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Abstract 
Encryption is an important mechanism used to protect private information from unauthorized access. Thus, cipher 
systems play an important role in the communication and storage systems. But, designing a cipher system of good 
properties, such as high degree of security and efficiency, is a complex process. Therefore, this paper considers 
this problem, and presents an attempt to find a general approach for designing good cipher systems automatically. 
In this paper we focus on an important class of cipher systems which is stream ciphers. The proposed approach is 
based on the evolutionary computation techniques, and the method chosen here is the simulated annealing 
programming which is an integration of genetic programming and simulated annealing algorithm.  The proposed 
algorithm has been implemented in order to test its effectiveness in solving the underlying problem. 

Keywords:  Genetic Programming; Simulated Annealing; Stream Ciphers; Automated System Design. 

 

1. Introduction 

The explosive growth in computer systems and their 
interconnections via network has increased the 
dependence of organizations on the information stored 
and communicated using these systems. This, in turn, 
has led to a heightened awareness of the need to protect 
data. Therefore, a lot of work has been done information 
security and cryptography, which is the science of 
protecting private information against unauthorized 
access by encrypting it. 

Any cryptographic system (cryptosystem, or cipher 
system) has five elements: plaintext (clear text), 
ciphertext (encrypted text), encryption algorithm which 
is a procedure used to encipher (encrypt) the plaintext 
and transform it to ciphertext, decryption algorithm 
which is the inverse of the encryption algorithm, and the 
key which is a parameter used to prevent the plaintext 
from being easily revealed by an authorized person.  

Nowadays, you can find many cipher systems 
(cryptosystems), used for encrypting the private 
information, of different types, and a number of cipher 
systems have been proposed which are of different 

levels of security; these cryptosystems can be classified 
into modern and classical systems. There are a number 
of classical cipher systems, which are older than modern 
systems, such as Ceasar, Playfair, and Hill systems. 
Modern cipher systems are subdivided into block 
ciphers and stream ciphers. Block ciphers divide the 
plaintext into blocks and encipher each block 
independently, such as Data Encryption Standard (DES) 
and Advanced Encryption Standards (AES) systems, 
which are iterated product systems combining 
substitution and transposition [1,2]. Stream ciphers are 
extremely fast and easy to implement. In addition, they 
usually have very minimal hardware resource 
requirements. Therefore stream ciphers are of great 
importance in applications where encryption speed is 
paramount and where area-constrained or memory 
constrained devices make it impractical to use block 
ciphers. Stream ciphers can operate one data unit as 
small as a bit or a character.  

Designing good stream ciphers is a complex process. 
Therefore, this problem has been considered in this 
paper. Of course, the only option we have for solving 
this problem is the heuristic techniques. Thus, the main 
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purpose of this paper is to present an automated general 
approach for designing stream ciphers that satisfy the 
desired properties. The proposed approach is based on 
the evolutionary computation techniques. The general 
algorithm will be presented in this paper, in addition to 
a detailed algorithm which is based Simulated 
Annealing and Genetic Programming. This algorithm 
has been implemented to investigate the effectiveness of 
evolutionary computation techniques in designing 
stream ciphers automatically. So far as we know, no 
such applications exist until now. Thus, this paper 
presents an initial effort on the application of 
evolutionary computation algorithms to design stream 
ciphers. 

The problem considered here is the design 
automation of cipher systems. This problem has been 
considered by a number of researchers, In Ref. [3], 
Genetic Algorithm (GA) is used to find a set of rules of 
Cellular Automata (CA) suitable for cryptographic 
purposes. In Ref. [4] GA is used for the construction of 
Boolean functions for cipher systems, such as block 
ciphers and stream ciphers. The design of Boolean 
functions with properties of cryptographic significance 
is a hard task. Therefore, this problem has attracted a 
number of researchers, such as Millan, Clark, and 
Dawson [5], they have proposed a GA-based method for 
finding Boolean functions which are nearly always have 
high degree of nonlinearity. However, this problem has 
been reviewed in more details by Awad[6].  

