
A Frequent Pattern Mining Method for Finding Planted Motifs of Unknown
Length in DNA Sequences∗

Caiyan Jia 1 , Ruqian Lu 2,3 , Lusheng Chen3

1 Department of Computer Science, Beijing Jiaotong University, Beijing 100044, China

E-mail: cyjia@bjtu.edu.cn
2 Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China

E-mail: rqlu@math.ac.cn
3 Shanghai Key Lab of Intelligent Information Processing & Department of Computer Science and

Engineering, Fudan University, Shanghai 200433, China

E-mail: lschen@fudan.edu.cn

Abstract

Identification and characterization of gene regulatory binding motifs is one of the fundamental tasks
toward systematically understanding the molecular mechanisms of transcriptional regulation. Recently,
the problem has been abstracted as the challenge planted(l ,d)-motif problem. Previous studies have
developed numerous methods to solve the problem. But most of them need to specify the lengthl of a
planted motif in advance and use depth first search strategy. In this study, we present an exact and efficient
algorithm, called Apriori-Motif, without given the lengthl of a planted motif a priori. And a breadth first
search strategy is used to prune search space quickly by the downward closure property utilized in Apriori,
which is a classical algorithm for frequent pattern mining. Empirical study shows that Apriori-Motif is
better than some existing methods.

Keywords:Motif, frequent pattern, Apriori, downward closure property.

1. Introduction

In the post-genomic era, a major challenge is repre-
sented by deciphering expression regulation of thou-
sands of annotated genes in genomes. However, ex-
perimental studies of transcriptional regulation are
time consuming. Computer aided researches of
large scale expression data and functional informa-
tion on genes are greatly helpful. For understanding
gene transcription and regulation, one of the basic
steps is to find signals in DNA sequences1,2,3.

In statistical sense, a signal (often called mo-
tif) in DNA sequences is not exactly identical but
presents mutations. Usually, this signal is a short
subsequence, typically about 10 bp (base pairs)
long1, in the midst of a great amount of statistical
noise and is too complicated to be discriminated by
computational methods. It makes that the existing
methods still have low performance on identifying
weak conserved motifs (also called subtle motifs) in
DNA sequences1,2.

∗The preliminary form was appeared in the Proceedings of RSKT 2010.

International Journal of Computational Intelligence Systems, Vol. 4, No. 5 (September, 2011), 1032-1041

Published by Atlantis Press
 Copyright: the authors
 1032

C. Y. Jia, R. Q. Lu

In the literature, Prevzner & Sze formalize the
problem as the planted(l ,d)-motif problem (PMP
for short)4. Given a set of stringsS={s1,s2, . . . ,sN}
over a symbol setΣ={A,C,G,T} such that|si | 6 L,
1 6 i 6 N and positive integersl and d such that
1 6 l 6 L and 06 d < l , the planted(l ,d)-motif
problem is to find a stringt ∈ Σl such that for ev-
ery string si in S, there exists a substring (consecu-
tive symbol string in a sequence)ti in si such that
d(t, ti) = d, whered(t, ti) means the Hamming dis-
tance betweent andti.

In other words, a conserved motif at lengthl with
just d mutations is planted into each at mostL bp
background sequence. The target of PMP is to find
the planted motif and all its variants on a set ofN se-
quences only givenl andd. It’s believed that when
the ratiod to l is larger than 0.25, the planted motif
is subtle and hard to be discriminate from the back-
ground sequences5.

The most classical(l ,d)-planted motif problem
is (15, 4), where a planted motif also its variants
need to be found on a sample of 20 sequences, each
600 nucleotides long and containing an unknown
variant of the planted motif at length 15 with 4
mismatches4. Besides proposing a challenge prob-
lem to researchers, PMP model also enables to test
the performance of any motif finding algorithm.

Previous studies have developed numerous
methods in order to find planted motifs, in-
cluding SPELLER6, WINNOWER4, SP-STAR4,
MITRA7, PROJECTION8, MULTI-PROFILE5,
PatternBranching9, CENSUS10, WEEDER11,
PMS12, Voting13,14, RISOTTO15, etc.

