
 

 

Splitting Computation of Answer Set Program and Its Application on E-service
*
 

Bo Yang  

College of Computer Science and Information, Guizhou University,  

Guiyang, 550025, China  

Department of Physics and Electronics Information Science, Guiyang University,  

Guiyang, 550005, China 

Ying Zhang, Mingyi Zhang 

Guizhou Academy of Science, Guiyang, 550001, China 

 

Maonian Wu 

College of Science, Guizhou University, Guiyang, 550025, China 

E-mail: gzu_wu@yahoo.com  

 

 

 

Abstract 

As a primary means for representing and reasoning about knowledge, Answer Set Programming (ASP) has been 

applying in many areas such as planning, decision making, fault diagnosing and increasingly prevalent e-service. 

Based on the stable model semantics of logic programming, ASP can be used to solve various combinatorial search 

problems by finding the answer sets of logic programs which declaratively describe the problems. It’s not an easy 

task to compute answer sets of a logic program using Gelfond and Lifschitz’s definition directly. In this paper, we 

show some results on characterization of answer sets of a logic program with constraints, and propose a way to split 

a program into several non-intersecting parts step by step, thus the computation of answer sets for every 

subprogram becomes relatively easy. To instantiate our splitting computation theory, an example about 

personalized product configuration in e-retailing is given to show the effectiveness of our method. 

Keywords: logic program, answer set, splitting, E-service 
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1. Introduction 

The Internet has been reaching almost all aspects of our 

lives, many online services emerged as the times require, 

including e-government, e-business, e-learning, e-

commerce, e-recruitment, and so on. Many Artificial 

Intelligent(AI) techniques got successful application in 

the field of e-services. Lu et al offered a comprehensive 

and systematic survey on the new field of e-service 

intelligence, which deals with fundamental roles, social 

impacts and practical applications of various intelligent 

technologies on the Internet based e-service 

applications.
1
 In all subfields of e-services, AI 

technologies including expert systems, machine learning, 
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artificial neural networks, fuzzy systems etc. are playing 

useful and vital roles. Many intelligent technologies 

mentioned above involve inductive or deductive 

reasoning based on known information, which is usually 

imprecise or incomplete. To deal with imprecise data, 

fuzzy reasoning is a powerful tool. As for incomplete 

knowledge, resorting to commonsense reasoning is the 

most suitable choice. Actually, more than 90% 

knowledge is commonsense in practical applications. 

Hence commonsense knowledge representing and 

reasoning has been being the kernel problem and 

primary challenge for AI.  

Non-monotonicity is the most important feature of 

commonsense knowledge representing and reasoning. 

As a primary means for non-monotonic reasoning, 

Answer Set Programming(ASP) is a paradigm based on 

the stable model(answer set) semantics of logic 

programming,
2
 it is a method that reduces solving of 

various combinatorial search problems to finding the 

answer sets of logic programs which declaratively 

describe the problems. ASP has been applied 

successfully in areas like decision making, planning, e-

commerce. In Ref.3, A-Prolog is used to build a 

medium size decision support system, in which 

operations of a fairly complex subsystem of the Space 

Shuttle are modeled. Paschke et al presented a logical 

formalism ContractLog for the representation and 

enforcement of Service Level Agreement(SLA) rules 

between IT service providers and their customers.
4
 In 

this framework Extended Logic Programming(ELP) 

plays a very important role for deductive reasoning on 

SLA rules. Eiter et al introduced a new declarative 

language K based on non-monotonic logic 

programming.
5
 Transitions between states of knowledge 

can be described in K, so it is suitable for planning 

under incomplete knowledge. Tu et al described the 

methodology for developing several conformant 

planners for a given dynamic domain,
6
 one of them is 

logic programming based and can generate parallel plan. 

Tiihonen et al created a web-based product configurator 

that provides intelligent support for tailoring a product 

through applying an inference engine for the form of 

logic program.
7
In the context of e-commerce, this tool 

can be used to provide personalized service, an 

important subfield of increasingly prevalent e-service. 

However, to the best of our knowledge, there are 

few reports on how to deal with incomplete knowledge 

in an e-service system. A main cause led to it is that 

representation and reasoning of incomplete knowledge 

is very hard and complex. ASP provides a useful 

approach, but to find all answer sets of a logic program 

is a problem with comparative complexity. As Dantsin 

et al have shown, logic program under stable model 

semantics is co-NP-complete.
8
 

Splitting is very helpful for simplifying answer sets 

solving. Lifschitz et al gave a conceptual description of 

splitting,
9,10

 in which a set U of literals should be given 

to generate a base of a program with respect to U. 

Moreover, the notion of U is extended to splitting a 

program in series through a monotonic and continuous 

splitting sequence. In accordance with the original 

definition of splitting, Turner and Watson addressed 

Splitting Set Theorem for default theories
11

 and 

epistemic specifications
12

 respectively, and Balduccini 

extended the splitting to programs with consistency-

restoring rules.
13

 However, none of them pointed out 

how to construct a suitable set U of literals for splitting 

a program. In principle, the splitting process always 

starts from “guessing” an appropriate set U of literals. 

Instead of guessing a set U of literals that can split a 

program, it is more interesting to find a computable way 

to split a program such that the complexity of answer 

sets solving can be reduced. Zhang presented 

“constructive” characterizations for extensions of a 

default theory and for answer sets of a logic 

program,
14,15,16

 which imply the idea of splitting a 

default theory (program) into a sequence of default sub-

theories (subprograms). And Wu et al discussed a 

method of splitting based on entire set of atoms for 

Horn logic, a special style of ASP, for the aim of belief 

revision over Horn logic.
17,18

 These works motive us to 

explore a characterization of answer sets of a logic 

program with constraints and to propose a stepwise way 

of splitting. Based on this, a program can be split into 

subprograms and every subprogram have less rules so 

that it is easier to compute their answer sets, and the 

union of answer sets of every subprogram is the answer 

sets of the original program, neither more nor less than.  

Hence we can more easily represent and compute 

problems perhaps coming with incomplete information 

from e-service, and other application areas, by ASP.  In 

this paper a simplified example about personalized e-

retailing is given to show that ASP provides a natural 

and compact description for personalizing product 
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configuration according to customer’s favor, which 

could include incomplete information. 