2. Stream Cipher Systems 

Every stream cryptosystem consist of two parts, which 
are: 

• Keystream (random sequence) generator, and 
• Mixer (XOR for the binary sequence). 

 
A keystream generator, which is the heart of stream 

ciphers, outputs a stream of bits (keystream) xored with 
a stream of plaintext bits to produce the stream of 
ciphertext, as shown in Fig. 1.  

 

 
 
Fig. 1. Stream Cipher System 

There are many stream ciphers which are currently 
widely used in our day life. Mainly, stream cipher 
systems can be classified into: 

• Linear Feedback Shift Register (LFSR) based 
stream ciphers, in which a LFSR or nonlinear 
combination of LFSRS is used as keystream 
generator. Fig. 2 presents a LFSR [1,2,7,8,9]. 

• Nonlinear LFSR (NLFSR), in which a 
nonlinear feedback function is used [1,2,7,8,9]. 

• Feedback-with-Carry Shift Register (FCSR) 
[10]. 

• (n.k)-NLFSR [11] 
• Cellular Automata (CA) [3]. 
• Algebraic Shift Register [12]. 

 

 

Fig. 2. LFSR  

The stream cipher system’s security depends entirely 
on the inside of keystram generator. The security of this 
generator can be analyzed in terms of randomness, 
linear complexity, and correlation immunity[13,14,15]. 
Thus, good stream cryptosystems must have the 
following features: 

• They generate long period keystreams. 
• Their keystreams are random. 
• Large linear complexity. 
• They have high degrees of correlation 

immunity. 
 

A binary sequence is said to be random if there is no 
obvious relationship between the individual bits of the 
sequence. Several research efforts exist in the literature 
for developing suites of tests for evaluating random 
number (Binary keystream) generators to be involved in 
stream ciphers [13,14,15]. In all these methodologies 
two criteria are used for the evaluation of the quality of 
random numbers obtained by using some generator in 
traditional applications such as simulation studies: 
uniform distribution and independence. The most 
important requirement imposed on random number 
generators is their capability to produce random 
QXPEHUV�XQLIRUPO\�GLVWULEXWHG�LQ�>���@��RWKHUZLVH�WKH 
application’s results may be completely invalid. A 
number of statistical tests are applied to examine 
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whether the pseudorandom number sequences are 
sufficiently random or not, which are frequency test, 
serial test, poker test, autocorrelation test and runs test. 

 
i. Frequency Test: It calculates the number of 

ones and zeroes of the binary sequence and 
checks if there is no large difference. 

ii. Serial Test: The transition characteristics of a 
sequence such as the number 00, 01, 10 and 11 
are evaluated. Ideally, it should be uniformly 
distributed within the sequence. 

iii. Poker Test: A N length sequence is segmented 
into blocks of M bits and the total number of 
segments is N/M. Within each segment, the 
integer value can vary from 0 to m = 2M-1. 
The objective of this test is to count the 
frequency of occurrence of each M length 
segment. Ideally, all the frequency of 
occurrences should be equal. 

iv. Runs Test: A sequence is divided into 
contiguous stream of 1’s that is referred as 
blocks and contiguous stream of 0’s that is 
referred as gaps. If r0

i is the number of gaps of 
length i, then half of the gaps will have length 
1 bit, a quarter with length 2 bits, and an eighth 
with length 3 bits. If r1

i is the number of blocks 
of length i, then the distribution of blocks is 
similar to the number of gaps. 

Linear complexity is a well-known complexity 
measure in the theory of stream ciphers. Linear 
complexity of a keystream s is the length of the shortest 
LFSR which will produce the stream s, which is denoted 
by L(s). If the value of L(s) is L, then 2L consecutive 
bits can be used to reconstruct the whole sequence. 
Hence, to avoid the keystream reconstruction, the value 
of L should be large [16]. 

In order to obtain high linear complexity, several 
sequences can be combined in some nonlinear manner. 
The danger here is that one or more of the internal 
output sequences can be correlated with the combined 
keystream and attacked using linear algebra. A 
keysream generator has a higher degree of correlation 
immunity if there is no correlation between any internal 
output sequence and the combined keytream. 

