

Splitting Computation of Answer Set Program and Its Application on E-service
*

Bo Yang

College of Computer Science and Information, Guizhou University,

Guiyang, 550025, China

Department of Physics and Electronics Information Science, Guiyang University,

Guiyang, 550005, China

Ying Zhang, Mingyi Zhang

Guizhou Academy of Science, Guiyang, 550001, China

Maonian Wu

College of Science, Guizhou University, Guiyang, 550025, China

E-mail: gzu_wu@yahoo.com

Abstract

As a primary means for representing and reasoning about knowledge, Answer Set Programming (ASP) has been

applying in many areas such as planning, decision making, fault diagnosing and increasingly prevalent e-service.

Based on the stable model semantics of logic programming, ASP can be used to solve various combinatorial search

problems by finding the answer sets of logic programs which declaratively describe the problems. It’s not an easy

task to compute answer sets of a logic program using Gelfond and Lifschitz’s definition directly. In this paper, we

show some results on characterization of answer sets of a logic program with constraints, and propose a way to split

a program into several non-intersecting parts step by step, thus the computation of answer sets for every

subprogram becomes relatively easy. To instantiate our splitting computation theory, an example about

personalized product configuration in e-retailing is given to show the effectiveness of our method.

Keywords: logic program, answer set, splitting, E-service

*
This is an extended version of a paper presented at the FLINS2010, August 2-4, 2010, Chengdu, China.

1. Introduction

The Internet has been reaching almost all aspects of our

lives, many online services emerged as the times require,

including e-government, e-business, e-learning, e-

commerce, e-recruitment, and so on. Many Artificial

Intelligent(AI) techniques got successful application in

the field of e-services. Lu et al offered a comprehensive

and systematic survey on the new field of e-service

intelligence, which deals with fundamental roles, social

impacts and practical applications of various intelligent

technologies on the Internet based e-service

applications.
1
 In all subfields of e-services, AI

technologies including expert systems, machine learning,

International Journal of Computational Intelligence Systems, Vol. 4, No. 5 (September, 2011), 977-990

Published by Atlantis Press
 Copyright: the authors
 977

Administrateur
Texte tapé à la machine
Received 2 March 2011

Administrateur
Texte tapé à la machine
Accepted 3 November 2011

Administrateur
Texte tapé à la machine

B. Yang et al

artificial neural networks, fuzzy systems etc. are playing

useful and vital roles. Many intelligent technologies

mentioned above involve inductive or deductive

reasoning based on known information, which is usually

imprecise or incomplete. To deal with imprecise data,

fuzzy reasoning is a powerful tool. As for incomplete

knowledge, resorting to commonsense reasoning is the

most suitable choice. Actually, more than 90%

knowledge is commonsense in practical applications.

Hence commonsense knowledge representing and

reasoning has been being the kernel problem and

primary challenge for AI.

Non-monotonicity is the most important feature of

commonsense knowledge representing and reasoning.

As a primary means for non-monotonic reasoning,

Answer Set Programming(ASP) is a paradigm based on

the stable model(answer set) semantics of logic

programming,
2
 it is a method that reduces solving of

various combinatorial search problems to finding the

answer sets of logic programs which declaratively

describe the problems. ASP has been applied

successfully in areas like decision making, planning, e-

commerce. In Ref.3, A-Prolog is used to build a

medium size decision support system, in which

operations of a fairly complex subsystem of the Space

Shuttle are modeled. Paschke et al presented a logical

formalism ContractLog for the representation and

enforcement of Service Level Agreement(SLA) rules

between IT service providers and their customers.
4
 In

this framework Extended Logic Programming(ELP)

plays a very important role for deductive reasoning on

SLA rules. Eiter et al introduced a new declarative

language K based on non-monotonic logic

programming.
5
 Transitions between states of knowledge

can be described in K, so it is suitable for planning

under incomplete knowledge. Tu et al described the

methodology for developing several conformant

planners for a given dynamic domain,
6
 one of them is

logic programming based and can generate parallel plan.

Tiihonen et al created a web-based product configurator

that provides intelligent support for tailoring a product

through applying an inference engine for the form of

logic program.
7
In the context of e-commerce, this tool

can be used to provide personalized service, an

important subfield of increasingly prevalent e-service.

However, to the best of our knowledge, there are

few reports on how to deal with incomplete knowledge

in an e-service system. A main cause led to it is that

representation and reasoning of incomplete knowledge

is very hard and complex. ASP provides a useful

approach, but to find all answer sets of a logic program

is a problem with comparative complexity. As Dantsin

et al have shown, logic program under stable model

semantics is co-NP-complete.
8

Splitting is very helpful for simplifying answer sets

solving. Lifschitz et al gave a conceptual description of

splitting,
9,10

 in which a set U of literals should be given

to generate a base of a program with respect to U.

Moreover, the notion of U is extended to splitting a

program in series through a monotonic and continuous

splitting sequence. In accordance with the original

definition of splitting, Turner and Watson addressed

Splitting Set Theorem for default theories
11

 and

epistemic specifications
12

 respectively, and Balduccini

extended the splitting to programs with consistency-

restoring rules.
13

 However, none of them pointed out

how to construct a suitable set U of literals for splitting

a program. In principle, the splitting process always

starts from “guessing” an appropriate set U of literals.

Instead of guessing a set U of literals that can split a

program, it is more interesting to find a computable way

to split a program such that the complexity of answer

sets solving can be reduced. Zhang presented

“constructive” characterizations for extensions of a

default theory and for answer sets of a logic

program,
14,15,16

 which imply the idea of splitting a

default theory (program) into a sequence of default sub-

theories (subprograms). And Wu et al discussed a

method of splitting based on entire set of atoms for

Horn logic, a special style of ASP, for the aim of belief

revision over Horn logic.
17,18

 These works motive us to

explore a characterization of answer sets of a logic

program with constraints and to propose a stepwise way

of splitting. Based on this, a program can be split into

subprograms and every subprogram have less rules so

that it is easier to compute their answer sets, and the

union of answer sets of every subprogram is the answer

sets of the original program, neither more nor less than.

Hence we can more easily represent and compute

problems perhaps coming with incomplete information

from e-service, and other application areas, by ASP. In

this paper a simplified example about personalized e-

retailing is given to show that ASP provides a natural

and compact description for personalizing product

Published by Atlantis Press
 Copyright: the authors
 978

 Splitting Computation of Answer Set Program and Its Application on E-service

configuration according to customer’s favor, which

could include incomplete information.

This paper is organized as follows. Section 2 recalls

some notions and notations of ASP. Our definition and

theoretic results about characterization of answer set are

given in Sec.3. Section 4 describes our method for

splitting a program and corresponding algorithm. In

Sec.5, an example about personalized product

configuration in e-retailing is given to justify our

splitting algorithm and its advantage. The last section

concludes our work and presents the future research

interests.