This paper is organized as follows. Section 2 recalls 

some notions and notations of ASP. Our definition and 

theoretic results about characterization of answer set are 

given in Sec.3. Section 4 describes our method for 

splitting a program and corresponding algorithm. In 

Sec.5, an example about personalized product 

configuration in e-retailing is given to justify our 

splitting algorithm and its advantage. The last section 

concludes our work and presents the future research 

interests. 

2. Preliminaries 

2.1. Syntax and semantics of logic program 

According to Lifschitz,
10

 we consider the alphabet 

A∪{, , , ←, not} in this paper.  The nonempty set of 

symbols A and the set {, , , ←, not} are disjoint. An 

element from A is called atom.  The symbols “,”, “”, 

“←” and “not” mean “conjunction”, “classical 

negation”, “if” and “negation as failure” respectively. 

Terms defined in this section come from Ref. 10 

primarily. 

Definition 1. A positive literal is an atom and a 

negative literal is an atom preceded by the classical 

negation symbol “¬”. A literal is a positive literal or 

negative literal.  

Literals L and ¬L are said to be complementary. A 

set of literals is inconsistent if it contains a pair of 

complementary literals, and consistent otherwise. By Lit 

we denote the set of all literals.  

Definition 2.  A rule r is of the form: 

          Head←L1,…, Lm , not Lm+1,…, not Lm+k 

where Head (head  of  r, donated by H(r)) is empty or a 

literal L0, and the right hand side of r  is a finite set of 

two kinds of rule elements, i.e. literals possibly 

preceded by the negation as failure symbol “not”.  

We also write rule r in a brief form: 

          H(r)←P(r)∪not(N(r)) 

where P(r)={L1,…, Lm} is called positive body, and 

N(r)={Lm+1,…, Lm+k} negative body respectively. 

Especially, a rule with H(r) and N(r)= is a basic 

rule. Rule r is called a fact if H(r) and P(r)=N(r)=∅, 

and a constraint if H(r)=∅. To distinguish from 

ordinary rules, for a constraint c, its positive body and 

negative body are represented as P(c) and N(c) 

respectively. Thus constraint c is of the form:   

←P(c), not (N(c)). 

A set X of literals satisfies a constraint c if P(c)⊈X 

or N(c)∩X≠∅; X satisfies a set C∏ of constraints if X 

satisfies each c in C∏. 

Definition 3. A program ∏ is a set of rules, and ∏ is a 

basic program if every rule in it is basic.  

A program with constraints can be written as 

∏=∏*∪C∏, where ∏*
 contains no constraint and C∏ is 

a set of constraints. By H(∏) we denote the set of heads 

of all rules in ∏, i.e., H(∏)={H(r)|r∈∏}. And N(∏) is 

the set of negative bodies of all rules in ∏. 

Note that an atom is understood here as in 

propositional logic, however, in application it is usually 

an atomic sentence formed with object, function and 

predicate constant. Actually, each atom in A containing 

variables stands for a set of ground atoms, which are 

gotten by ground instantiation. Rules in a program are 

often represented by schemata containing variables. In 

Example 2 we will see how schematic rules are 

grounded
10

 and treated as propositional logic. 

To explain the answer set semantics of an arbitrary 

program, we start from the notion consequences of a 

basic program. 

A set X of literals is logically closed if it is 

consistent or equals Lit. Given a basic program ∏, X is 

closed under ∏ if for each rule r: H(r)←P(r) in ∏, 

H(r)∈X whenever P(r)⊆X. It is easy to see that Lit is 

logically closed and closed under any basic program ∏. 

Among all sets of literals which are logically closed and 

closed under ∏, we are interested in the smallest one, 

denoted by Cn(∏). Clearly, such a set always exist.  

Definition 4. Given a basic program ∏, elements of 

Cn(∏) are called the consequences of ∏. And Cn(∏) is 

called the consequence or stable model of ∏. 
For any basic program ∏ and a set X of literals, to 

compute Cn(∏), a monotonic function T∏ is defined as 

follows: 

T∏X is {H(r)|H(r)←P(r)∈∏, P(r)⊆X} if X is 

consistent, and Lit otherwise. Cn(∏) is the union of sets 

obtained by iterating T∏ on ∅, that is, Cn(∏) 

=∪n≥0T∏
n∅, where T∏

0∅=∅. Consider an example 

from Ref. 10:       

Example 1  Let ∏ is: 

                     { p.  ¬q.    

r←p, q.     
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¬r←p, ¬q.    

s←r.      

s←p,s.     

¬s←p, ¬q, ¬r.  } 

where each rule is ended by “.”. By definition of T∏, 

We have: 

T∏
0∅=∅ 

T∏
1∅={p, ¬q}  

T∏
2∅={p, ¬q, ¬r} 

T∏
3∅={ p, ¬q, ¬r, ¬s }  

For every n>3,  

T∏
n∅=T∏

3∅ 

Thus  

Cn(∏)=∪n≥0 T∏
n∅ 

={ p, ¬q, ¬r, ¬s } 

A basic program ∏ is consistent if Cn(∏) is 

consistent, and if Cn(∏) is inconsistent, then ∏ is 

inconsistent too. 

In order to give the notion of answer sets of an 

arbitrary program, it is necessary to introduce the notion 

of reduct.  

Given an arbitrary program ∏=∏*∪C and a set X 

of literals, the reduct of ∏ relative to X, ∏X
, is derived 

by  

 deleting all cC∏, 
 deleting each rule H(r)←P(r)∪not (N(r))∈∏* such 

that N(r)∩X≠∅, and 

 replacing each remaining rule H(r)←P(r)∪not 

(N(r))∈∏* by H(r)←P(r). 

Definition 5.  A set X of literals is an answer set of 

program ∏=∏*∪C∏ if Cn(∏X
)=X and X satisfies C∏. 

It is obvious that X is also an answer set of ∏*
. 

Definiton 6. Given an answer set X of a program 

∏=∏*∪C∏, the set GR(X,∏) of generating rules of X 

is defined as GR(X,∏)={r∈∏* |P(r)⊆X, N(r)∩X=∅, 

and  X satisfies C}. 