3. Genetic Programming and Simulated Annealing 

One of the component methodologies of computational 
intelligence is evolutionary computation. Evolution is 
an optimization process, where the aim is to improve the 
ability of a system to survive in dynamically changing 
environment. There are number of evolutionary 
computation techniques, such as GA, Genetic 
Programming (GP), Cultured Algorithms, and 
Differential Evolution algorithms. Regardless of the 

technique used, evolutionary computation applications 
follow a similar procedure [17]: 

 
a. Initialize the population. 
b. Evaluate each individual in the population. 
c. Select individuals. 
d. Produce a new population by applying a 

number of operations on selected individuals. 
e. loop to step b until some condition is met. 

 
As mentioned above, there are number of 

evolutionary computation methods that can be applied 
to solve the problem of designing stream cipher 
systems. The proposed design algorithm is based on the 
integration of simulated annealing (SA) and GP which 
is called simulated annealing programming (SAP).  

GP receives a high level statement of a problem's 
requirements from the user and attempts to create a 
computer program that provides a solution for the 
problem. In this paper, the computer program to be 
created represents a keystream generator. GP is the 
extension of the genetic model of learning the space of 
programs. These programs are expressed as trees. GP 
invented by John R. Koza in 1990s [18] which is 
regarded as an extension of GA [19, 20] attributed to 
John H. Holland [21]. Both techniques are identical in 
nature except for representation of individuals which in 
case of GP is parse trees based computer programs 
compared to fixed or variable length character strings in 
genetic algorithms. Representation is a major difference 
not only because it distinguishes the two techniques 
from each other but also because it greatly extends the 
problem handling capabilities of GP. It is one of the 
most promising domains independent and object 
oriented evolutionary computation techniques [22, 23, 
24]. GP is used mainly for design automation and 
automatic programming; such as the design of analog 
and digital circuits [24].   

On the other hand, SA, which has been introduced 
by Kirkpatrik et al [25], is a general randomization 
technique for solving optimization problems; it is a 
recent technique for finding good solutions to a wide 
variety of combinatorial optimization problems. This 
technique can help to avoid the problem of getting stuck 
in a local minimum and to lead towards the globally 
optimum solution. It is inspired by the annealing 
process in metallurgy. At high temperatures, the 
molecules of liquid move freely with respect to one 
another. If the liquid is cooled slowly, thermal mobility 
is lost. In SA, the solution starts with a high 
temperature, and a sequence of trail vectors are 
generated until inner thermal equilibrium is reached. 
Once the thermal equilibrium is reached at a particular 
temperature, the temperature is reduced and a new 
sequence of moves will start. This process is continued 
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until a sufficiently low temperature is reached, at which 
no further improvement in the objective function can be 
achieved. SA can be formulated as a graph with an 
energy E assigned to each node. In SA parlance, the 
nodes are called `states', the arcs represent `moves' from 
one state to a neighboring state, and the energy is 
sometimes called `cost'. Thus, SA algorithm consists of: 
configurations, re-configuration technique, cost 
function, and cooling schedule [26, 27]. 

Many researchers explored the application of SA on 
many different types of problems. Furthermore, SA can 
be integrated with GA or GP in order to work on a 
population of individuals and to preserve good 
individuals into the next generation [28, 29, 30, 31, 32]. 

4. The Proposed Method 

The problem under study can be formulated as follows: 
 
Given  :   Plaintext length in bits, which is the 

keystream length size. 
Output :   A LSFR-based keystream generator, that 

generate pseudorandom Binary sequence 
(keystream) of length size, and passes the 
randomness tests, such as frequency, serial, 
and run test. 