2. Preliminaries

2.1. Syntax and semantics of logic program

According to Lifschitz,
10

 we consider the alphabet

A∪{, , , ←, not} in this paper. The nonempty set of

symbols A and the set {, , , ←, not} are disjoint. An

element from A is called atom. The symbols “,”, “”,

“←” and “not” mean “conjunction”, “classical

negation”, “if” and “negation as failure” respectively.

Terms defined in this section come from Ref. 10

primarily.

Definition 1. A positive literal is an atom and a

negative literal is an atom preceded by the classical

negation symbol “¬”. A literal is a positive literal or

negative literal.

Literals L and ¬L are said to be complementary. A

set of literals is inconsistent if it contains a pair of

complementary literals, and consistent otherwise. By Lit

we denote the set of all literals.

Definition 2. A rule r is of the form:

 Head←L1,…, Lm , not Lm+1,…, not Lm+k

where Head (head of r, donated by H(r)) is empty or a

literal L0, and the right hand side of r is a finite set of

two kinds of rule elements, i.e. literals possibly

preceded by the negation as failure symbol “not”.

We also write rule r in a brief form:

 H(r)←P(r)∪not(N(r))

where P(r)={L1,…, Lm} is called positive body, and

N(r)={Lm+1,…, Lm+k} negative body respectively.

Especially, a rule with H(r) and N(r)= is a basic

rule. Rule r is called a fact if H(r) and P(r)=N(r)=∅,

and a constraint if H(r)=∅. To distinguish from

ordinary rules, for a constraint c, its positive body and

negative body are represented as P(c) and N(c)

respectively. Thus constraint c is of the form:

←P(c), not (N(c)).

A set X of literals satisfies a constraint c if P(c)⊈X

or N(c)∩X≠∅; X satisfies a set C∏ of constraints if X

satisfies each c in C∏.

Definition 3. A program ∏ is a set of rules, and ∏ is a

basic program if every rule in it is basic.

A program with constraints can be written as

∏=∏*∪C∏, where ∏*
 contains no constraint and C∏ is

a set of constraints. By H(∏) we denote the set of heads

of all rules in ∏, i.e., H(∏)={H(r)|r∈∏}. And N(∏) is

the set of negative bodies of all rules in ∏.

Note that an atom is understood here as in

propositional logic, however, in application it is usually

an atomic sentence formed with object, function and

predicate constant. Actually, each atom in A containing

variables stands for a set of ground atoms, which are

gotten by ground instantiation. Rules in a program are

often represented by schemata containing variables. In

Example 2 we will see how schematic rules are

grounded
10

 and treated as propositional logic.

To explain the answer set semantics of an arbitrary

program, we start from the notion consequences of a

basic program.

A set X of literals is logically closed if it is

consistent or equals Lit. Given a basic program ∏, X is

closed under ∏ if for each rule r: H(r)←P(r) in ∏,

H(r)∈X whenever P(r)⊆X. It is easy to see that Lit is

logically closed and closed under any basic program ∏.

Among all sets of literals which are logically closed and

closed under ∏, we are interested in the smallest one,

denoted by Cn(∏). Clearly, such a set always exist.

Definition 4. Given a basic program ∏, elements of

Cn(∏) are called the consequences of ∏. And Cn(∏) is

called the consequence or stable model of ∏.
For any basic program ∏ and a set X of literals, to

compute Cn(∏), a monotonic function T∏ is defined as

follows:

T∏X is {H(r)|H(r)←P(r)∈∏, P(r)⊆X} if X is

consistent, and Lit otherwise. Cn(∏) is the union of sets

obtained by iterating T∏ on ∅, that is, Cn(∏)

=∪n≥0T∏
n∅, where T∏

0∅=∅. Consider an example

from Ref. 10:

Example 1 Let ∏ is:

 { p. ¬q.

r←p, q.

Published by Atlantis Press
 Copyright: the authors
 979

B. Yang et al

¬r←p, ¬q.

s←r.

s←p,s.

¬s←p, ¬q, ¬r. }

where each rule is ended by “.”. By definition of T∏,

We have:

T∏
0∅=∅

T∏
1∅={p, ¬q}

T∏
2∅={p, ¬q, ¬r}

T∏
3∅={ p, ¬q, ¬r, ¬s }

For every n>3,

T∏
n∅=T∏

3∅

Thus

Cn(∏)=∪n≥0 T∏
n∅

={ p, ¬q, ¬r, ¬s }

A basic program ∏ is consistent if Cn(∏) is

consistent, and if Cn(∏) is inconsistent, then ∏ is

inconsistent too.

In order to give the notion of answer sets of an

arbitrary program, it is necessary to introduce the notion

of reduct.

Given an arbitrary program ∏=∏*∪C and a set X

of literals, the reduct of ∏ relative to X, ∏X
, is derived

by

 deleting all cC∏,
 deleting each rule H(r)←P(r)∪not (N(r))∈∏* such

that N(r)∩X≠∅, and

 replacing each remaining rule H(r)←P(r)∪not

(N(r))∈∏* by H(r)←P(r).

Definition 5. A set X of literals is an answer set of

program ∏=∏*∪C∏ if Cn(∏X
)=X and X satisfies C∏.

It is obvious that X is also an answer set of ∏*
.

Definiton 6. Given an answer set X of a program

∏=∏*∪C∏, the set GR(X,∏) of generating rules of X

is defined as GR(X,∏)={r∈∏* |P(r)⊆X, N(r)∩X=∅,

and X satisfies C}.

 Clearly, H(GR(X,∏) satisfies C.

We say that a program ∏=∏*∪C is consistent if it

has a consistent answer set; it is inconsistent if one of its

answer sets is inconsistent. In Sec.3 we will see that

these notions are well-defined.

In general, an arbitrary program ∏ satisfies exactly

one of the following conditions:
10

 ∏ has no answer set;

 the only answer set for ∏ is Lit;

 ∏ has at least one answer set, and all its answer

set(s) are consistent.

The following example about n-coloring of a graph

G illustrates various situations in which whether answer

set(s) exist or not. And it also shows actual application

of ASP in Graph Theory.

Example 2 The problem of n-coloring of a graph G

refers to finding a color schemes of n colors for every

vertex of G such that for every pair of adjacent vertices

(X,Y) in G, color of X is different from that of Y.