By large, two kinds of strategies are used. One
is local optimal strategy, e.g. Gibbs Sampling
method8,16. The kind of algorithms are based
on PWM (Position-Specific Weighted Matrix, also
called profile) model, can find motifs of any speci-
fied length very efficiently. But they are inevitably
to slump into a local optimal. The other is heuris-
tic enumeration strategy based on consensus model
(more accurately, mismatch model)6,10,11. The kind
of algorithms can find all exact solutions by search-
ing the whole pattern space, but they are limited by
the time or the space complexity of algorithms17.
That is to say, the lengthl of a planted motif and

the numberd of mutations that the algorithms can
execute are still relative small so far. Thus, people
are still struggling for giving an efficient algorithm
for PMP with much longerl and much largerd.

Usually, current heuristic enumeration algo-
rithms have the following properties.

1. The depth first search strategy is used to enu-
merate all potential signals.

2. Most of algorithms need to know the length of
a target motif in advance.

3. Most of algorithms suppose there exists an
occurrence or a variant of a motif in each sequence.

4. Half of methods only deal with the case that
the allowed mismatches are justd.

In fact, researchers may not know the sizel of
a planted motif a priori. And they are more likely
to be interested in motifs that ared or fewer muta-
tions away form each rather than exactd mutations.
Moreover, as experimental data are commonly rife
with noise, it is likely that some sequences may con-
tain no motifs at all18,19. Thus, in this study, we
intend to solve PMP under the conditions that the
lengthl of a planted motif is unknown a priori, there
are at leastq (q 6 N) sequences where each con-
tains a planted signal, and there are at mostd mis-
matches between a planted signal in a sequence and
the planted motif.

Based on the previous study17, at the inspira-
tion of frequent pattern mining techniques, we give a
new algorithm, Apriori-Motif, for finding motifs ex-
actly and efficiently under the conditions specified
above in this paper. Similar with Apriori20, Apriori-
Motif uses breadth first search to scan the whole pat-
ten space indexed by the consensus tree structure17.
And it can find motifs with length fromd + 1 to l
iteratively by the downward closure property of mo-
tifs. The empirical studies have shown that Apriori-
Motif can solve PMP without givenl , with up tod
mismatches and with quorum constraintq at reason-
able time and low main memory.

The rest of paper is organized as follows. Section
2 introduces some definitions used in the paper. Sec-
tion 3 presents the algorithm, Aprior-Motif. Section
4 analyzes its complexity. Section 5 gives some ex-
perimental results and compares the algorithm with
other methods. Section 6 concludes the paper.

Published by Atlantis Press
 Copyright: the authors
 1033

Finding (l ,d) Planted Motifs

2. Preliminaries

Definition 1: Let a = a1a2 · · ·an andb = b1b2 · · ·bn

be two strings fromΣ+. The Hamming distance
d(a,b) betweena andb is defined as

d(a,b)=
n

∑
i=1

ε(ai ,bi), ε(ai ,bi)=

{

1, ai 6= bi ,
0, otherwise.

It can be interpreted as the number of symbol muta-
tions needed to turn one string into another.
Definition 2: Given d > 0 as the number of maxi-
mally allowed mutations (or mismatches), any string
b with d(a,b) = x 6 d is called anx-mutated copy
(or simply mutated copy) ofa and vice versa. A
zero mutated copy is also called an exact copy. All
x-mutated copies ofa, wherex 6 d, form the d-
neighborhood ofa. a is called the center of this
neighborhood.

Given a centera, the size ofd-neighborhood of
a is bounded byv(d, l), where

v(d, l) =
d

∑
i=0

(

l
i

)

(|Σ|−1)i.

And the number of alld-mutated copies ofa is at
most

v′(d, l) =

(

l
d

)

(|Σ|−1)d.

Thus, PMP with at mostd mutations is much harder
than that with exactd mutations since the former has
much larger search space than the latter.
Definition 3: A set with propertyP is said to satisfy
downward closure property if all nonempty subsets
of the set also have the property P.

It’s easy to know that motifs satisfy the down-
ward closure property. For an example, if TCT-
GAC satisfies the quorum constraintq that theirx-
mutated copies (x 6 d) appears in at leastq (q 6 N)
sequences of a sample, then its any substring, e.g.
TCTGA or CTGAC, satisfies this constraint. Thus,
for finding a planted motif, we can search the pattern
space from short strings to long strings since if one
of TCTGA and CTGAC does not satisfy the quorum
constraint, TCTGAC does not satisfy the constraint
definitely and can be pruned from the search space.

