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Abstract 

The quality of reconstructed images is an important and direct criterion to quantitatively evaluate the effectiveness 
of reconstruction algorithms in electrical tomography (ET). Unfortunately, there lacks of effective and efficient 
approach to assessing the quality of ET images in literature and practices. Realizing the gap, we  recently develop  a 
novel index termed fused Multiple Characteristic Indices (fMCI) 1 aiming to measure the quality of clustering 
various data sets including imaging data (e.g., ET). In this paper, we propose a method based on fMCI to 
quantitatively evaluate the quality of reconstructed images. The method first applies the fast fuzzy c-means 
algorithm to cluster pixels in the reconstruct image. The fMCI is then applied to evaluate the clustering results and 
image quality. Simulated data derived from finite element method is used to demonstrate that the proposed method 
is capable to evaluate the quality of the reconstructed images and the results are consistent with visual perception. 
In addition, a number of experiments are conducted to demonstrate the applicability and effectiveness of the fMCI 
based method for image quality assessment. 

Keywords:  Validity index, Electrical tomography, image reconstruction, image evaluation. 

 

1. Introduction 

Electrical Tomography (ET) has gained considerable 
interest in both industrial measurement and biomedical 
engineering 2, 3. Although great progress has been made 
in improving ET technique in the past two decades, the 
quality of ET images such as resolution is less 
satisfactory, mainly due to the known fact that the 
image reconstruction is an inverse problem with ill-
conditioned property 2, 3, 4.   Though much work has 
been done by researchers improve ET image 
reconstruction, the state-of-art imaging resolution 
assessment is still limited to single-parameter evaluation 
of binary images.  

To address this issue, researchers have studied the 
unique characteristics of ET reconstructed images and 
explored multi-parameter, quantitative evaluation 
methods. For example, Woo4, Kotre and Adler3 

presented the definitions of spatial resolution from 
different aspects. Wheeler5 used parameters related to 
spatial position and centre resolution to evaluate the 
spatial resolutions of different areas of the image. Zhao6 
proposed a multi-parameter method (includes area error 
and image centre position error) for the electrical 
capacitance tomography (ECT) image evaluation and a 
calculation model for the image centre position error. 
Graham and Adler7-9 defined the resolution in terms of 
fuzzy radius, and adopted the ratio between the radius of 
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the interested region and that of the imaging region, the 
axial error and the image energy to evaluate the quality 
of reconstructed images.  While promising, the research 
reviewed above suffers from some limitations. First, 
most evaluation methods require the inputs from user 
which tend to be subjective. Secondly, the images 
studied so far have been either binary or grey-scale. The 
applicability to color image from ET is not explored. 
Thirdly, though the methods consider multi-parameters, 
the parameters studied are relatively simple, such as 
images error resolution, duty ratio 2, 9. Lastly, some 
methods only take a known mesh instead of the whole 
image to identify the "optimal" parameter settings 
during the reconstruction and evaluation 7, 9. The 
performance on the whole images thus is questionable. 
Consequently, it is desirable to develop a method to 
comprehensively and objectively evaluate reconstructed 
images in both grey and color scale. The foremost 
requirement for such method is a powerful assessment 
index which can truthfully measure the image quality. 
Considering the image reconstruction is a procedure to 
assign each pixel to a color scale thus the whole image 
is composed of a number of blocks with associated 
colors, scoping the blocks can be generally treated as a 
clustering problem. Here we propose a cluster validity 
index   which can be used to quantitatively evaluate the 
quality of reconstructed images. 

Clustering analysis is an unsupervised technique 
used to assign the objects with similar characteristics to 
the same group 10, 11. One critical issue in clustering 
analysis is to validate the clustering results 
quantitatively, e.g., determining the optimal number of 
clusters and their optimal clustering configurations. In 
general, the performance of a clustering method is 
evaluated through validity indices built upon distance 
measures. For example, the between-distance function 
calculates the distance of the objects from two different 
clusters, and the within-distance function calculates the 
distance of the objects within the same cluster. By 
maximizing the between-distance and minimizing the 
within-distance, an acceptable clustering partition may 
be reached 12, 13. However, there exists different 
formulations of the distance functions (e.g., Euclidean 
distance) and the applicability of these indices is heavily 
dependent on how to combine these functions. Over the 
last few decades, extensive research has been conducted 
to improve validity indices by integrating various 

within- and between- distance functions. Instead of 
improving a single index, we have recently proposed a 
fused multiple clustering index (fMCI)1 to integrate 
multiple indices for better performance. Specifically, we 
study the use of the D-S evidence theory 14-16, a 
mathematical tool for handling uncertainty and 
imprecise and incomplete information to fuse multiple 
complementary characteristics in clustering evaluation. 
In fMCI, we first introduce the use of weighted average 
of a group of existing validity indices into the 
evaluation process. Next, other than commonly used 
distance measures (e.g., between- and within- distance), 
we introduce a new two-order difference within distance 
functions which is applicable to arbitrary structures of 
data space. We then propose a ratio-type function that 
consists of neighborhoods of the center and boundary of 
all clusters. These three characteristics are used as 
information resources for the D-S theory tool to 
generate fMCI. The advantages of fMCI are twofold. It 
is a generalized validity index, thus is not constrained 
by the data space nor the clustering algorithms. In 
addition, fMCI is introduced to assess the clustering 
outcome considering that the clustering process itself is 
uncertain, instable and, therefore, incomplete in nature. 

To what follows, the overview of the fuzzy 
clustering validity measures are presented in section 2. 
Section 3 discusses the cluster evaluation, clustering 
characteristic extraction, and fusion of characteristics to 
estimate the number of clusters. Experiments on 
simulated data and real data are presented in section 4 to 
verify the usefulness of our proposed method followed 
by conclusion drawn in Section 5.   