      Clearly, H(GR(X,∏) satisfies C. 

We say that a program ∏=∏*∪C is consistent if it 

has a consistent answer set; it is inconsistent if one of its 

answer sets is inconsistent. In Sec.3 we will see that 

these notions are well-defined. 

In general, an arbitrary program ∏ satisfies exactly 

one of the following conditions:
10

 

 ∏ has no answer set; 

 the only answer set for ∏ is Lit; 

 ∏ has at least one answer set, and all its answer 

set(s) are consistent. 

The following example about n-coloring of a graph 

G illustrates various situations in which whether answer 

set(s) exist or not. And it also shows actual application 

of ASP in Graph Theory.  

Example 2  The problem of n-coloring of a graph G 

refers to finding a color schemes of n colors for every 

vertex of G such that for every pair of adjacent vertices 

(X,Y) in G, color of X is different from that of Y. 

Predicate c(I) is used to represent that I is a color, 

where variable I ranges over the set of colors C={1, …, 

n}. Predicates ver(V) and edge(V,W) denote that V is a 

vertex of graph G and vertices V, W are adjacent 

respectively. By color(V,I) we mean that vertex V is 

dyed with color I. Then the problem can be described by 

the following schematic rules containing variables: 

1{color(V,I):  c(I)}1←ver(V)                             (1) 

←color(V,I), color(W,I), edge(V,W), c(I)          (2) 

Rules like (1) is a “choice rule” with numerical 

bounds, by which cardinality of consequence sets from 

this rule is restricted in a certain scope.
19,20

 Numerals 

before and after the brace are called “lower bound” and 

“upper bound” respectively. Rule (1) says: if V is a 

vertex of graph G, then from all possible colors c(I), 

choose at least one and at most one color I to make 

color(V,I) holds. As a matter of fact, rule (1) can be 

viewed as an abbreviation of a set of rules containing 

the negation as failure symbol “not”. In the 

aftermentioned process of grounding,
10

 we will see the 

grounded forms of rule (1) and (2). Rule (2) indicates 

that any two adjacent vertices can not be dyed with 

same color. 

If there are two colors, say 1 and 2, are used, and 

graph G is a rectangle with four vertices v0,v1,v2 and v3, 

the following facts describe the used colors and the 

structure of G: 

F={c(1). c(2). 

ver(v0). ver(v1). ver(v2). ver(v3). 

edge(v0,v1). edge(v1,v2).  

edge(v2,v3). edge(v3,v0).} 

Based on F, rule (1) is grounded to a collection of 

rules without variables as follows: 

G1={color(v0,1)←ver(v0), c(1), c(2), not color(v0,2). 

color(v0,2)←ver(v0), c(1), c(2), not color(v0,1). 

color(v1,1)←ver(v1), c(1), c(2), not color(v1,2). 

color(v1,2)←ver(v1), c(1), c(2), not color(v1,1). 

color(v2,1)←ver(v2), c(1), c(2), not color(v2,2). 

color(v2,2)←ver(v2), c(1), c(2), not color(v2,1). 
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color(v3,1)←ver(v3), c(1), c(2), not color(v3,2). 

color(v3,2)←ver(v3), c(1), c(2), not color(v3,1). } 

And rule (2) is grounded as: 

G2={←color(v0,1), color(v1,1), edge(v0,v1), c(1). 

        ←color(v0,2), color(v1,2), edge(v0,v1), c(2). 

←color(v1,1), color(v2,1), edge(v1,v2), c(1). 

←color(v1,2), color(v2,2), edge(v1,v2), c(2). 

←color(v2,1), color(v3,1), edge(v2,v3), c(1). 

←color(v2,2), color(v3,2), edge(v2,v3), c(2). 

←color(v3,1), color(v0,1), edge(v3,v0), c(1). 

←color(v3,2), color(v0,2), edge(v3,v0), c(2). } 

Let ∏1=F∪G1∪G2, consider a set of literals X= 

F∪{color(v0,1), color(v1,2), color(v2,1), color(v3,2)}, 

then  

∏1
X
= F∪{color(v0,1)←ver(v0), c(1), c(2). 

color(v1,2)←ver(v1), c(1), c(2). 

color(v2,1)←ver(v2), c(1), c(2). 

color(v3,2)←ver(v3), c(1), c(2). } 

It is obvious that Cn(∏1
X
)=F∪{color(v0,1), color(v1, 

2), color(v2,1), color(v3,2)}=X, and for each constraint c 

in G2, P(c)⊈X. Thus, X is an answer set of ∏1. 

Similarly, it is easy to verify that F∪{color(v0,2), 

color(v1,1), color(v2,2),color(v3,1)} is another answer 

set of ∏1. 

Adding a new edge into graph G will lead to 

completely different result. Suppose that {edge(v1,v3)} 

is added into F, then the following two grounded rules 

will appear in G2: 

←color(v1,1), color(v3,1), edge(v1,v3), c(1). 

←color(v1,2), color(v3,2), edge(v1,v3), c(2). 

Now it is impossible to find a set X of literals such 

that Cn(∏1
X
)=X and for each constraint c in G2, X 

satisfies c, then ∏1 has no answer set in this case. 

Obviously, the more number of vertices or colors, 

the more complicated the grounded forms of rule (1) 

and (2) are, and hence make the task of solving answer 

set more difficult. In Sec.4, we will see that splitting a 

program is very helpful for simplifying the computation 

of answer set.  

Example 3 shows a program with Lit as its answer 

set. For simplicity of presentation, remaining examples 

in this section are written in propositional language.  

Example 3  Let 2 is:  

                 { a.  ¬ b. 

                    c←¬b . 

                    d←c, not b. 

                   ¬ d←c,b 

                    b←a, c. 

                    ←not b.  } 

It is clear that Cn({r∈2
*
| N(r)=∅}) contains 

complementary literals b and ¬ b, i.e. Cn({r∈2
*
| 

N(r)=∅})=Lit, and for constraint cʹ:  

←not b.  

N(cʹ)∩Lit≠∅. So 2 is inconsistent, its unique answer 

set is Lit. 