The idea is just the essence of Apriori20, will be used
in Apriori-Motif.
Definition 4: A tree-like structure is called consen-
sus tree if it is used to storage all possible motifs
in the searching process (see Lu and Jia17). And a
consensus tree has the following properties.

1. There is one and only one path corresponding
to a potential motif. The length of the path is just
that of the motif.

2. A full consensus tree is a complete|Σ|
branches tree. But in real applications, only nodes
(corresponding motifs) withx-mutated copies in at
leastq inputting sequences are allowed to grow in
the tree, wherex 6 d andq 6 N.

3. A candidate motif spelled by the path ending
at the node might not occur in sequences at all al-
though itsx-mutated copies (x 6 d) occur more than
q times in at leastq different sequences.

4. All nodes in a tree can be divided into two
classes. One is real nodes representing real signals
contained in sequences. They are allowed to grow in
the next level of the tree. The other is virtual nodes
representing candidate but false signals. They are
prohibited to grow in the tree.

5. For a non-root node, there is a link (pointer)
between the son of the node and the brother of the
node, where the son and the brother have the same
node content (a symbol inΣ). Thus, the branches
of a node are the same as the active branches (cor-
responding nodes are real node, can grow up to-
wards the next layer) of its uncle. We call it hered-
ity property of a consensus tree. The property just
comes from the downward closure property of a mo-
tif. Thus, only real nodes need the link structure.

A typical example of a consensus tree is shown
in Figure 1. It is a four-branch tree. And the content
of a node is one of the four nucleotides A, C, G, T.
The path from the root to a node represents a can-
didate motif. All candidate motifs make up the en-
tire search space. And each candidate motif has one
and only one path in the tree. This is a compressed
compact structure for representing a search space. In
general, the longest signal is just the planted motif.

In Figure 1, the red nodes represent for all real
nodes. The green nodes stand for all virtual nodes.
Li denotes the real signals in thei-th level. Ci de-

Published by Atlantis Press
 Copyright: the authors
 1034

C. Y. Jia, R. Q. Lu

Figure 1: Consensus tree of the sample S={s1, s2,· · · , s5}

notes all candidate signals in thei-th level. Li ⊆Ci.
The longest signal contained in the sequences is
TATA. This structure is used in Apriori-Motif for
storing and scanning the pattern space of a sample.
And according to the downward closure property,
the branch TA can grow up two branches TAC and
TAT since its uncle A has two active branches AC
and AT. The branch TAT can grow up one branch
TATA since it uncle AT has an active branch ATA.
They are just examples of heredity property of a con-
sensus tree.

3. Apriori-Motif

We know that any string of lengthL can be degener-
ated intoL suffixes, and these suffixes can be stored
in a suffix tree21. When the suffix tree of a string is
constructed, searching for a substring of lengthm in
the string just requires timeO(m). For the problem
of motif finding, we generally need to repeatedly
search DNA substrings in a set of sequences mul-
tiple times. A brute force string search is going to
be terrible and inefficient. Thus, the index structure,
suffix tree, is used in our algorithm. In fact, many
algorithms including SPELLER and WEEDER use

the structure to store DNA sequences for searching
substrings quickly.

However, we observed that only the firstl + 1 (l
is the maximal length of real signals contained in a
sample of sequences) levels of a suffix tree are use-
ful for detecting whether a candidate signal is real or
not. Building a full suffix tree for sequences is not
necessary for the problem. Therefore, in Apriori-
Motif, we only build the firstl +1 levels of the suf-
fix tree for a sample. And we attach the (j, k) tuples
of all exact copies of a candidate motif and anN-bit
string to the corresponding node of the tree. Where
(j, k) stands for a substring starting at thek-th po-
sition of the j-th sequence. As for anN-bit string
attached in a node, thei-th bit is set to 1 if the can-
didate motif spelled by the path ending at the node
occurs in thei-th sequence, otherwise it is set to 0.
The (j, k) tuples show the position that a signal ap-
peared in a sample and theN-bit string can be used
to count the number of occurrences of a signal con-
veniently.