Predicate c(I) is used to represent that I is a color,

where variable I ranges over the set of colors C={1, …,

n}. Predicates ver(V) and edge(V,W) denote that V is a

vertex of graph G and vertices V, W are adjacent

respectively. By color(V,I) we mean that vertex V is

dyed with color I. Then the problem can be described by

the following schematic rules containing variables:

1{color(V,I): c(I)}1←ver(V) (1)

←color(V,I), color(W,I), edge(V,W), c(I) (2)

Rules like (1) is a “choice rule” with numerical

bounds, by which cardinality of consequence sets from

this rule is restricted in a certain scope.
19,20

 Numerals

before and after the brace are called “lower bound” and

“upper bound” respectively. Rule (1) says: if V is a

vertex of graph G, then from all possible colors c(I),

choose at least one and at most one color I to make

color(V,I) holds. As a matter of fact, rule (1) can be

viewed as an abbreviation of a set of rules containing

the negation as failure symbol “not”. In the

aftermentioned process of grounding,
10

 we will see the

grounded forms of rule (1) and (2). Rule (2) indicates

that any two adjacent vertices can not be dyed with

same color.

If there are two colors, say 1 and 2, are used, and

graph G is a rectangle with four vertices v0,v1,v2 and v3,

the following facts describe the used colors and the

structure of G:

F={c(1). c(2).

ver(v0). ver(v1). ver(v2). ver(v3).

edge(v0,v1). edge(v1,v2).

edge(v2,v3). edge(v3,v0).}

Based on F, rule (1) is grounded to a collection of

rules without variables as follows:

G1={color(v0,1)←ver(v0), c(1), c(2), not color(v0,2).

color(v0,2)←ver(v0), c(1), c(2), not color(v0,1).

color(v1,1)←ver(v1), c(1), c(2), not color(v1,2).

color(v1,2)←ver(v1), c(1), c(2), not color(v1,1).

color(v2,1)←ver(v2), c(1), c(2), not color(v2,2).

color(v2,2)←ver(v2), c(1), c(2), not color(v2,1).

Published by Atlantis Press
 Copyright: the authors
 980

 Splitting Computation of Answer Set Program and Its Application on E-service

color(v3,1)←ver(v3), c(1), c(2), not color(v3,2).

color(v3,2)←ver(v3), c(1), c(2), not color(v3,1). }

And rule (2) is grounded as:

G2={←color(v0,1), color(v1,1), edge(v0,v1), c(1).

 ←color(v0,2), color(v1,2), edge(v0,v1), c(2).

←color(v1,1), color(v2,1), edge(v1,v2), c(1).

←color(v1,2), color(v2,2), edge(v1,v2), c(2).

←color(v2,1), color(v3,1), edge(v2,v3), c(1).

←color(v2,2), color(v3,2), edge(v2,v3), c(2).

←color(v3,1), color(v0,1), edge(v3,v0), c(1).

←color(v3,2), color(v0,2), edge(v3,v0), c(2). }

Let ∏1=F∪G1∪G2, consider a set of literals X=

F∪{color(v0,1), color(v1,2), color(v2,1), color(v3,2)},

then

∏1
X
= F∪{color(v0,1)←ver(v0), c(1), c(2).

color(v1,2)←ver(v1), c(1), c(2).

color(v2,1)←ver(v2), c(1), c(2).

color(v3,2)←ver(v3), c(1), c(2). }

It is obvious that Cn(∏1
X
)=F∪{color(v0,1), color(v1,

2), color(v2,1), color(v3,2)}=X, and for each constraint c

in G2, P(c)⊈X. Thus, X is an answer set of ∏1.

Similarly, it is easy to verify that F∪{color(v0,2),

color(v1,1), color(v2,2),color(v3,1)} is another answer

set of ∏1.

Adding a new edge into graph G will lead to

completely different result. Suppose that {edge(v1,v3)}

is added into F, then the following two grounded rules

will appear in G2:

←color(v1,1), color(v3,1), edge(v1,v3), c(1).

←color(v1,2), color(v3,2), edge(v1,v3), c(2).

Now it is impossible to find a set X of literals such

that Cn(∏1
X
)=X and for each constraint c in G2, X

satisfies c, then ∏1 has no answer set in this case.

Obviously, the more number of vertices or colors,

the more complicated the grounded forms of rule (1)

and (2) are, and hence make the task of solving answer

set more difficult. In Sec.4, we will see that splitting a

program is very helpful for simplifying the computation

of answer set.

Example 3 shows a program with Lit as its answer

set. For simplicity of presentation, remaining examples

in this section are written in propositional language.

Example 3 Let 2 is:

 { a. ¬ b.

 c←¬b .

 d←c, not b.

 ¬ d←c,b

 b←a, c.

 ←not b. }

It is clear that Cn({r∈2
*
| N(r)=∅}) contains

complementary literals b and ¬ b, i.e. Cn({r∈2
*
|

N(r)=∅})=Lit, and for constraint cʹ:

←not b.

N(cʹ)∩Lit≠∅. So 2 is inconsistent, its unique answer

set is Lit.

2.2. Splitting

In Ref.10, Lifschitz gave the original definition of

splitting.

Definition 7. For any program ∏ no containing

constraints, any set U of literals, we say that U splits ∏

if for every rule H(r)←P(r)∪not(N(r)) in ∏, P(r)∪N(r)

⊆U whenever H(r)∈U.

By bU(∏) we denote the set of rules in ∏ whose

heads belong to U, the base of ∏(relative to U). And for

any C⊆U, eU(∏,C) stands for the program obtained

from ∏ by

 deleting each rule H(r)←P(r)∪not(N(r)) such that

P(r)∩(U\C)≠∅ or N(r)∩C≠∅,

 replacing each remaining rule H(r)←P(r)∪not(N(r))

by H(r)←(P(r)\U)∪not (N(r)\U).

The following result from Ref.10 shows the effect of

splitting.

Theorem 1.
10

Let U be a set of literals that splits a

program . A consistent set of literals is an answer set

for  if and only if it can be represented in the form

C1∪C2, where C1 is an answer set for bU() and C2 is

an answer set for eU(\bU(),C1).

Example 4 Consider the following program:

 3={a.

 b←a, not c.

c←a, not d. }

Let U={a,d}, then bU(3) is {a.}, and the only

answer set of bU(3) is C1={a}. Furthermore, 3\bU(3)

is:

 { b←a, not c.

c←a, not d. }

And eU(3\bU(3), C1) is:

 { b←not c.

c. }

Obviously C2={c} is the only answer set of the program

eU(3\bU(3),C1). It is easy to verify that C1∪C2={a,c}

is the unique answer set of 3.

Published by Atlantis Press
 Copyright: the authors
 981

B. Yang et al

If U1={a, c, d}, then, clearly, it is also a set of

literals that can split 3. In fact:

 bU1(3) ={a.

c←a, not d.}

The only answer set of bU1(3) is C1ʹ={a, c}. So

eU1(3\bU1(3), C1ʹ) is ∅, whose answer set is ∅ too.