2.2. Splitting 

In Ref.10, Lifschitz gave the original definition of 

splitting. 

Definition 7. For any program ∏ no containing 

constraints, any set U of literals, we say that U splits ∏ 

if for every rule H(r)←P(r)∪not(N(r)) in ∏, P(r)∪N(r) 

⊆U whenever H(r)∈U. 

By bU(∏) we denote the set of rules in ∏ whose 

heads belong to U, the base of ∏(relative to U). And for 

any C⊆U, eU(∏,C) stands for the program obtained 

from ∏ by 

 deleting each rule H(r)←P(r)∪not(N(r)) such that 

P(r)∩(U\C)≠∅ or N(r)∩C≠∅,  

 replacing each remaining rule H(r)←P(r)∪not(N(r)) 

by H(r)←(P(r)\U)∪not (N(r)\U). 

The following result from Ref.10 shows the effect of 

splitting. 

Theorem 1.
10 

Let U be a set of literals that splits a 

program . A consistent set of literals is an answer set 

for  if and only if it can be represented in the form 

C1∪C2, where C1 is an answer set for bU() and C2 is 

an answer set for eU(\bU(),C1). 

Example 4  Consider the following program: 

 3={a.  

                    b←a, not c. 

c←a, not d. } 

Let U={a,d}, then bU(3) is {a.}, and the only 

answer set of bU(3) is C1={a}. Furthermore, 3\bU(3) 

is: 

                 { b←a, not c. 

c←a, not d. } 

And eU(3\bU(3), C1) is: 

                 { b←not c. 

c.     } 

Obviously C2={c} is the only answer set of the program 

eU(3\bU(3),C1). It is easy to verify that C1∪C2={a,c} 

is the unique answer set of 3. 
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If U1={a, c, d}, then, clearly, it is also a set of 

literals that can split 3. In fact: 

 bU1(3) ={a.     

c←a,  not d.} 

The only answer set of bU1(3) is C1ʹ={a, c}. So 

eU1(3\bU1(3), C1ʹ) is ∅, whose answer set is ∅ too. 

Obviously, C1ʹ∪∅={a,c} is also the answer set of 3.  

Note that some subsets of {a, b, c, d} split 3 and 

give the same answer set {a, c}, but others, e.g., {a, b} 

can not split 3. 

Splitting is very useful for computing answer sets. 

However, it is not so convenient to “guess” a suitable 

initial splitting set U(in Example 4 we need test 2
4
 

subsets of {a, b, c, d}). To deal with this puzzle, we 

want to find a tractable method, which splits a big 

program ∏ into several subprograms such that solving 

answer sets for smaller subprograms is easier and the 

sum of answer sets of subprograms is just an answer set 

of . This is what this paper aims at. 

By defining the concepts of compatibility and auto-

compatibility for general default theories, Zhang 

presented a simple and natural characterization of 

extensions of general default theories and developed a 

class of default theory, named auto-compatible default 

theory.
14,15

 Results about default theories can be easily 

transformed to ASP which is also a kind of formalism 

for non-monotonic inference. In Ref.16, Zhang et al 

proposed a finite characterization of answer sets for 

nested program, which is very helpful for exploring 

existence of answer sets. In particular, for any given 

finite program ∏, each answer set of ∏ can be 

represented by a finite set of generating rules that 

captured by a Λ-operator and notion of compatibility. 

Following ideas mentioned, we present some notions 

and results for computing answer set in terms of 

splitting in the next section. 

3. Λ -operator and Characterization of Answer 

Set 

Intuitively, for all rules applicable to generating an 

answer set, their heads would be disjoint with their 

negative bodies, and would satisfy any constraint. 

Therefore, we introduce the concept of compatibility, 

which characters a necessary condition for the negative 

body of any applicable rule when generating an answer 

set. 

Definition 8.   A program = *∪C is compatible if 

H( *
)∩ N( *

)= and for each c∈C , P(c) ⊈ H( *
) 

or H( *
)∩ N(c)≠. In particular, the empty program 

 is compatible. 

Clearly, a basic program is compatible, and any 

nonempty set of constraints is incompatible. A class of 

subprograms of compatible program is also compatible, 

that is what the following proposition says. 

Proposition 1.   If program = *∪C  is compatible 

then any ⊆ *
 is also compatible. 

A rule can be used in the process of solving answer 

set if its positive body are facts or can be derived from 

facts step by step. In a way similar to the operator T∏ 

mentioned in Sec.2, we define Λ-operator, which 

characters another necessary condition for the positive 

body of any acceptable rule, as follows. 

Definition 9.  For a program = *∪ C , let  

={ r∈ * N(r)=∅}, then Λ()=∪0≤n
 n

  or ⊥ when 

 n+1
=⊥ for some n0, where  0

 is defined as Eq.(1). 

And For n≥0 and  0
≠Lit, 

 n 
is given as Eq.(2), where 

⊥ stands for undefined and Lit is a special program 

with Lit as its answer set. 

Note that if H({r∈∏-C|P(r)⊆H(∏
n
)}) is 

consistent then ∏
n
≠∏Lit and ∏

n
⊆∏

n+1
 for any n≥0 

and ∏
n+1
≠⊥. In what follows we always consider only 

the case where Λ(∏)≠⊥. 

From Def.9, it is obvious that the answer set of a 

basic program is just its stable model, i.e.. if  N()=∅ 

and C=∅, then H(Λ()) is the stable model of  and 

H(Λ()) = ∪0≤nT∏
n
∅. 

Example 5 Λ(C)=∅ for any nonempty set of 

constraints C. 

From Def.9 we immediately get some important 

properties for the operator Λ: monotonicity and 

idempotence etc. Some proofs for these properties see 

Appendix. 

Proposition 2.  If ()Lit and ()⊥ then () 

 *
 and H(()) satisfies C. 

Proposition 3.   is monotonic, i.e., if 12 and (2) 

⊥, then (1)( 2). 

Lemma 1. If ()Lit and ()⊥ then (())= 

(). 

Lemma 2. If ()  Lit and ()  ⊥ then for any r 

 *
, P(r)H(()) if and only if r(). 