The first four levels of the suffix tree are shown
in Figure 2 for the DNA sample in Figure 1. For
space limitation, we only drew the (j, k) tuples and
the N-bit string for the branch ’TATA’. The other

Published by Atlantis Press
 Copyright: the authors
 1035

Finding (l ,d) Planted Motifs

Figure 2: The first four levels of the suffix tree for the sample S={s1, s2,· · · , s5}

nodes are the same. Where the tuple (1, 4) means
that ’TATA’ appears in the first sequence and starts
from the fourth position ((3, 1), (4, 4), (5, 3) are
similar), and the 5-bit string ’10111’ denotes ’TATA’
appears in the first, the third, the fourth and the fifth
sequences. In Apriori-Motif, the tree is built by the
idea of Bpriori1 algorithm17 with the growth of the
consensus tree. The suffix tree structure makes us
search allx-mutated (x 6 d) copies of a candidate
quickly almost without space waste.

Consensus tree structure characterized in the def-
inition 4 is used to store all potential motifs in-
cluding real signals and candidate but false signals.
Since the firstd levels of a consensus tree is a full
|Σ| branches tree, we build a tree from the(d + 1)-
th level. The process of motif finding is just that of
constructing the consensus tree for a sample. And
the algorithm will end at outputting all real signals
(e.g. the signals spelled from the root node to the
red nodes of the tree in Figure 2). The details of the
algorithm, Apriori-Motif, are shown as follows.

Algorithm: Apriori-Motif
1. Let i = d+1.

2. Build thei-th level of the suffix tree for a DNA
sample.

3. According to heredity property of a consensus
tree, get a node of the tree by breadth first manner in
the i-th level.

4. Count the number (denoted byt) of occur-
rences ofx-mutated copies (x 6 d) of the node from
the constructed suffix tree.

4.1 If t > q, the node is permitted to grow in
the next level. It is a real node of the tree.

4.2 if t < q, the node is forbidden to grow in
the next level. It is a virtual node of the tree.

5. i = i +1, go to the step 2 until there is no real
or virtual node in the current level of the consensus
tree.

Since a candidate motif has the downward clo-
sure property, it induces the heredity property of a
consensus tree characterized in the definition 4. Ac-
cording to the property, a node will grow out a new
branch (forming a new and longer candidate) in the
next level only if it is a real node and its link node
(uncle of the node) has the active branch in the cur-
rent level. And with the growth of the suffix tree,

Published by Atlantis Press
 Copyright: the authors
 1036

C. Y. Jia, R. Q. Lu

the consensus tree is built up layer by layer, syn-
chronously. What we should do just search the par-
tial suffix tree of a sample and count the number of
occurrencest of a candidate motif spelled from the
consensus tree.

4. Complexity Analysis

In this subsection, we will give a theoretical anal-
ysis on the time and the space complexities of the
Apriori-Motif algorithm.

The space complexity of the algorithm is com-
posed of two parts. One is the space occupied by
the partial suffix tree of a sample. The other is the
space expense of the consensus tree for storing all
the candidate signals of a sample.

It’s easy to known that the number of (j, k) tuples
in a partial suffix tree is bound byNL(l +1) because
the mumble ofi-mer isN(L− i+1) and only the first
l + 1 levels of a suffix tree are useful for searching
candidate motifs, wherei 6 l and l is the maximal
length of motifs contained in a sample of sequences.
In addition, the space for storing anN-bit string at
each node isO(N/w) = O(1) in all cases of our ex-
periments, wherew is the length of computer word.
Thus, the space complexity is justO(NLl) in worst
case for storing the partial suffix tree of a sample.
But in real applications, the mumble of the nodes at
level i of a suffix tree is far less thanN(L− i + 1)
since all the samei-mers are compressed into one
path of the tree.

As for a consensus tree, we only need to keep the
three consecutive levels of the tree in main memory
in terms of heredity property of the tree. At each
level i (i > d), since the number of developedi-mer
in the suffix tree in worst case isN(L− i + 1) and
eachi-mer produces at mostv(d, i) variants (each
variant represents a candidate signal), the number of
all possible nodes in thei-th level of a consensus tree
is no more thanN(L− i + 1)× v(d, i). And at each
level i, there are at most 4i nodes in a consensus tree.
This makes the space complexity of Apriori-Motif
be bound by

Os−Apriori−Moti f = O(min{4l ,N×L×v(d, l)})
6 O(N×L×v(d, l)).