Obviously, C1ʹ∪∅={a,c} is also the answer set of 3.

Note that some subsets of {a, b, c, d} split 3 and

give the same answer set {a, c}, but others, e.g., {a, b}

can not split 3.

Splitting is very useful for computing answer sets.

However, it is not so convenient to “guess” a suitable

initial splitting set U(in Example 4 we need test 2
4

subsets of {a, b, c, d}). To deal with this puzzle, we

want to find a tractable method, which splits a big

program ∏ into several subprograms such that solving

answer sets for smaller subprograms is easier and the

sum of answer sets of subprograms is just an answer set

of . This is what this paper aims at.

By defining the concepts of compatibility and auto-

compatibility for general default theories, Zhang

presented a simple and natural characterization of

extensions of general default theories and developed a

class of default theory, named auto-compatible default

theory.
14,15

 Results about default theories can be easily

transformed to ASP which is also a kind of formalism

for non-monotonic inference. In Ref.16, Zhang et al

proposed a finite characterization of answer sets for

nested program, which is very helpful for exploring

existence of answer sets. In particular, for any given

finite program ∏, each answer set of ∏ can be

represented by a finite set of generating rules that

captured by a Λ-operator and notion of compatibility.

Following ideas mentioned, we present some notions

and results for computing answer set in terms of

splitting in the next section.

3. Λ -operator and Characterization of Answer

Set

Intuitively, for all rules applicable to generating an

answer set, their heads would be disjoint with their

negative bodies, and would satisfy any constraint.

Therefore, we introduce the concept of compatibility,

which characters a necessary condition for the negative

body of any applicable rule when generating an answer

set.

Definition 8. A program = *∪C is compatible if

H( *
)∩ N( *

)= and for each c∈C , P(c) ⊈ H( *
)

or H( *
)∩ N(c)≠. In particular, the empty program

 is compatible.

Clearly, a basic program is compatible, and any

nonempty set of constraints is incompatible. A class of

subprograms of compatible program is also compatible,

that is what the following proposition says.

Proposition 1. If program = *∪C is compatible

then any ⊆ *
 is also compatible.

A rule can be used in the process of solving answer

set if its positive body are facts or can be derived from

facts step by step. In a way similar to the operator T∏

mentioned in Sec.2, we define Λ-operator, which

characters another necessary condition for the positive

body of any acceptable rule, as follows.

Definition 9. For a program = *∪ C , let 

={ r∈ * N(r)=∅}, then Λ()=∪0≤n
 n

 or ⊥ when

 n+1
=⊥ for some n0, where  0

 is defined as Eq.(1).

And For n≥0 and  0
≠Lit, 

 n
is given as Eq.(2), where

⊥ stands for undefined and Lit is a special program

with Lit as its answer set.

Note that if H({r∈∏-C|P(r)⊆H(∏
n
)}) is

consistent then ∏
n
≠∏Lit and ∏

n
⊆∏

n+1
 for any n≥0

and ∏
n+1
≠⊥. In what follows we always consider only

the case where Λ(∏)≠⊥.

From Def.9, it is obvious that the answer set of a

basic program is just its stable model, i.e.. if N()=∅

and C=∅, then H(Λ()) is the stable model of  and

H(Λ()) = ∪0≤nT∏
n
∅.

Example 5 Λ(C)=∅ for any nonempty set of

constraints C.

From Def.9 we immediately get some important

properties for the operator Λ: monotonicity and

idempotence etc. Some proofs for these properties see

Appendix.

Proposition 2. If ()Lit and ()⊥ then ()

 *
 and H(()) satisfies C.

Proposition 3.  is monotonic, i.e., if 12 and (2)

⊥, then (1)(2).

Lemma 1. If ()Lit and ()⊥ then (())=

().

Lemma 2. If ()  Lit and ()  ⊥ then for any r

 *
, P(r)H(()) if and only if r().

Theorem 2. Program = *∪C has an inconsistent

answer set if and only if Cn({r∈ *
|N(r)=∅})=Lit and

N(c)∅ for any c∈C .

Published by Atlantis Press
 Copyright: the authors
 982

 Splitting Computation of Answer Set Program and Its Application on E-service

Corollary 1. If Lit is an answer set of program , then

it is the unique answer set of .

By Theorem 2 and Corollary 1, we are interested in

only consistent programs. How to determine whether a

program has a consistent answer set or not and how to

compute its answer sets if they exist? This is intractable

by the definition of answer sets since it is needed to test

all consistent sets of literals. Now we establish a

characterization of answer sets of a consistent program,

by which computing answer set is based on only this

program itself.

Theorem 3. Program  =  *∪ C has a consistent

answer set if and only if there is a subset  of  *
 such

that:

(i) ∪C is compatible;

(ii) ()=;

(iii) For r∈-, P(r)⊈H() or N(r)∩H()≠∅.

Intuitively, any rule which is not compatible with

the set GR(X,∏) or whose positive body can not be

derived from GR(X,∏) would be inapplicable.

From the proof of Theorem 3 (See Appendix) we

get its equivalent version, that is:

Theorem 3*. A consistent set of literals S is an answer

set of a program = *∪ C if and only if there is a

subset  of  *
 such that:

(i) ={r *P(r)S and N(r)∩S=} and S=H();

(ii) ∪C is compatible;

(iii) Λ()=;

(iv) For r∈-, P(r)⊈S or N(r)∩S ≠∅.

Now we conclude that an answer set of a program is

a minimal set satisfying Theorem 3.

Theorem 4. (Minimality of answer sets) If X and Y are

answer sets of a program = *∪C and XY, then

X=Y.

Example 6 Any nonempty set of constraints has no

answer sets.

Corollary 2. If program = *∪C is compatible then

it has just one answer set H(Λ( *
)).

Actually, results from Theorem 3 and its corollary

give the characterization of consistent answer set for a

program in terms of compatibility.