Theorem 2. Program = *∪C has an inconsistent 

answer set if and only if Cn({r∈ *
|N(r)=∅})=Lit and 

N(c)∅ for any c∈C . 
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Corollary 1. If Lit is an answer set of program , then 

it is the unique answer set of . 

By Theorem 2 and Corollary 1, we are interested in 

only consistent programs.  How to determine whether a 

program has a consistent answer set or not and how to 

compute its answer sets if they exist? This is intractable 

by the definition of answer sets since it is needed to test 

all consistent sets of literals. Now we establish a 

characterization of answer sets of a consistent program, 

by which computing answer set is based on only this 

program itself.   

Theorem 3. Program  =  *∪ C has a consistent 

answer set if and only if there is a subset  of  *
 such 

that: 

(i) ∪C is compatible; 

(ii) ()=; 

(iii) For r∈-, P(r)⊈H() or N(r)∩H()≠∅. 

Intuitively, any rule which is not compatible with 

the set GR(X,∏) or whose positive body can not be 

derived from GR(X,∏) would be inapplicable. 

From the proof of Theorem 3 (See Appendix) we 

get its equivalent version, that is:    

Theorem 3*. A consistent set of literals S is an answer 

set of a program = *∪ C if and only if there is a 

subset  of  *
 such that: 

(i) ={r *P(r)S and N(r)∩S=} and S=H(); 

(ii) ∪C is compatible; 

(iii) Λ()=; 

(iv) For r∈-, P(r)⊈S or N(r)∩S ≠∅. 

Now we conclude that an answer set of a program is 

a minimal set satisfying Theorem 3.   

Theorem 4. (Minimality of answer sets) If X and Y are 

answer sets of a program = *∪C  and XY, then 

X=Y. 

Example 6 Any nonempty set of constraints has no 

answer sets. 

Corollary 2. If program = *∪C is compatible then 

it has just one answer set H(Λ( *
)). 

Actually, results from Theorem 3 and its corollary 

give the characterization of consistent answer set for a 

program in terms of compatibility. 

4. Splitting a Program 

Although stemming from Lifschitz’s definition, our 

description of splitting is slightly different from the 

former. In our opinion, for any program , a collection 
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of subprograms of , {i}(i≤n), is a finer splitting of 

 if  
 for each i(i≤n) and any r∈i, there is a r∈ 

such that H(r)=H(r), P(r)⊆P(r) and N(r)⊆N(r) 

 H(i)∩H(j)=∅ for any i≠j, and 

  has a consistent answer set S if and only if each 

i(i≤n) has a consistent answer set Si such that 

S=∪iSi. 

Based on above comprehension of splitting, a 

program is split in following steps: 

Step 1: 

0={r∈|P(r)⊆∪0≤nT∏
n
∅}=

0
, where ={r∈| 

N(r)=∅}, If H(0) is consistent, and  H({r∈|P(r)⊆ 

∪0≤nT∏
n
∅ }) ∩ P(c)  P(c) or H({ r∈ | P(r) ⊆ 

∪0≤nT∏
n
∅})∩N(c)   for each cC.    

Step 2:   

For n≥0, n+1={r|r∈-C-∪i≤ni, and H(r)=H(r), 

P(r)=P(r)–H(∪i≤ni), N(r)=N(r)-H(∪i≤ni) }, if H(n) 

is consistent, and  H({r∈-C|P(r)⊆H(∪i≤ni), N(r)∩ 

H(∪i≤ni) = ∅}) ∩ P(c)  P(c) or H({r∈-C| P(r)⊆ 

H(∪i≤ni), N(r)∩H(∪i≤ni)=∅})∩N(c)   for each 

cC. 

Basically, r is obtained from r by eliminating 

H(∪i≤ni ) from body of r, where P(r)⊆H(∪i≤ni), 

N(r)∩H(∪i≤ni) =∅.  

Algorithm implementing the splitting is given as 

follows: 

FUNCTION BASIC(∏) 

{∏b:=∅; 

FOR each r∈∏ DO 

      IF N(r)=∅ THEN ∏b:=∏b∪{r}; 

RETURN (∏b);   

} 

FUNCTION T∏(∏b) 

{Cn:=∅; 

DO 

{result:=Cn; 

FOR each r∈∏b DO 

IF P(r)⊆Cn THEN  

{Cn:=Cn∪H(r);  

∏b:=∏b-{r};} 

IF Cn is inconsistent  THEN RETURN (Lit); 

} UNTIL  (result=Cn) 

  RETURN (result);  

} 

FUNCTION SPLITTING(∏) 

{i:=0;  j:=0;   

token:=false;   

find:=true;   

sat:=false; 

∏:=BASIC(∏);     

X:=T∏(∏);  

IF X=Lit THEN   

{FOR each c∈C∏ DO 

       IF N(c)=∅ THEN  

{token:=true;  

EXIT FOR;} 

IF token:=true  

THEN RETURN(no splitting) 

      ELSE RETURN(unique inconsistent answer set); 

} 

∏:=∏-∏-C∏;    

∏0:=∅;    

FOR each r∈∏ DO 

          IF P(r)⊆X THEN ∏0:=∏0∪{r}; 

FOR each c∈C∏ DO 

    IF P(c)⊆H(∏0) AND N(c)∩H(∏0)=∅  
 THEN {sat:=true;  

EXIT FOR;} 

IF sat=true THEN RETURN(no splitting); 

∏u:=∏0; 

DO 

{∏i+1:=∅;  

   ∏uʹ=∏u; 

FOR each r∈∏ DO 

    IF P(r)⊆H(∏u) AND N(r)∩H(∏u)=∅ 
THEN 

 {∏i+1:=∏i+1∪{r}; 

   ∏uʹ=∏uʹ∪∏i+1; 

             FOR each c∈C∏ DO 

                 IF P(c)⊆H(∏uʹ) AND N(c)∩H(∏uʹ)=∅ 
THEN  

{∏i+1:=∏i+1-{r}; 

  ∏uʹ=∏uʹ-{r}; } 

IF H(∏i+1)∪N(∏i+1) is inconsistent   

THEN OUTPUT(no answer set for ∏i+1);  

} 

       IF ∏i+1≠∅ THEN   

{∏:=∏-∏u -∏i+1; 

FOR each r∈∏i+1  
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DO 

{P(r):=P(r)-H(∏u); 

  N(r):=N(r)-H(∏u);} 

                       ∏u:= ∏u∪∏i+1; 

i:=i+1; 

} 

ELSE   find:=false; 

}UNTIL(find=false) 

FOR j=0 to i DO  OUTPUT (∏j); 

  RETURN ( );   

} 

Function BASIC generates a basic program ∏b 

whose rules are picked out from , function T 

implements T∏
n
 on b, and function SPLITTING 

returns the sequence of {i}(i≤n) from . Generally 

speaking, the complexity of directly computing answer 

sets for  is O(2
|∏|

); after splitting  into {i}(i≤n), 

the total complexity of computing answer sets for {i} 

is O(Σi≤n2
|∏i|

) , which is much less than the former.  

