography and network security

(McGRAW-HILL, NY, 2008).
3. M. Szaban, F. Seredynski, and P. Bouvry, Collective

Behavior of Rules for Cellular Automata-Based
Stream Ciphers, IEEE Congress on Evolutionary
Computation, (July 2006), pp. 179-183.

4. Clark and L. J. Jacob, Almost Boolean functions: the
design of Boolean functions by spectral inversion,
Computational Intelligence 20 (3) (2004) 450-462.

5. W. Millan, A. Clark, and E. Dawson, An effective
genetic algorithm for finding highly nonlinear
Boolean functions, in Proc.1st Int. Conf. on
Information and Communications Security (China,
Beijing, 1997), pp. 149-158.

6. W. S. Awad, The applications of GA in cryptology,
Far East journal of experimental and theoretical
artificial intelligence 2 (1) (2008) 59-76.

7. S. W. Golomb, Shift Register Sequences (Holden-
Day, San Francisco, 1967).

8. Beker and F. Piper, Cipher Systems (John Wiley,
NY, 1982).

9. R. A. Rueppel, Analysis and Design of Stream
Cipher (Springer-Verlag, NY, 1986).

10. Elena Dubrova, Maxim Teslenko, and Hannu
Tenhunen, Analysis and Synthesis of (n,k)-Non-
Linear Feedback Shift Registers, in proc. of the conf.
on design, automation and test, (Munich, Germany,
2008), pp. 1286-1290.

11. Klapper and M. Goresky, Feedback shift registers,
2-adic span and combiners with memory, Journal of
Cryptology, (10) (1997) 111–147.

12. M. Goresky and A. Klapper, Pseudonoise Sequence
Based on Algebraic Feedback Shift Registers, IEEE
Trans. Inf. Theory, 52 (4) (2006) 1649-1662.

13. H. Gustafson, et al, A computer package for
measuring the strength of encryption algorithm,
Comp. & Sec. 14 (1994) 687-697.

Published by Atlantis Press
 Copyright: the authors
 927

http://www.verypdf.com/

14. K. Zeng, C. Yang, and T.R.N. Rao, Pseudorandom
Bit Generator in Stream Cipher Cryptography,
Comp. 24 (2) (1991) 8-17.

15. L’ecuyer, P. and Simard, R, TestU01: A C library
for empirical testing of random number generators,
ACM Trans. Math. Softw 33 (4) (2007) 22-40.

16. Massey J. L., Shift register sequences and BCH
decoding, IEEE Transaction on Information Theory
IT-15 (1) (1976) 122-127.

17. Russell Eberhart & Yuhui Shi, Computational
Intelligence: concepts to implementation (Morgan
Kaufmann, San Fransisco, 2008).

18. J. R. Koza, Genetic programming (MIT press,
Cambridge, 1992).

19. D. E. Goldberg, Genetic algorithms in search,
optimization, and machine learning (Addison-
Wesley, NY, 1989).

20. Melanie Mitchell, An Introduction to Genetic
Algorithms, (MIT Press, Cambridge, 1996).

21. J. H. Holland, Adaptive in natural and artificial
systems (Ann Arbor, University of Michigan, USA,
1975).

22. Haym Hirsh, Wolfgang Banzhaf, J. R. Koza, Conor
Ryan, Lee Spector, and Christian Jacob, Genetic
programming, IEEE Intelligent Systems 15 (3)
(2000) 74-84.

23. J. R. Koza, M. A. Keane, and Matthew Streeter,
What's AI done for me lately? - genetic
programming's human competitive results, IEEE
Intelligent Systems 18.(3) (2003) 25-31.

24. J. R. Koza, Genetic Programming II: Automatic
Discovery of Reusable Programs (MIT Press,
Cambridge, 1994).

25. S. Kirkpatrik, et al., Optimization by simulated
annealing, Science 220 (4598) (1983) 671-680.

26. Liu Yong, Kang Lishan, and D. J. Evans, The
annealing evolution algorithm as function optimizer,
Parallel Computing 21 (3) (1995) 389-400.

27. Van Laarhoven, P. J. M., et al., Simulated
Annealing: Theory and applications (Reidel,
Holland, 1987).

28. Sadegheih, Sequence optimization and design of
allocation using GA and SA, Applied Mathematics
and Computation, 186 (2) (2007) 1723-1730.

29. U. Yuichiro, M. Mitsunori, H. Tomoyuki, Simulated
Annealing Programming Using Effective Subtrees,
Doshisha Daigaku Rikogaku Kenkyu Hokoku 49 (4)
(2009) 205-209.

30. M. Miki, M. Hashimoto, Y. Fujita, Program Search
with Simulated Annealing, in proc. of the 9th annual
conference on Genetic and evolutionary
computation, (London, England, 2007), pp. 1754 –
1754.

31. O. Cordon et al. An Inductive Query by Example
Technique for Extended Boolean Queries Based on
Simulated-Annealing Programming, in the proc. Of
7th International ISKO Conference on Challenges in
Knowledge Representation and Organization for the
21st Century. Integration of Knowledge across

Boundaries, ed. M.J. López-Huertas (Granada,
Spain, 2002), pp. 429-436.

32. Ali Pahlavani, A New Fuzzy MADM Approach and
its Application to Project Selection Problem,
International journal of computational intelligence
systems (2010) 103 – 114.

33. T. Haynes, et al., Strongly typed GP in evolving
cooperation strategies, in Proc. of the sixth Int. Conf.
on GA, ed. Eshelman, L.J. (Morgan Kaufmann, July
1995), pp. 271-278.

Published by Atlantis Press
 Copyright: the authors
 928

http://www.verypdf.com/