 
We can apply the evolutionary computation general 

algorithm as a general method for designing keystream 
generators of the desired properties, as follows: 

 
Algorithm: Keystream Generator Design 
Input: Keystream Length 
Output: Keystream Generator 
 
Generate the initial population S1 randomly, the 
individual members xi,i =0..population size, of the 
population are candidate keystream generators; 
Repeat 
  Execute  each xi in S1, to generate the Binary      
   sequence of a given length; 
  Measure the fitness value of xi; 
  Adapt the current population S1 to produce S2; 
  S1 ß   6�� 
Until (Maximum Number of generations);   

 
In order to represent the candidate keystream 

generators, two representation methods can be used: 
 

i. Binary string representation to represent 
the feedback function (linear or nonlinear) 
of the shift registers, and the Boolean 
functions which are used to combine a 
number of shift registers. Variable length 
chromosomes can be used. 

ii. Executable structures (computer 
programs), in which the primitive 
functions are Boolean functions, and shift 
registers as example. 

 
The fitness of an individual population member is 

measured by executing it to generate the keystream and 
then apply different tests, such as statistical tests, to 
measure the goodness of the keystream. These tests can 
be compiled in the fitness function.  

In this work, SAP has been applied to solve the 
problem of designing stream ciphers (or more 
specifically keystream generators). Automated design is 
an essential part of GP paradigm.  

The major steps for preparing GP for an application 
are [18]: 

• Determining the function library. 
• Determining the representation scheme. 
• Determining the fitness measure. 

 
The description of these steps is given in the 

following sub sections along the proposed algorithm 
parameters. 

4.1.  Function Library 

In GP, the structure under adaptation is a set of 
programs representing the candidate keystream 
generators. The keystream generators considered here 
are LFSR-based generators. Thus, the important basic 
function which is the shift register should be included. 
The function library used in this work is presented in 
table 1. The proposed function library is sufficient 
since: 

• It includes the LFSR function (SR), and there 
is no need to include other types of shift 
registers because for every shift register there 
is an equivalent LFSR. 

• Any combinational logical function can be 
expressed using (AND) and (XOR) only, that 
is because, any logical function can 
constructed from (AND), (OR), (NOT),  and 
 

NOT x = x  XOR  1         (1) 
x OR y = NOT (NOT( x ) AND NOT (y))   (2) 

4.2. Representation Scheme 

The population chromosomes (programs), that represent 
candidate keystream generators, are strings of characters 
which are expressions represented using prefix polish 
notation. Fig. 3 shows the syntax of the population 
programs. These syntactic rules should be preserved 
during the generation of the initial population, and by 
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the genetic operations. Therefore, strongly-typed GP 
[33] is used.  

The initial states and feedback functions of the shift 
registers are represented as strings of the letters 'a'..'p'. 
These letters represent the numbers 0..15. Thus, each 
letter is a sequence of four bits. The length of a LFSR is 
determined by the number of letters which initially are 
generated randomly. The number of these letters must 
be even, half of them for the initial state, and the second 
half for the feedback function.  

For example, if the number of these letters is 8 
letters, then the length of LFSR is 16 bits (4 x 4). 
Furthermore, the first zeros of the feedback function are 
ignored. For example, consider the following LFSR:   
"> abid", 'i' is the number 8 = (0001)2, then the first three 
zeros are ignored, and the length of this LFSR will be 
five bits (1 + 4). Thus the feedback function will be 
(11100). 

 
Table 1. The function library used 
Symbols Arty Format Description 
SR 2 SR  x   Shift register where x 

represents the feedback 
polynomial and initial 
state. 

& 2 &  x  y Bitwise AND operation 
between the two binary 
sequences x and y. 

^ 2 ^  x  y Bitwise XOR operation 
between the two binary 
sequences x and y. 

X 0  Sequence of characters 
'a'..'p', representing 
numbers 0..15. 

| 2 | x  y Bitwise OR operation 
between the two binary 
sequences x and y. 

 
 

S  à  SR X | & S S | ^ S S | | S S 
 
X  à  aX | bX | ... | pX | a | b | ... | p 

Fig. 3. The syntax rules of GP language. 