4. Splitting a Program

Although stemming from Lifschitz’s definition, our

description of splitting is slightly different from the

former. In our opinion, for any program , a collection

{ | () } ({ | () })

({ | () }) () (),

({ | () }) ()

({ | () }) ()

n n

n

n

n

Lit

r P r T if H r P r T is consistent

and H r P r T P c P c

or H r P r T N c for each c C

if H r P r T is inconsistent and P C

i

 



 

  

         

     

        

       




 







 








0≤n 0≤n

0≤n

0≤n

0≤n

({ | () }) ()

({ | () })

({ | () }) () ()

({ | () }) () (1)

n

n

n

n

f H r P r T is inconsistent and P C

or if H r P r T is consistent and

c C H r P r T P c P c and

H r P r T N c

 



 



      

    

       

       



















 

 


 




0≤n

0≤n

0≤n

0≤n

{ | () ()} ({ | () ()})

({ | () ()}) () ()

({ | () ()}) ())

({ | () ()})

({

n n

n

n

n nn

Lit

n

r C P r H if H r C P r H is consistent

and H r C P r H P c P c

or H r C P r H N c for each c C

if or

or H r C P r H is inconsistent

or H r

 



 



       

     

       

    

   

 

 









+1

| () ()}

({ | () ()}) () ()

({ | () ()}) ()) (2)

n

n

n

C P c H is consistent and

c C H r C P c H P c P c and

H r C P c H N c



 



 

       

      











 

 




Published by Atlantis Press
 Copyright: the authors
 983

B. Yang et al

of subprograms of , {i}(i≤n), is a finer splitting of

 if
 for each i(i≤n) and any r∈i, there is a r∈

such that H(r)=H(r), P(r)⊆P(r) and N(r)⊆N(r)

 H(i)∩H(j)=∅ for any i≠j, and

  has a consistent answer set S if and only if each

i(i≤n) has a consistent answer set Si such that

S=∪iSi.

Based on above comprehension of splitting, a

program is split in following steps:

Step 1:

0={r∈|P(r)⊆∪0≤nT∏
n
∅}=

0
, where ={r∈|

N(r)=∅}, If H(0) is consistent, and H({r∈|P(r)⊆

∪0≤nT∏
n
∅ }) ∩ P(c)  P(c) or H({ r∈ | P(r) ⊆

∪0≤nT∏
n
∅})∩N(c)   for each cC.

Step 2:

For n≥0, n+1={r|r∈-C-∪i≤ni, and H(r)=H(r),

P(r)=P(r)–H(∪i≤ni), N(r)=N(r)-H(∪i≤ni) }, if H(n)

is consistent, and H({r∈-C|P(r)⊆H(∪i≤ni), N(r)∩

H(∪i≤ni) = ∅}) ∩ P(c)  P(c) or H({r∈-C| P(r)⊆

H(∪i≤ni), N(r)∩H(∪i≤ni)=∅})∩N(c)   for each

cC.

Basically, r is obtained from r by eliminating

H(∪i≤ni) from body of r, where P(r)⊆H(∪i≤ni),

N(r)∩H(∪i≤ni) =∅.

Algorithm implementing the splitting is given as

follows:

FUNCTION BASIC(∏)

{∏b:=∅;

FOR each r∈∏ DO

 IF N(r)=∅ THEN ∏b:=∏b∪{r};

RETURN (∏b);

}

FUNCTION T∏(∏b)

{Cn:=∅;

DO

{result:=Cn;

FOR each r∈∏b DO

IF P(r)⊆Cn THEN

{Cn:=Cn∪H(r);

∏b:=∏b-{r};}

IF Cn is inconsistent THEN RETURN (Lit);

} UNTIL (result=Cn)

 RETURN (result);

}

FUNCTION SPLITTING(∏)

{i:=0; j:=0;

token:=false;

find:=true;

sat:=false;

∏:=BASIC(∏);

X:=T∏(∏);

IF X=Lit THEN

{FOR each c∈C∏ DO

 IF N(c)=∅ THEN

{token:=true;

EXIT FOR;}

IF token:=true

THEN RETURN(no splitting)

 ELSE RETURN(unique inconsistent answer set);

}

∏:=∏-∏-C∏;

∏0:=∅;

FOR each r∈∏ DO

 IF P(r)⊆X THEN ∏0:=∏0∪{r};

FOR each c∈C∏ DO

 IF P(c)⊆H(∏0) AND N(c)∩H(∏0)=∅
 THEN {sat:=true;

EXIT FOR;}

IF sat=true THEN RETURN(no splitting);

∏u:=∏0;

DO

{∏i+1:=∅;

 ∏uʹ=∏u;

FOR each r∈∏ DO

 IF P(r)⊆H(∏u) AND N(r)∩H(∏u)=∅
THEN

 {∏i+1:=∏i+1∪{r};

 ∏uʹ=∏uʹ∪∏i+1;

 FOR each c∈C∏ DO

 IF P(c)⊆H(∏uʹ) AND N(c)∩H(∏uʹ)=∅
THEN

{∏i+1:=∏i+1-{r};

 ∏uʹ=∏uʹ-{r}; }

IF H(∏i+1)∪N(∏i+1) is inconsistent

THEN OUTPUT(no answer set for ∏i+1);

}

 IF ∏i+1≠∅ THEN

{∏:=∏-∏u -∏i+1;

FOR each r∈∏i+1

Published by Atlantis Press
 Copyright: the authors
 984

 Splitting Computation of Answer Set Program and Its Application on E-service

DO

{P(r):=P(r)-H(∏u);

 N(r):=N(r)-H(∏u);}

 ∏u:= ∏u∪∏i+1;

i:=i+1;

}

ELSE find:=false;

}UNTIL(find=false)

FOR j=0 to i DO OUTPUT (∏j);

 RETURN ();

}

Function BASIC generates a basic program ∏b

whose rules are picked out from , function T

implements T∏
n
 on b, and function SPLITTING

returns the sequence of {i}(i≤n) from . Generally

speaking, the complexity of directly computing answer

sets for  is O(2
|∏|

); after splitting  into {i}(i≤n),

the total complexity of computing answer sets for {i}

is O(Σi≤n2
|∏i|

) , which is much less than the former.

Now we present a basic theorem shown in Appendix,

which guarantees the correctness of the above splitting

notion and algorithm.

Theorem 5. Program  has an answer set S if and only

if there is a finer splitting { i | i≥0} of  such that

S=∪iSi, where Si is an answer set of  i.

5. An Example in E-retailing

With the development of Internet, more and more

producers or companies retail their products or services

on the web. In these applications, of course as well as

other forms of e-service, providing personalized service

to users according to their demands is very helpful for

building a one-to-one relationship between the customer

and the service provider, consequently enhance the user

satisfactions.
1
 In this section, we will give a simplified

example to show the application of ASP on service

personalization in an e-retailing system, and our

splitting method and its advantage are justified by the

example.

Through a web-based retailing system, a PC retailer

can sell products or services to users on the web.

Computer is a kind of typical configurable product,

usually customers have some special requirements or

preference on some components of the machines they

are to buy, or want to know the prices corresponding to

various configurations. To meet these requirements, a

reasoning mechanism should be included in the e-

retailing system. Some knowledge is incomplete when

building such a mechanism, e.g., the retailer has no idea

about which type of CPU the customer prefers to, then

various possibilities should be considered.