But it should be pointed out that although the
number of all variants of the nodes in all levels of
a suffix tree is bounded byO(N×L× v(d, l)), only
if the variants satisfying the quorum constraintqwill
become the real nodes of the corresponding consen-
sus tree, otherwise, will be pruned from the tree.
Thus, in real applications, the number of nodes in
a consensus tree including real nodes and virtual
nodes is far less than the complexity bound.

The time complexity of Apriori-Motif is also
composed of two parts. One is the time cost for
building a partial suffix tree. The other is the time
expense at constructing the corresponding consen-
sus tree.

At each leveli, we read the nodes of a suffix tree
by breadth first manner and partition all attached (j,
k) tuples of each node to its son nodes. Thus, the
time for building a suffix tree mainly spends at par-
titioning (j, k) tuples of all nodes. Since there are
at mostN(L− i + 1) tuples at leveli, the time com-
plexity for constructing a suffix tree isO(NLl).

Similarly, the time for building a consensus tree
mainly costs at detecting all nodes in the consensus
tree by breadth first manner to determine whether
they are real nodes or virtual nodes. According to
the above analysis, in worst case, there are less than
N×L× v(d, l) nodes in each leveli of a consensus
tree (i 6 l). To make a decision for a node in the tree,
the corresponding candidate signal will be compared
with all nodes in the same level of the suffix tree to
count the number of its occurrences. In worst case,
there are at mostN(L− i + 1) comparisons in total
for each node of a consensus tree in the leveli. Thus,
the time complexity of Apriori-Motif is

Ot−Apriori−Moti f = O(N2×L2× l ×v(d, l)).

Although the time or the space complexity based
on worst case analysis is still high, we should notice
the following facts.

1. The number of nodes in a consensus tree is far
less thanN×L×v(d, l) in the leveli, i 6 l .

2. When the tree is grown up to a specified level,
the number of branches in the incoming levels will
dramatically reduce. The result is against with the
theoretical estimation in worst case scenario.

3. The largerq, the less scale the tree is.

Published by Atlantis Press
 Copyright: the authors
 1037

Finding (l ,d) Planted Motifs

4. The heredity property of a consensus tree al-
lows us to prune the tree much quickly.

Thus, the time and the space complexities at
worst case analysis are heavily over-estimated in
real world. For examples, the main memory used
by (15, 4) is beyond 2GB for Bprori2 while it is just
no more than 150MB for Apriori-Motif although the
two algorithms have the same space complexity in
theory. And the time used by Apriori-Motif is al-
most linear to the maximal lengthL of background
sequences in all cases of the experiments in the next
section while it is polynomial (quadratic) time with
L in theory.

5. Results and Discussions

We test the performance of Apriori-Motif on some
benchmark synthetic samples for PMP under the
conditions which we are concerned with. And
we compare the algorithm with some other algo-
rithms including brute force algorithm, classical
PWM based algorithm PROJECTION8, Gemoda
algorithm 18,19 (the algorithm aims to identify a
planted motif also without the restriction of the
length of a planted motif, but it needs to specify the
window sizel ′ of allowed mutations,l ′ 6 l). All ex-
periments are performed on an Intel computer with
2 GHz processor and 2GB main memory. The oper-
ating system is Windows XP.

5.1. Benchmark datasets

Similar with the previous work8,17, the testing sam-
ples are generated synthetically in the following
steps.

1. A parent motif of lengthl is chosen by picking
l bases from nucleotides A, C, G, T at random.

2. N i.i.d. background sequences of lengthL are
constructed at random.

3. q (q6 N) sequences are selected from theseN
background sequences randomly.

4. Do the following steps for all selectedq back-
ground sequences.

4.1) Create a mutated copy of the parent motif by
randomly choosingd (d < l) positions of the motif
and mutating thesed bases to one of the four nu-
cleotides{A, C, G, T} at random.

4.2) Select from each background sequence a
consecutive substring of lengthl at random.

4.3) Replace it with the just generated mutated
copy of the motif.

In our experiments, the above method is used to
generate all the testing(l ,d) samples . If not spec-
ified, the numberN of sequences in a sample is al-
ways set to 20 and the lengthL of a sequence is al-
ways set to 600. According to the model of the se-
quence generation, the real mumble of mismatches
is at mostd since it is possible that a nucleotide of
these chosen bases will be mutated to itself. When
we specify the lengthl of a planted motif and let
q= N, the problem is just the classical PMP with up
to d mismatches. Otherwise, it’s a more general and
harder problem than PMP.