4.3. Fitness Function 

The fitness value is a measurement of the goodness of 
the keystream generator, and it is used to control the 
application of the operations that modify a population. 
There are a number of metrics used to analyze 
keystream generators, which are keystream randomness, 
linear complexity and correlation immunity. Therefore, 
these metrics should be taken in our account in 
designing keystream generators, and they are in general 
hard to be achieved.  

The fitness value is calculated by generating the 
keystream after executing the program, and then the 
generated keystream is examined. The fitness function 
used to evaluate the chromosomes is to calculate at what 
percentage the chromosome satisfies the desired 
properties of the stream ciphers. For example, Eq. 3 is 
fitness function which is used to evaluate of the 
chromosome based on the keystream randomness tests: 
frequency and serial tests. In which nw  is the frequency 
of w in the generated binary sequence, and size is the 
keystream length. This fitness function is derived from 
the fact that in the random sequence: 

 
• Probability (no) = Probability (n1), and 
• Probability (n01) =  

Probability (n11) =  
Probability (n10) =  
Probability (n00)  

4/4/4/4/1
)(

1110010010 sizensizensizensizennn
sizexfit

−+−+−+−+−+
=

                  (3) 
 

There is another randomness requirement which is 
1/2i

* nr  runs in the sequence are of length i, where nr  is 
the number of runs in the sequence, M is maximum run 
length, and ni is the desired number of runs of length i. 
Thus: 

  

Mtoiforallnn iri 11

2
==











×   (4) 

 
This can be expressed in the fitness function as follows: 

∑
=

−













×=

M

i
iri nnf

1 2
1            (5) 

 
Then the fitness function can be modified to be as 
follows: 
 

fsizensizensizensizennn
sizexfit

+−+−+−+−+−+
=

4/4/4/4/1
)(

1110010010

 

   (6) 

4.4. The Algorithm Parameters 

The genetic operations used to update the population are 
1-point crossover with probability 1.0 and mutation with 
probability 0.05. The selection strategy, used to select 
chromosomes for the genetic operations, is the 2- 
tournament selection. The initial value of the SA 
temperature is 250 which is updated by multiplying it 
by 0.95. The decision of using these parameters values 
was made based on the results of a number of 
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experiments that show that with these values the 
proposed algorithm performance is the best. 

The old population is completely replaced by the 
new population which is generated from the old 
population by applying the genetic operations.  

Regarding the structure of each chromosome, the 
maximum chromosome length is 300 characters, and the 
maximum number of functions (except SR) is ten 
functions. The probability of the function SR is 0.5, and 
all other function are of probability 0.5. Finally, the 
maximum LFSR length is 20 bits. 

The run of GP is stopped after a fixed number of 
generations. The solution is the best chromosome in the 
last generation.  

4.5.  The Design Algorithm 

The proposed algorithm for designing a keystream 
generator that meets the desired properties is based on 
the integration of SA and GP, i.e., simulated annealing 
programming. The reason behind this integration is that, 
the performance of the algorithm was improved with the 
use of SA. That is because SA can help to avoid the 
problem of getting stuck in a local minimum, and to 
preserve good individuals into the next generation. 

The following is the complete algorithm: 
 
 

Algorithm:   Simulated Annealing Programming  
Input : Keystream length (size) 
Output : LFSR-based keystream generator 
 
Generate the initial population (pop) randomly; 
Evaluate pop; 
Temp ß �����������WHPSHUDWXUH  
Repeat 
 Generate a new population (pop1) by applying 
   crossover and mutation;  
 Evaluate the fitness of the new generated 
  FKURPRVRPHV�RI�SRS�� 
 Calculate the averages of fitness values for pop and  
 SRS���DY��DQG�DY��UHVSHFWLYHO\� 
 If (av2 > av1)  then  replace the old population by the  
   new one, i.e. pop ß  SRS�� 
 Else 
 Begin 
        e ß  av1-DY���������� 
        Pr ß   e / Temp; 
        Generate a random number (rnd);  
        If (exp(-pr) > rnd)   then   pop ß  SRS�� 
 End; 
 Temp ß  7HPS�
������ 
Until (Max Number of generations);   

 

As shown in the algorithm, SA is the technique used 
for the construction of the keystream generators. The 
structure under adaption is the set of GP expressions, 
and the GA operations are used to update the population 
of expressions.  