Now we present a basic theorem shown in Appendix, 

which guarantees the correctness of the above splitting 

notion and algorithm. 

Theorem 5. Program  has an answer set S if and only 

if there is a finer splitting { i | i≥0} of  such that 

S=∪iSi, where Si is an answer set of  i. 

5. An Example in E-retailing 

With the development of Internet, more and more 

producers or companies retail their products or services 

on the web. In these applications, of course as well as 

other forms of e-service, providing personalized service 

to users according to their demands is very helpful for 

building a one-to-one relationship between the customer 

and the service provider, consequently enhance the user 

satisfactions.
1
 In this section, we will give a simplified 

example to show the application of ASP on service 

personalization in an e-retailing system, and our 

splitting method and its advantage are justified by the 

example.  

Through a web-based retailing system, a PC retailer 

can sell products or services to users on the web. 

Computer is a kind of typical configurable product, 

usually customers have some special requirements or 

preference on some components of the machines they 

are to buy, or want to know the prices corresponding to 

various configurations. To meet these requirements, a 

reasoning mechanism should be included in the e-

retailing system. Some knowledge is incomplete when 

building such a mechanism, e.g., the retailer has no idea 

about which type of CPU the customer prefers to, then 

various possibilities should be considered. 

Assume on the selling webpage of a PC e-retailing 

system there is an item list with option boxes for each 

class of components of a PC, such as CPU, mainboard, 

and so on. Each item in such a list refers to one type of a 

component. Predicate component(X) states that X is a 

PC component, e.g., CPU. Usually there are various 

types for a component, binary predicate hastype(Y,X) 

means that component X has a type of Y. 

Normally, a customer prefer one type of component 

to others of the same class, so he will choose the 

corresponding option box along with the type he 

preferred. Once a type Y is labeled, predicate choose(Y) 

hold, this means Y will be chosen as a part of the 

anticipated PC. However, it is possible, although 

infrequently, the customer makes no preference for a 

class of components, then every type of this component 

has the equal chance to be chosen. Furthermore, for any 

component, it is not allowed more than one type is 

preferred and hence to be chosen. These notions are 

captured by the following schematic rules: 

1{choose(Y): hastype(Y,X)}1←component(X)         (3) 

←component(X), hastype(Y1,X), hastype(Y2,X),  

         choose(Y1), choose(Y2), Y1≠Y2                        (4) 

where variable X ranges over all components, Y, Y1 and 

Y2 denote types of component X.  

Also being a “choice rule”, rule (3) says: if X is a 

component, then from all types Y of X such that 

hastype(Y,X) holds, choose at least one and at most one 

Y to make choose(Y) holds.  

Rule (4) indicates that any two different types of the 

same component can not be chosen at the same time. 

Technical parameters should be taken into 

consideration when configuring a PC, if a type Y1 of 

component X1 is incompatible with type Y2 of 

component X2, then predicate incompatible(Y1, Y2) holds, 

Y1 and Y2 should not be chosen simultaneously. This can 

be represented as a constraint: 

←component(X1), component(X2),  

hastype(Y1,X1), hastype(Y2,X2), 

  choose(Y1), choose(Y2), X1≠X2 ,        

              incompatible(Y1,Y2).                                (5) 
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Rule (3)~(5), together with other facts, e.g., 

component(X) for all possible components X,  choose(Y) 

for some types Y, form a logic program Π, answer set(s) 

of Π give the possible configuration(s) of the anticipated 

machine.  

To simplify the presentation, we assume that just 

three classes of components to be considered, they are 

mainboard, CPU and memory. Types of each 

component are shown in Tab.1. 

 

Table 1.  Types of PC components  

Component class Types 

mainboard        mb_A 

        mb_B 

CPU cpu_A 

 cpu_B 

memory  mem_A 

  mem_B 

 

According to Tab.1, we can list the first group G1 of 

rules(facts) of Π: 

component(mainboard). 

component(cpu). 

component(memory). 

hastype(mb_A, mainboard). 

hastype(mb_A, mainboard). 

hastype(mb_B, mainboard). 

hastype(cpu_A, cpu). 

hastype(cpu_A, cpu). 

hastype(mem_A, memory). 

hastype(mem_B, memory). 

Actually, rules in G1 are basic facts of the system, 

although will appear in answer set of Π, not the results 

we concerned. 

Now rule (3)~(4) can be grounded to the second 

group G2 of rules, they are: 

choose(mb_A)←component(mainboard),  
hastype(mb_A, mainboard), 

hastype(mb_B, mainboard), 

not choose(mb_B). 

choose(mb_B)←component(mainboard),  
hastype(mb_A, mainboard), 

hastype(mb_B, mainboard), 

not choose(mb_A). 

choose(cpu_A)←component(cpu),  
hastype(cpu_A, cpu), 

hastype(cpu_B, cpu),  

not choose(cpu_B). 

choose(cpu_B)←component(cpu),  
hastype(cpu_A, cpu), 

hastype(cpu_B, cpu), 

not choose(cpu_A). 

choose(mem_A)←component(memory),  
hastype(mem_A, memory), 

hastype(mem_B, memory), 

not choose(mem_B). 

choose(mem_B)←component(memory),  
hastype(mem_A, memory), 

hastype(mem_B, memory), 

not choose(mem_A). 