Assume on the selling webpage of a PC e-retailing

system there is an item list with option boxes for each

class of components of a PC, such as CPU, mainboard,

and so on. Each item in such a list refers to one type of a

component. Predicate component(X) states that X is a

PC component, e.g., CPU. Usually there are various

types for a component, binary predicate hastype(Y,X)

means that component X has a type of Y.

Normally, a customer prefer one type of component

to others of the same class, so he will choose the

corresponding option box along with the type he

preferred. Once a type Y is labeled, predicate choose(Y)

hold, this means Y will be chosen as a part of the

anticipated PC. However, it is possible, although

infrequently, the customer makes no preference for a

class of components, then every type of this component

has the equal chance to be chosen. Furthermore, for any

component, it is not allowed more than one type is

preferred and hence to be chosen. These notions are

captured by the following schematic rules:

1{choose(Y): hastype(Y,X)}1←component(X) (3)

←component(X), hastype(Y1,X), hastype(Y2,X),

 choose(Y1), choose(Y2), Y1≠Y2 (4)

where variable X ranges over all components, Y, Y1 and

Y2 denote types of component X.

Also being a “choice rule”, rule (3) says: if X is a

component, then from all types Y of X such that

hastype(Y,X) holds, choose at least one and at most one

Y to make choose(Y) holds.

Rule (4) indicates that any two different types of the

same component can not be chosen at the same time.

Technical parameters should be taken into

consideration when configuring a PC, if a type Y1 of

component X1 is incompatible with type Y2 of

component X2, then predicate incompatible(Y1, Y2) holds,

Y1 and Y2 should not be chosen simultaneously. This can

be represented as a constraint:

←component(X1), component(X2),

hastype(Y1,X1), hastype(Y2,X2),

 choose(Y1), choose(Y2), X1≠X2 ,

 incompatible(Y1,Y2). (5)

Published by Atlantis Press
 Copyright: the authors
 985

B. Yang et al

Rule (3)~(5), together with other facts, e.g.,

component(X) for all possible components X, choose(Y)

for some types Y, form a logic program Π, answer set(s)

of Π give the possible configuration(s) of the anticipated

machine.

To simplify the presentation, we assume that just

three classes of components to be considered, they are

mainboard, CPU and memory. Types of each

component are shown in Tab.1.

Table 1. Types of PC components

Component class Types

mainboard mb_A

 mb_B

CPU cpu_A

 cpu_B

memory mem_A

 mem_B

According to Tab.1, we can list the first group G1 of

rules(facts) of Π:

component(mainboard).

component(cpu).

component(memory).

hastype(mb_A, mainboard).

hastype(mb_A, mainboard).

hastype(mb_B, mainboard).

hastype(cpu_A, cpu).

hastype(cpu_A, cpu).

hastype(mem_A, memory).

hastype(mem_B, memory).

Actually, rules in G1 are basic facts of the system,

although will appear in answer set of Π, not the results

we concerned.

Now rule (3)~(4) can be grounded to the second

group G2 of rules, they are:

choose(mb_A)←component(mainboard),
hastype(mb_A, mainboard),

hastype(mb_B, mainboard),

not choose(mb_B).

choose(mb_B)←component(mainboard),
hastype(mb_A, mainboard),

hastype(mb_B, mainboard),

not choose(mb_A).

choose(cpu_A)←component(cpu),
hastype(cpu_A, cpu),

hastype(cpu_B, cpu),

not choose(cpu_B).

choose(cpu_B)←component(cpu),
hastype(cpu_A, cpu),

hastype(cpu_B, cpu),

not choose(cpu_A).

choose(mem_A)←component(memory),
hastype(mem_A, memory),

hastype(mem_B, memory),

not choose(mem_B).

choose(mem_B)←component(memory),
hastype(mem_A, memory),

hastype(mem_B, memory),

not choose(mem_A).

←component(mainboard),

hastype(mb_A, mainboard),

hastype(mb_B, mainboard),

 choose(mb_A), choose(mb_B).

←component(cpu),

hastype(cpu_A, cpu),

hastype(cpu_B, cpu),

 choose(cpu_A), choose(cpu_B).

←component(memory),

hastype(mem_A, memory),

hastype(mem_B, memory),

 choose(mem_A), choose(mem_B).

The former six rules of G2 are grounded forms of

rule (3), and the latter three ones are grounded from rule

(4).

If a customer labels cpu_A and mem_B as

preference, and assume that mb_B and cpu_A are

incompatible, then we get the third group G3 of rules:

choose(cpu_A).

choose(mem_B).

incompatible(cpu_A,mb_B).

←component(cpu), component(memory),

hastype(cpu_A, cpu), hastype(mem_B, memory),

choose(cpu_A), choose(mb_B),

incompatible(cpu_A,mb_B).

 Program Π=G1∪G2∪G3 describes basic facts about

PC configuration, customer’s requirements and

reasoning rules based on these facts. Obviously the only

answer set of Π is G1∪{choose(cpu_A), choose

(mem_B), choose(mb_A), incompatible(cpu_A,mb_B)}.

Next we will show the splitting computation of Π.

First function BASIC finds all basic rules of Π:

Πb= G1∪{choose(cpu_A). choose(mem_B).

incompatible(cpu_A, mb_B).}

Then function T∏ gives consequence of Πb easily:

Published by Atlantis Press
 Copyright: the authors
 986

 Splitting Computation of Answer Set Program and Its Application on E-service

 Cn(Πb) =∪0≤nTΠb
n∅

= G1∪{choose(cpu_A), choose(mem_B),

 incompatible(cpu_A, mb_B)}

Finally, function SPLITTING returns the following

Πi(i≤n):

Π0= G1∪{choose(cpu_A). choose(mem_B).

incompatible(cpu_A, mb_B). }

Π1={choose(mb_A)←not choose(mb_B).

choose(cpu_A)←not choose(cpu_B).

choose(mem_B)←not choose(mem_A). }

Π2=∅

In fact, while computing Π1, there are two choices

of rules:

Π1-1={choose(mb_A)←not choose(mb_B).

choose(cpu_A)←not choose(cpu_B).

choose(mem_B)←not choose(mem_A).}

Π1-2={choose(mb_B)←not choose(mb_A).

choose(cpu_A)←not choose(cpu_B).

choose(mem_B)←not choose(mem_A).}

However, Π1-2 is eliminated because of the

constraint:

←component(cpu), component(memory),

hastype(cpu_A, cpu), hastype(mem_B, memory),

choose(cpu_A), choose(mb_B),

incompatible(cpu_A, mb_B).

Answer sets for Π0, Π1 are G1∪{choose(cpu_A),

choose(mem_B), incompatible(cpu_A, mb_B)} and

{choose(cpu_A), choose(mem_B), choose(mb_A)}

respectively, the union of them exactly equals to the

answer set of Π.