5.2. Comparison with some other algorithms

Firstly, we compared Apriori-Motif with brute force
algorithm, classical PWM based algorithm PRO-
JECTION and Gemoda algorithm on the samples
shown in Table 1. Wheres means second,min
means minute,h denotes hour, andmon denotes
month. All of them are time units for counting the
running time of the algorithms.

Following the previous studies, the accuracy of
the algorithms (i.e.accin Table 1) is measure by the
performance coefficient‖K∩P‖

‖K∪P‖ defined by Pevzner &

Sze4, whereK is the set of known signal positions
in a sample andP is the set of positions predicted by
the algorithms.

Among the four algorithms, the lengthl of the
planted motif for a sample is given to brute force al-
gorithm and PROJECTION a priori. And Gemoda
needs to known the mutated window sizel ′ (l ′ = l ,
q = N for all cases in Table 1). But we only know
the number of maximal mismatchesd andq = N in
Apriori-Motif.

According to the results in Table 1, the speed of
PROJECTION is very fast, but the algorithm can
only find the approximate answers. It is just the
pros and the cons of a local optimal method that we
have discussed in Section 1. And it is well known
that PMP is NP-hard. The brute force algorithm,

Published by Atlantis Press
 Copyright: the authors
 1038

C. Y. Jia, R. Q. Lu

Table 1: The Performance Comparison on a Range of(l ,d)†

(l ,d) Brute force PROJECTION Gemoda Apriori-Motif
acc time acc time acc time acc time

(10, 2) 1.00 72min 0.82 161.1s 1.00 8min 1.00 60.109s
(11, 2) - - 0.95 12.5s 1.00 <1min 1.00 60.235s
(12, 3) - - 0.71 8.7min 1.00 10.5h 1.00 15.9min
(13, 3) - - 0.94 46.0s 1.00 10min 1.00 15.6min
(14, 4) - - 0.65 15.4min 1.00 >3mon 1.00 3.368h
(15, 4) - - 0.90 129.0s 1.00 6h 1.00 3.134h

which enumerates all potential patterns without us-
ing any pruning strategy, will work only whenl and
d are both small (l 6 10 andd 6 2). Compared
with Gemoda which is designed for solving PMP
with a specified mutation window of a planted mo-
tif, Apriori-Motif is much more efficient while it is
designed for solving PMP without given any infor-
mation both on the length of a planted motif and the
window size of mutations.

Moreover, in all of experiments of Table 1, the
longest predicted motifs are just the planted mo-
tifs except for (14, 4) sample. For (14, 4) sam-
ple, Apriori-Motif reports two predicted motifs with
maximal length 14. One of the two predicted motifs
is false positive, the other is just the planted one. But
the false positive and the real signal have long-range
overlaps.

What’s more, the larger the ratiod/l , the harder
the problem is when the length of the planted motif
is specified a priori to an algorithm. Taking (14,4)
and (15, 4) as instances, (14, 4) is much harder than
(15, 4) since the former has higher noise ratio. But
when the length of a signal is not given to an algo-
rithm, (15, 4) might be harder than (14, 4) since we
should detect (14, 4) firstly for getting the solution
of (15, 4).

Then, we test the influence of the lengthL of
background sequences on Apriori-Motif. The test-
ing results are shown in Figure 3. Where the X-
coordinate denotes the lengthL of background se-
quences, the Y-coordinate stands for the execution
time (the time unit is second for (10, 2), and it is
hour for (15,4)). In these group of experiments, the
length of sequences is set to 600 bp, 700 bp, 800 bp,

900 bp and 1000 bp, respectively, for all the(l ,d)
samples tested in Table 1. Since the results of all
cases are very similar and the space is limited, we
only show the results of (10, 2) and (15, 4).

It’s easy to know from Figure 3, the longer the
background sequences, the more the running time
will be used by Apriori-Motif. And the time com-
plexity is almost linear with the maximal lengthL
of background sequences in the real world. It proofs
that the real space used by Apriori-Motif is far less
than the theoretical bound which is quadratic time
with L.