5. Results 

The main purpose of this paper is to design an effective 
algorithm for designing keystream generators, and also 
to study the effectiveness of GP and SA to solve this 
problem. Therefore, the proposed method has been 
implemented using C++ programming language. The 
proposed method has been applied to design keystream 
generators of different values of keystream length (size), 
and population size. The results are presented in tables 
2, 3, and 4. These results are derived from running the 
algorithm 100 times. 

Also, to make a comparison between simple GP and 
SAP, GP has been applied. Fig. 4 presents the results as 
the average of best fitness values in 100 runs for 
different values of pop. Size (100-550) and the 
keaystream length is 200 bits. It is clear that the 
performance is highly improved by applying SAP.  

 

 
 
Fig. 4. Comparison between GP and SAP 
 

Table 2. Best chromosome (solution)  
Keystream  
Length 
(size) 

200 100 50 

Pop. Size                    Fitness value 
                 Keystream generator 

100 48.3019 
SR hgjj 

26.5285 
SR almj 

11.0535 
 SR haih 

200 48.3019  
SR kehe 

26.5285 
SR cnkc 

11.1986 
SR jekdjfge 

300 48.3019  
SR dhjj 

26.5285 
SR cfkc 

11.1986 
SR jekdjfge 

400 48.3019 
SR cddd 

26.5285 
SR jkpl 

11.1986 
SR cmdlljbp 
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100200300400500
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500 48.5308 
SR bjpoa 

26.5285 
 SR cfjf 

11.1986 
SR chbhik 

 
Table 3.  Average of best fitness values 

Keystream  
Length 
(size) 

200 100 50 

Pop. Size                    Average 
100 34.01549 21.8774534 10.008671 
200 35.87525 24.436832 10.313523 
300 38.72688 24.972075 10.503324 
400 39.03217 25.401894 10.601804 
500 41.31128 25.726553 10.800264 

 
Table 4. Frequency of the best chromosome 

Keystream  
Length (size) 

200 100 50 

Pop. Size          Frequency 
100 3 5 0 
200 9 15 8 
300 11 21 9 
400 26 30 10 
500 23 39 34 

 
According to the results, the population size and 

keystream length affect the effectiveness of the 
proposed method. Table 2 shows that the fitness value 
of the best chromosome increases as population size 
increases, and longer keystream yields better solution. 
Also, we can see from table 2, all solutions are linear 
keystream generators. That is because; the linear 
complexity has not been taken in our consideration in 
the evaluation of the chromosomes. Table 3 presents the 
averages of the fitness values of the best chromosomes 
in 100 runs. It is clear that increasing the population size 
improves the effectiveness of the algorithm. 
 
Example: The following chromosome that represents a 
keystream generator is of fitness value 50.66: 
 
SRphikje 
 
The following Binary keystream that is generated by 
this linear generator is of period length greater than 200 
bits: 
11111110000011011101000000000010101110000110101010
10110011110101110011001100010000011000010001000101
10101000101001011010011100110100110110001101111011
10010001110100011111000010010111100101111110101101 

6. Conclusion 

In this paper, a new approach for designing keystream 

generators automatically is presented, which is a new 
promising direction for stream cipher design. It has been 
shown the capability of GP and SA in designing the 
desired stream ciphers. Stream cipher design method 
presented here can be used for evolving any generator 
that satisfies the given requirements, such as period 
length, and randomness. These requirements are 
expressed mathematically in the fitness function. The 
experiments have shown the feasibility of the proposed 
method. Furthermore, the evolved keystream generators 
in the most cases are linear. However the results 
obtained can be improved by considering more factors 
in the fitness evaluation such as linear complexity, other 
randomness tests, and correlation immunity. 
Furthermore, other techniques and genetic operations 
can be examined and compared in order to find the best 
algorithm for solving the underlying problem.  
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