Through splitting, numbers of rules in Π0, Π1 are

much less than those of Π, their answer sets are very

easy to compute.

Tiihonen et al have shown that basic logic program

with weight constraint rules is quite suitable for

naturally describing product configuration problem.
7,21

There product’s configuration information are

represented as weight constraint rules, together with

customer’s determinate requirements for some

components, the unique answer set of these rules

corresponds to the expected configuration. However,

possibility of incomplete information was not discussed.

Example presented in this section is very simple.

Whereas incomplete knowledge possibly emerged in

such applications is considered. Basically, any subfield

of e-service related to incomplete knowledge

representing and reasoning is the congruent application

domain for ASP.

6. Conclusion

With the notion of compatibility and Λ-operator, we

described the characterization of answer set for a logic

program with constraints. From the characterization we

can check if a program has answer set, and if so, a

stepwise method presented in this paper can be used to

split a program into subprograms, such that the union of

answer sets of subprograms is the answer set of original

program. To a certain extent, this simplifies the task of

solving answer set for logic program. In any area

involving knowledge representation and reasoning, it is

a desirable result.

An example about personalized product

configuration in e-retailing is given to show that ASP

provides a natural and compact description for

personalizing product configuration. Our splitting

method and its advantage are justified by this example.

It is just one of many applications of ASP. In the

context of software diagnosis
22

 or alias analysis
23

, ASP

is applicable for addressing incomplete knowledge or

frame problem in the two areas. Next we plan to apply

our method on these issues.

Acknowledgements

We want to thank the anonymous reviewers for their

helpful comments on an earlier version of this paper.

This work is supported by the Natural Science

Foundation of China under Grant No. 60963009 and No.

61003203, Natural Science Foundation of Guizhou

Province No.[2009]2123, Natural Science and

Technology Foundation of Guizhou Province No. SY

[2010]3070.

References

1. J. Lu, D. Ruan, and G.Q.Zhang. E-Service Intelligence:

An Introduction, in Studies in Computational Intelligence

(Springer, Berlin, 2007), pp.1-33.

2. M. Gelfond and V. Lifschitz, The stable model semantics

for logic programming, in Proc. of International Logic

Programming Conference and Symposium, eds. R.

Kowalski, and K. Bowen(1988), pp.1070-1080.

3. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson and

M. Barry, An A-Prolog decision support system for the

Published by Atlantis Press
 Copyright: the authors
 987

B. Yang et al

Space Shuttle, in Proc. of PADL2001, (Springer, Berlin,

2001), pp.169-183.

4. A. Paschke, and M. Bichler, Knowledge representation

concepts for automated SLA management, Decision

Support Systems, 46(1)(2008) 187-205.

5. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres,

A logic programming approach to knowledge-state

planning: Semantics and complexity, ACM Trans. on

Comp. Logic, 5(2) (2004) 206-263.

6. P. Tu, T. Son, M. Gelfond, and A. R. Morales,

Approximation of Action Theories and Its Application to

Conformant Planning, Artificial Intelligence,

175(1)(2011) 79-119.

7. J. Tiihonen, T. Soininen, I. Niemela, and R. Sulonen, A

practical tool for mass-customising configurable products,

in Proc. of the 14th International Conference on

Engineering Design, (2003), pp.1290-1299.

8. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov,

Complexity and expressive power of logic programming,

in Proc. of 12th IEEE Conference on Computational

Complexity, (1997), pp.82-101.

9. V. Lifschitz, and H. Turner, Splitting a logic program, in

Proc. of Int. Conf. on Logic Programming, (1994)23-

38(1994).

10. V. Lifschitz, Foundation of Logic Programming, in

Principles of Knowledge Representation, (CSLI

Publications, 1996), pp. 69-128.

11. H. Turner, Splitting a Default Theory, in Proc. of AAAI

1996, (AAAI Press, 1996), pp.645-651.

12. R. Watson, A Splitting Set Theorem for Epistemic

Specifications, in CoRR cs/0003038v1, (2000).

13. M. Balduccini, Splitting a CR-Prolog Program, in Logic

Programming and Nonmonotonic Reasoning,

(LNCS5753, 2009), pp. 17-29.

14. M. Zhang, A characterization of Extensions of General

Default Theories, in Proc. of AI92, (1992), pp.134-139.

15. M. Zhang, A New Research into Default Logic, Inf.

Comput., 129(2)(1996) 73-85.

16. M. Zhang, Y. Zhang, and F. Lin, A characterization of

answer sets for logic programs, Sci. in China, Series F:

Information Science, 50(1)(2007) 46-62.

17. M. Wu, D. Zhang and M. Zhang, Language Splitting and

Relevance-Based Belief Change in Horn Logic, in Proc.

of 25th AAAI Conf. on AI, eds. W. Burgard and D.

Roth(AAAI Press,2011), pp.268-273.

18. M. Wu and M. Zhang, Algorithms and Application in

Decision Making for the Finest Splitting of a Set of

Formulae, Knowledge-Based systems, 23(1)(2010) 70-76.

19. V. Lifschitz, What is Answer Set Programming, in Proc.

of the 23rd AAAI Conf. on AI, eds. D. Fox and C. P.

Gomes(AAAI, 2008), pp. 1594-1597.

20. P. Ferraris and V. Lifschitz, Mathematical Foundations of

Answer Set Programming, in We Will Show Them!

Essays in Honour of Dov Gabbay(King’s College

Publications, 2005), pp. 615-664.

21. T. Soininen, I. Niemela, J. Tiihonen, and R. Sulonen,

Representing Configuaration Knowledge With Weight

Constraint Rules, in Proc. of the AAAI spring 2001

symposium on Answer Set Programming, (2001), pp. 95-

201.

22. W. Mayer, and M. Stumptner, Model-based debugging-

state of the art and future challenges, Electronic Notes in

TCS, 174(4)(2007) 61-82.

23. B. Meyer, Towards a theory and calculus of aliasing, J. of

Object Technology, 9(2)(2010) 37-74.

Appendix A.

Some proofs of this paper are included in this section.

Proposition 1. If program = *∪C is compatible

then any ⊆ *
 is also compatible.

Proof.

It is obvious from Definition 8. □

Proposition 2. If ()Lit and ()⊥ then ()

 *
 and H(()) satisfies C .

Proof.

It is easily proven by induction on n that

∪0≤n
n⊆*

.

Base

n=0. Because ()Lit and ()⊥, then by

Definition 2, we know that for set ʹ of basic rules,

ʹ⊆*
 and 

0
={r∈ʹ| P(r)⊆∪0≤nT

n∅}, with the

promise that H({r∈ʹ| P(r)⊆∪0≤nT
n∅}) is consistent,

and H({r∈ʹ| P(r)⊆∪0≤nT
n∅})∩ P(c)  P(c), or

H({r∈ʹ |P(r)⊆∪0≤nT
n∅})∩N(c)≠∅ for each c∈C.