Also, the parameterq has strong influence on the
hardness of the problem. We do not show it since
the result is similar with that in Lu & Jia17. So does
the parameterN.

5.3. Discussions

Firstly, Apriori-Motif is a breadth first search
method. It can find planted motifs exactly without
given the lengthl . It allows some sequences that
may not contain any occurrence of a motif at all and
the number of mismatches between an occurrence
and the motif can range from 1 tod. Moreover,
Apriori-Motif uses the downward closure property
to prune the search space. For an example, the sig-
nal ACCTA can be extended to a longer candidate
ACCTAT only if its substring ACCTA and CCTAT
are both real signals. The strategy can speed up the
algorithm. Based on our knowledge, all of the ex-
isting enumerative algorithms use depth first search
strategy, e.g. SPELLER6 and WEEDER11. Al-
though SPELLER and WEEDER can be extended to
find planted motifs also under the conditions which

Published by Atlantis Press
 Copyright: the authors
 1039

Finding (l ,d) Planted Motifs

Figure 3: The influence of parameterL on Apriori-Motif

we are concerned with, SPELLER does not use any
pruning strategy and WEEDER can only get the ap-
proximate answers since WEEDER only allows a
mismatch occurred in a block with window sizelε
(0 < ε < 1) for narrowing down the search space.
Although the depth first strategy can save the main
memory, Apriori-Motif is a complementary to depth
first search methods and can make a trade-off be-
tween the time and the space complexities.

Secondly, WEEDER introduces the parameterε
for narrowing down the search space, and lowers
down the parameterq for approximating real an-
swers since the lower the quorum constraintq, the
more chances the algorithm will find real answers.
Similar with WEEDER, we can introduce a param-
etere to Apriori-Motif for narrowing down the pat-
tern space, wheree is the maximal number of al-
lowed consecutive mismatches between a planted
occurrence and the planted motif, since the largere,
the smaller probability the planted occurrence will
be appeared in the real world. It’s easy to know that
the smallere, the faster Apriori-Motif will be, but
the less accurate the result will be. The testing re-
sults can be found in Table 2, where we range the
parametere from 1 to d to test its influence on the
algorithm.

Thirdly, Apriori-Motif is different from Bpriori
series algorithms17. Bpriori series algorithms can
not efficiently solve the problem like (15, 4). Bpri-
ori2 needs too much space while Bpriori3 needs too
much running time for (15, 4). In fact, Apriori-Motif

is an improved version of Bprori algorithms. As
mentioned above, it makes a trade-off between the
space complexity and the time complexity.

In the future, we intend to design an efficient al-
gorithm for solving the dyad planted motif problem
since in higher organism transcription factors sel-
dom function in isolation, but act in concert with
nearby bound factors in a combinatorial manner to
induce specific regulatory behaviors22.

6. Conclusions

In the study, we presented an algorithm, Apriori-
Motif, based on the techniques in frequent pattern
mining. It is a breadth first search method, and can
prune the search space quickly by the downward clo-
sure property of motifs. Similar with Apriori, a clas-
sical algorithm for mining frequent pattern, Apriori-
Motif can find motifs from lengthd + 1 to l itera-
tively and terminate at the lengthl of a planted mo-
tif. So it can find any planted motif without given
the lengthl a priori. Moreover, it allows some se-
quences that may not contain any occurrence of a
planted motif with up tod mismatches. Both the-
oretical analysis and experimental tests have shown
the good performance of the algorithm.

Acknowledgments

This work was supported in part by NSFC
(Grant No. 60905029, 60875031 and 90820013),

Published by Atlantis Press
 Copyright: the authors
 1040

C. Y. Jia, R. Q. Lu

Table 2: The Influence of parametereon Apriori-Motif
(l ,d) e=1 e=2 e=3 e=4

acc time acc time acc time acc time
(10, 2) 0.7 47.140s 1.0 60.109s - - - -
(11, 2) 1.0 50.157s 1.0 60.235s - - - -
(12, 3) 0.66667 5.169min 0.58333 12.765min 1.00 15.908min - -
(13, 3) 0.76923 4.954min 1.0 14.320min 1.00 15.612min - -
(14, 4) 0.64285 12.948min 0.92857 1.820h 1.00 2.840 1.00 3.368h
(15, 4) 0.60 10.643min 0.80 1.945h 1.00 2.914h 1.00 3.134 h