←component(mainboard),  

hastype(mb_A, mainboard),  

hastype(mb_B, mainboard), 

        choose(mb_A), choose(mb_B). 

←component(cpu),  

hastype(cpu_A, cpu),  

hastype(cpu_B, cpu), 

                choose(cpu_A), choose(cpu_B). 

←component(memory),  

hastype(mem_A, memory),  

hastype(mem_B, memory), 

                choose(mem_A), choose(mem_B). 

The former six rules of G2 are grounded forms of 

rule (3), and the latter three ones are grounded from rule 

(4). 

If a customer labels cpu_A and mem_B as 

preference, and assume that mb_B and cpu_A are 

incompatible, then we get the third group G3 of rules: 

choose(cpu_A).   

choose(mem_B).   

incompatible(cpu_A,mb_B). 

←component(cpu), component(memory),  

hastype(cpu_A, cpu), hastype(mem_B, memory), 

choose(cpu_A), choose(mb_B),  

incompatible(cpu_A,mb_B). 

 Program Π=G1∪G2∪G3 describes basic facts about 

PC configuration, customer’s requirements and 

reasoning rules based on these facts. Obviously the only 

answer set of Π is G1∪{choose(cpu_A), choose 

(mem_B), choose(mb_A), incompatible(cpu_A,mb_B)}.  

Next we will show the splitting computation of Π. 

First function BASIC finds all basic rules of Π: 

Πb= G1∪{choose(cpu_A). choose(mem_B). 

incompatible(cpu_A, mb_B).} 

Then function T∏ gives consequence of Πb easily: 
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  Cn(Πb) =∪0≤nTΠb
n∅ 

= G1∪{choose(cpu_A), choose(mem_B), 

 incompatible(cpu_A, mb_B)} 

Finally, function SPLITTING returns the following 

Πi(i≤n): 

Π0= G1∪{choose(cpu_A).  choose(mem_B). 

incompatible(cpu_A, mb_B). } 

Π1={choose(mb_A)←not choose(mb_B). 

choose(cpu_A)←not choose(cpu_B). 

choose(mem_B)←not choose(mem_A). } 

Π2=∅ 

In fact, while computing Π1, there are two choices 

of rules: 

Π1-1={choose(mb_A)←not choose(mb_B). 

choose(cpu_A)←not choose(cpu_B). 

choose(mem_B)←not choose(mem_A).} 

Π1-2={choose(mb_B)←not choose(mb_A). 

choose(cpu_A)←not choose(cpu_B). 

choose(mem_B)←not choose(mem_A).} 

However, Π1-2 is eliminated because of the 

constraint:  

←component(cpu), component(memory),  

hastype(cpu_A, cpu), hastype(mem_B, memory), 

choose(cpu_A), choose(mb_B),  

incompatible(cpu_A, mb_B). 

Answer sets for Π0, Π1 are G1∪{choose(cpu_A), 

choose(mem_B), incompatible(cpu_A, mb_B)} and 

{choose(cpu_A), choose(mem_B), choose(mb_A)} 

respectively, the union of them exactly equals to the 

answer set of  Π. 

Through splitting, numbers of rules in Π0, Π1 are 

much less than those of Π, their answer sets are very 

easy to compute. 

Tiihonen et al have shown that basic logic program 

with weight constraint rules is quite suitable for 

naturally describing product configuration problem.
7,21

 

There product’s configuration information are 

represented as weight constraint rules, together with 

customer’s determinate requirements for some 

components, the unique answer set of these rules 

corresponds to the expected configuration. However, 

possibility of incomplete information was not discussed. 

Example presented in this section is very simple. 

Whereas incomplete knowledge possibly emerged in 

such applications is considered. Basically, any subfield 

of e-service related to incomplete knowledge 

representing and reasoning is the congruent application 

domain for ASP. 

6. Conclusion 

With the notion of compatibility and Λ-operator, we 

described the characterization of answer set for a logic 

program with constraints. From the characterization we 

can check if a program has answer set, and if so, a 

stepwise method presented in this paper can be used to 

split a program into subprograms, such that the union of 

answer sets of subprograms is the answer set of original 

program. To a certain extent, this simplifies the task of 

solving answer set for logic program. In any area 

involving knowledge representation and reasoning, it is 

a desirable result.  

An example about personalized product 

configuration in e-retailing is given to show that ASP 

provides a natural and compact description for 

personalizing product configuration. Our splitting 

method and its advantage are justified by this example. 

It is just one of many applications of ASP. In the 

context of software diagnosis
22

 or alias analysis
23

, ASP 

is applicable for addressing incomplete knowledge or 

frame problem in the two areas. Next we plan to apply 

our method on these issues. 
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Appendix A.    

Some proofs of this paper are included in this section. 

Proposition 1. If program = *∪C  is compatible 

then any ⊆ *
 is also compatible. 

Proof.   

It is obvious from Definition 8.                               □ 
 

Proposition 2. If ()Lit and ()⊥ then () 

 *
 and H(()) satisfies C . 

Proof.   

It is easily proven by induction on n that 

∪0≤n
n⊆*

.  

Base 

n=0. Because ()Lit and ()⊥, then by 

Definition 2, we know that for set ʹ of basic rules, 

ʹ⊆*
 and 

0
={r∈ʹ| P(r)⊆∪0≤nT

n∅}, with the 

promise that H({r∈ʹ| P(r)⊆∪0≤nT
n∅}) is consistent, 

and H({r∈ʹ| P(r)⊆∪0≤nT
n∅})∩ P(c)  P(c), or 

H({r∈ʹ |P(r)⊆∪0≤nT
n∅})∩N(c)≠∅ for each c∈C. 

So 
0⊆ ʹ⊆*

, and H(
0
) satisfies C. 