So 
0⊆ ʹ⊆*

, and H(
0
) satisfies C.

Step

Suppose that for any natural number i, there is

∪0≤i
i⊆*

, and H(∪0≤i
i
) satisfies C. From

()Lit and ()⊥ we can conclude that


i+1

={r∈-C| P(r) ⊆H(
i
)}, with the promise that

H({r∈-C|P(r)⊆H(
i
)}) is consistent, and H({r∈

-C|P(r)⊆H(
i
)})∩P(c)P(c), or H({r∈-C|P(r)⊆

H(
i
)})∩N(c)≠∅ for each c∈C. Each r in 

i+1
is

from 
*
, i.e., 

i+1⊆*
. By induction assumption,

(∪0≤i
i
)∪i+1⊆*

, that is ∪0≤i+1
i+1⊆*

, and

H(∪0≤i+1
i+1

) satisfies C. □

Proposition 3.  is monotonic, i.e., if 12 and (2)

⊥, then (1)(2).

Proof.

It is immediate from Definition 2. □

Published by Atlantis Press
 Copyright: the authors
 988

 Splitting Computation of Answer Set Program and Its Application on E-service

Lemma 1. If ()Lit and ()⊥ then (())=

().

Proof.

By proposition 2 it is sufficient to show that

(())(). Then what we need to do is to prove by

induction on n that (())
n
((()))

n
.

Base

It is obvious that (())
0
((()))

0
.

Step

Assume that (())
i
((()))

i
. Then for any

r∈(())
i+1

, P(r)H((())
i
). By the induction

assumption, P(r)H(((()))
i
), which implies that

r∈((()))
i+1

. So (())
i+1
((()))

i+1
.

All of the above shows that (())=().

□

Lemma 2. If ()  Lit and ()  ⊥ then for any r

 *
, P(r)H(()) if and only if r().

Proof.

 “If ” is clear.

For the “Only If”, we easily show it by the

definition of . □

Theorem 2. Program = *∪C has an inconsistent

answer set if and only if Cn({r∈ *
|N(r)=∅})=Lit and

N(c)∅ for any c∈C .

Proof .

It is immediate by definition of answer set. In fact,

Lit is an answer set of  if and only if

Lit={r∈*
|N(r)=∅}, Cn({r∈*

|N(r)=∅})=Lit and

N(c)∩Lit≠∅ for each c∈C. □

Corollary 1. If Lit is an answer set of program , then

it is the unique answer set of .

Proof .

Suppose  has a consistent answer set S, then

{r∈*
|N(r)=∅}⊆S

, so Cn({r∈*
|N(r)=∅})⊆S. On

the other hand, we have Cn({r∈*
|N(r)=∅})=Lit by

Theorem 2. So, S⊆Lit. Furthermore, S=Lit which is in

contradiction to consistency of S. □

Theorem 3. Program  =  *∪ C has a consistent

answer set if and only if there is a subset  of  *
 such

that:

(i) ∪C is compatible;

(ii)  ()=;

(iii) For r∈-, P(r)⊈H() or N(r)∩H()≠∅.

Proof.

Define r
*
= H(r)←P(r), where r = H(r)←P(r), not

(N(r)) and 
+
=(r

*
 r

*
). Denote (r

*
)={r

*
H(r)=

H(r
*
) and P(r) = P(r

*
)} and 

i*
= ∪r (r

*
) (i

*
 stands

for inverse of *).

It is easy to see that ()=(
i*

) , (
*
)

S
={r

*


N(r
*
)∩S=}. By induction it is easy to show that

((
*
)

S
)=((

+
))

S
 .

 “If”

Suppose  satisfies conditions (i), (ii) and (iii),

which implies that ()⊥. By the definition of the

operator  and condition (ii), it is easy to see that 


+
, and  satisfies CΠ. Let S=H()=H(()). So, it

is sufficient to show that S is an answer set of . At first,

we have (
+
)

S
 ={r

*
 r

+
 and N(r)∩S=}. Since the

stable model of (
+
)

S
 is H(((

+
)

S
), we show that

((
+
)

S
)

i*
)=()=, which implies that S is an

answer set of 
*
. At first, we have S=H()

H(((((
*
)

S
)

i*
)). Next, we can inductively show that

(((
*
)

S
)

i*
)

n
 , which implies that H((((

*
)

S
)

i*
)).

So, we get (((
*
)

S
)

i*
)=. Furthermore, (((

*
)

S
)

i*
)=

(). Hence, S=H(())=H((((
*
)

S
)

i*
)=H(((

*
)

S
)).

 “Only If”

Suppose that S is an answer set of 
*
. Then S is the

stable model of (
*
)

S
 and S=H(((

*
)

S
). Let

={rr
*
= H(r)←P(r)(

S
)}, then =(((

*
)

S
))

i*

and  is compatible. Hence  Satisfies (i). From

Lemma 1, we have (）=, i.e., (ii) is satisfies by

. For any r, if P(r)H() and N(r)H()

=, then r
*
(

*
)

S
 and r(((

*
)

S
)

i*
)=, which

contradicts the assumption that r
*
. So, condition

(iii) holds for . □

Theorem 4 (Minimality of answer sets) If X and Y are

answer sets of a program = *∪C and XY, then

X=Y.

Proof.

If one of X and Y is Lit, then X=Y by Corollary 1.

Suppose neither X nor Y is Lit and XY (i.e., XY and

XY). Hence there is r. Let

={rP(r)X and N(r)∩X=}, and

= {rP(r)Y and N(r)∩Y=}.

By Theorem 3*, we have X=H(), Y=H() and both

 and  are compatible. So，N(r)∩X= resp. N(r)

∩Y= by compatibility of  resp. . On the other

hand, since r and  satisfies conditions

in Theorem 3*, then N(r)∩X≠∅ by (iv) of Theorem 3*.

Published by Atlantis Press
 Copyright: the authors
 989

B. Yang et al

This contradicts to the previously derived conclusion

N(r)∩X=. Hence X=Y. □

Corollary 2. If program = *∪C is compatible then

it has just one answer set H(Λ( *
)).

Proof.

It is obvious by Definition 1 and Theorem 3. □

Theorem 5. Program  has an answer set S if and only

if there is a finer splitting { i|i≥0} of  such that

S=∪iSi, where Si is an answer set of  i.

Proof.

It is easy to be derived by Theorem 2 and Theorem

3. □

Published by Atlantis Press
 Copyright: the authors
 990