973 Project (Grant No. 2007CB311002 and
2009CB320701).

References

1. M. Tompa, “Assessing computational tools for the dis-
covery of transcription factor binding sites,”Nature
Biotechnology, 23, 137–144 (2005)

2. J. Hu, B. Li, D. Kihara, “Limitations and potentials
of current motif discovery algorithms,”Nucleic Acids
Research33(15), 4899–4913 (2005)

3. M. K. Das, H. K. Dai, “A survey of DNA motif finding
algorithms,”BMC Bioinformatics,8(suppl 7)(2007)

4. P. Pevzner, S. Sze, “Combinatorial approaches to find-
ing subtle signals in DNA sequences,”Proceedings
of the Eighth International Conference on Intelli-
gent Systems for Molecular Biology, California, USA,
269–278 (2000)

5. U. Keich, P. Pevzner, “Subtle motif: defining the limits
of finding algorithms,”Bioinformatics, 18(10), 1382–
1390 (2002)

6. M. F. Sagot, “Spelling approximate repeated or
common motifs using a suffix tree,”Proceedings
of LATIN’98: Theoretical Informatics, LNCS 1380,
111–127 (1998)

7. E. Eskin, P. Pevzner, “Finding composite regulatory
patterns in DNA sequences,”Bioinformatics, 354–363
(2002)

8. J. Buhler, M. Tompa, “Finding motifs using random
projections,”Proceedings of The Fifth Annual Inter-
nal Conference Computational Molecular Biology,
Canada, ACM Press (2001)

9. A. Price, S. Ramabhadran, P. Pevzner, “Finding sub-
tle motifs by branching from sample string,”Bioinfor-
matics, 2, 1–7 (2003)

10. P. A. Evans, A. D. Smith, “Toward optimal motif enu-
meration,”Proceedings of Algorithms and Data Struc-
tures, 8th International Workshop, 47–58 (2003)

11. G. Pavesi, G. Mauri, G. Pesole, “An algorithm
for finding signals of unknown length in DNA se-

quences,”Bioinformatics, 17, 207–214 (2001)
12. J. Davila, S. Balla, S. Rajasekaran, “Fast and practical

algorithms for planted (l , d) motif search,”IEEE/ACM
Trans. On Computational Biology and Bioinformatics,
4, 544–552 (2007)

13. Y. L. Chin, C. M. Leung, “Voting algorithms for dis-
covering long motifs,”Proceedings of the Third Asia-
Pacific Bioinformatics Conference, Singapore, 261–
271 (2005)

14. C. M. Leung, Y. L. Chin, “An efficient algorithm
for the extended (l , d)-motif problem with unknown
number of binding sites,”Proceedings of the Fifth
IEEE Symposium on Bioinformatics and Bioengineer-
ing, 11–18 (2005)

15. N. Pisanti, A. M. Carvalho et al, “RISOTTO : fast ex-
traction of motifs with mismatches,”Proceedings of
the Seventh Latin Am. Theoretical Informatics Symp.,
757–768 (2006)

16. C. E. Lawrence, S. F. Altschul et al, “Detecting subtle
sequence signals: A Gibbs sampling strategy for mul-
tiple alignment,”Science262, 208–214 (1993)

17. R. Q. Lu, C. Y. Jia et al, “An exact data mining method
for finding center strings and all their instances,”IEEE
Trans. On Knowledge and Data Engineering, 19(4),
509–522 (2007)

18. M. P. Styczynski, K. L. Jensen, “An extension and
novel solution to the (l , d)-motif challenge problem,”
Genome Informatics, 15, 63–71 (2004)

19. K. L. Jensen, M. P. Styczynski et al, “A generic motif
discovery algorithm for sequential data,”Bioinformat-
ics, 22, 21–28 (2006)

20. R. Agrawal, R. Srikant, “Fast algorithms for mining
association rules,”Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, Santiago
de Chile, Chile, 487–499 (1994)

21. E. Ukkonen, “Constructing suffix trees on-line in lin-
ear time,”Proceedings of the Information Processing,
1992:484–492.

22. K. Klepper, G. Sandve, “Assessment of compos-
ite motif discovery methods,”BMC Bioinformatics,
9(123)(2008).

Published by Atlantis Press
 Copyright: the authors
 1041