Step 

Suppose that for any natural number i, there is 

∪0≤i
i⊆*

, and H(∪0≤i
i
) satisfies C. From 

()Lit and ()⊥ we can conclude that 


i+1

={r∈-C| P(r) ⊆H(
i
)}, with the promise that 

H({r∈-C|P(r)⊆H(
i
)}) is consistent, and   H({r∈ 

-C|P(r)⊆H(
i
)})∩P(c)P(c), or H({r∈-C|P(r)⊆ 

H(
i
)})∩N(c)≠∅ for each c∈C. Each r in 

i+1 
is 

from 
*
, i.e., 

i+1⊆*
. By induction assumption, 

(∪0≤i
i
)∪i+1⊆*

, that is ∪0≤i+1
i+1⊆*

, and 

H(∪0≤i+1
i+1

) satisfies C.                                            □ 

 

Proposition 3.  is monotonic, i.e., if 12 and (2) 

⊥, then (1)(2). 

Proof. 

It is immediate from Definition 2.                          □ 
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Lemma 1. If ()Lit and ()⊥ then (())= 

(). 

Proof.   

By proposition 2 it is sufficient to show that 

(())(). Then what we need to do is to prove by 

induction on n that (())
n
((()))

n
.   

Base 

It is obvious that (())
0
((()))

0
. 

Step 

Assume that (())
i
((()))

i
. Then for any 

r∈(())
i+1

, P(r)H((())
i
). By the induction 

assumption, P(r)H(((()))
i
), which implies that 

r∈((()))
i+1

. So (())
i+1
((()))

i+1
.  

All of the above shows that (())=().                                                    

□  

Lemma 2. If ()  Lit and ()  ⊥ then for any r 

 *
, P(r)H(()) if and only if r(). 

Proof.   

 “If ” is clear.  

For the “Only If”, we easily show it by the 

definition of .                                                              □ 

                                                                                   

Theorem 2. Program = *∪C has an inconsistent 

answer set if and only if Cn({r∈ *
|N(r)=∅})=Lit and 

N(c)∅ for any c∈C . 

Proof .  

It is immediate by definition of answer set. In fact, 

Lit is an answer set of  if and only if 

Lit={r∈*
|N(r)=∅}, Cn({r∈*

|N(r)=∅})=Lit and 

N(c)∩Lit≠∅ for each c∈C.                                       □ 

 

Corollary 1. If Lit is an answer set of program , then 

it is the unique answer set of . 

Proof .  

Suppose  has a consistent answer set S, then 

{r∈*
|N(r)=∅}⊆S

, so Cn({r∈*
|N(r)=∅})⊆S. On 

the other hand, we have Cn({r∈*
|N(r)=∅})=Lit by 

Theorem 2. So, S⊆Lit. Furthermore,  S=Lit  which is in 

contradiction to consistency of S.                                  □ 

 

Theorem 3. Program  =  *∪ C has a consistent 

answer set if and only if there is a subset  of  *
 such 

that: 

(i) ∪C is compatible; 

(ii)  ()=; 

(iii) For r∈-, P(r)⊈H() or N(r)∩H()≠∅. 

Proof.   

Define r
*
= H(r)←P(r), where r = H(r)←P(r), not 

(N(r)) and 
+
=(r

*
 r

*
). Denote (r

*
)={r

*
H(r)= 

H(r
*
) and P(r) = P(r

*
)} and 

i* 
= ∪r (r

*
)  (i

*
 stands 

for inverse of *). 

It is easy to see that ()=(
i*

) , (
*
)

S
={r

*
 

N(r
*
)∩S=}. By induction it is easy to show that 

((
*
)

S
)=((

+
))

S
 .  

 “If”    

Suppose  satisfies conditions (i), (ii) and (iii), 

which implies that ()⊥. By the definition of the 

operator  and condition (ii), it is easy to see that  


+
, and  satisfies CΠ. Let S=H()=H(()). So, it 

is sufficient to show that S is an answer set of . At first, 

we have (
+
)

S
 ={r

*
 r

+
 and N(r)∩S=}. Since the 

stable model of (
+
)

S
 is H(((

+
)

S
), we show that 

((
+
)

S
)

i*
)=()=, which implies that S is an 

answer set of 
*
. At first, we have S=H() 

H( ( (((
*
)

S
)

i*
)). Next, we can inductively show that 

(((
*
)

S
)

i*
)

n 
 , which implies that H((((

*
)

S
)

i*
)). 

So, we get (((
*
)

S
)

i*
)=. Furthermore, (((

*
)

S
)

i*
)= 

(). Hence, S=H(())=H((((
*
)

S
)

i*
)=H(((

*
)

S
)). 

 “Only If”   

Suppose that S is an answer set of 
*
. Then S is the 

stable model of (
*
)

S
 and S=H(((

*
)

S
). Let 

={rr
*
= H(r)←P(r)( 

S
)}, then =(((

*
)

S
))

i*
 

and  is compatible. Hence  Satisfies (i). From 

Lemma 1, we have (）=, i.e., (ii) is satisfies by 

. For any r, if P(r)H() and N(r)H() 

=, then r
*
(

*
)

S
 and r(((

*
)

S
)

i*
)=, which 

contradicts the assumption that r
*
. So, condition 

(iii) holds for .                                                            □ 

 

Theorem 4 (Minimality of answer sets) If X and Y are 

answer sets of a program = *∪C  and XY, then 

X=Y.  

Proof.  

If one of X and Y is Lit, then X=Y by Corollary 1. 

Suppose neither X nor Y is Lit and XY (i.e., XY and 

XY). Hence there is r. Let  

={rP(r)X and N(r)∩X=}, and  

= {rP(r)Y and N(r)∩Y=}.  

By Theorem 3*, we have X=H(), Y=H() and both 

 and  are compatible. So，N(r)∩X= resp. N(r) 

∩Y= by compatibility of  resp. . On the other 

hand, since r and  satisfies conditions 

in Theorem 3*, then N(r)∩X≠∅ by (iv) of Theorem 3*. 
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This contradicts to the previously derived conclusion 

N(r)∩X=.  Hence X=Y.                                    □ 

 

Corollary 2. If program = *∪C is compatible then 

it has just one answer set H(Λ( *
)). 

Proof.  

It is obvious by Definition 1 and Theorem 3.          □ 

 

Theorem 5. Program  has an answer set S if and only 

if  there is a finer splitting { i|i≥0} of  such that 

S=∪iSi, where Si is an answer set of  i. 

Proof.  

It is easy to be derived by Theorem 2 and Theorem 

3.                                                                                    □ 
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