2. Related Work 

In this section, we review three commonly used fuzzy 
validity indices, a fast fuzzy c-means algorithm, the D-S 
evidence theory tool, and the ET image reconstruction 
algorithms. 

2.1. Three representative fuzzy validity indices 

Let X={x1, x2,…,   xn} be a dataset in a d-dimensional 
data space, containing n data points distributed in c 
clusters, C1, C2 ,…,Cc. Hereafter, we denote iju as the 
membership of j-th data point to i-cluster in a fuzzy 
clustering algorithm, vi as clustering prototype of i-
cluster, for i=1,2,…,c, j=1,2,…,n,  
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2.1.1. Bezdek’s partition entropy (PE) index  

A commonly accepted validity index in fuzzy clustering 
is the partition entropy (PE) 17 proposed by Bezdek, 

   c
i

n
j ijaijPE uu

n
V 1 1 log1

               (1) 

where a is the base of the logarithm. The PE index is a 
scalar measure of the amount of fuzziness in a given 
dataset. The index is computed for values of c greater 
than 1 and its values range in between 0 and loga c. In 
general, we find an optimal c∗  by solving min1<c<nVPE 
to produce the best clustering performance for the data 
set X. 

2.1.2. Xie and Beni’s XB index 

A validity function proposed by Xie and Beni (1991)13 
with fuzziness exponent m = 2 and modified by Pal and 
Bezdek (1995) was defined by 
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),( vuJm is a compactness measure and Sep(v) is a 
separation measure. In general, an optimal c* is found 
by solving 12max  nC to produce a best clustering 
performance for the data set X . 

2.1.3. Pakhira  and  Bandyopadhyay’s  (PB)  index  

Pakhira and Bandyopadhyay proposed a validity index 
called the PB-index 19. The index was developed for 
both hard and fuzzy clustering algorithms. Here we 
only illustrate the fuzzy version of the index:  
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where     n
j j vxE 11 | || |  with v  being the centroid 

of data set,    c
ji ijc vvD 1, | || |  with mJ defined 
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The optimal number of clusters can be obtained by 
minimizing Eq. (7) for all possible numbers of clusters. 

2.2. The D-S evidence theory 

In the D-S theory, by representing the uncertainty and 
the imprecision of knowledge via the notion of evidence, 
belief can be combined to a single hypothesis (singleton) 
or a composite hypothesis (union of hypotheses)15. A 

useful operator following the evidence combination rule 
is introduced to integrate information from different 
sources. The decision on the optimal hypotheses choice 
can then be made in a flexible and rational manner. 

Let us assume there exists (i) a frame of discernment 
X consisting of the exhaustive and exclusive hypothesis 
and (ii) the reference set 2X of all the subsets of the 
elements of X. In the D-S evidence theory, a basic 
probability assignment (BPA) is an elementary mass 
function: m: 2X  [0,1] satisfying: m()=1 and 
 

XA
Am

2
1)( . The element of 2A that has a non-zero 

mass value is called focal element, and the union of all 
the focal elements is called the core of the mass function. 
In the evidence theory, m(A) is a focal element if 
m(A)≠0,  and  m(A) indicates the certainty degree of A. A 
BPA is characterized by two functions: the belief 
function bel and the plausibility function pl. The belief 
in a subset  A X2  is the sum of all pieces of the 
evidences that support A, and the plausibility of A is the 
sum of pieces of evidences not supporting A, that is, 
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     Based on these definitions, combination operators 
can be characterized as  

 
 1))()(1()( jiCBA BmAmAm

ji   CjBiA ji BmAm )()(   (5) 

It is possible to build a unique elementary mass function 
m from n elementary mass functions m1, m2,…,mn from 
n distinct and independent sources yet characterized on 
the same set.  The combination rule in the D-S evidence 
theory consists of calculating:  

nbelbelbelbelAbel  ...)))((()( 321          (6) 

where   denotes the combination operator. A similar 
equation for the plausibility function is.  

nplplplbelApl  )))((()( 321       (7)  

The combination is commutative and associative. The 
last step is the decision-making process, which is 
supported by the results provided by the combination 
rules. After the decision principles are determined, the 
evidence theory can efficiently fuse a group of 
information sources in the given frame of discernment.  

The D-S evidence theory tool has the ability to 
handle uncertain, imprecise, and incomplete 
information1,14, and to increase the confidence degree of 
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the final decision result. These abilities are desirable for 
identifying the true number of clusters in this study.  

2.3. ET imaging mechanism and algorithms 

The ET imaging aims to reconstruct an image by the 
electrical conductivity (permittivity) of materials 
flowing within the sensor from voltages measured at the 
periphery of the sensor in response to the injected 
electrical current. The electrical conductivity σ   and 
electrical potential   are governed by the Maxwell 
equation 3, 7. The ET imaging problem responds to an 
inverse problem, that is, finding the conductivity 
distribution σ   based on the voltage measurements is 
called the inverse problem. To implement the ET 
imaging, the investigated area has to be discretized. A 
common form of the ET inverse problem is computed as 

G = S−1U.                                    (8) 

where S -1 is the inverse matrix of the discrete sensitivity 
matrix S governed by Maxwell equation, and G is the 
grey vectors corresponding to the distribution of σ of all 
pixels. The mathematical problem in tomography is an 
inverse problem which has been demonstrated in [4] and 
[8] and a unique solution is guaranteed provided that 
data from an infinite number of views available. 
However, direct analytical solution for Eq. (8) does not 
exist since the actual equation is a nonlinear operator 
with more unknown conductivity values than known 
voltage measurements. In that context, only 
approximations of S−1 can be found by numerical 
techniques. The choice of the approximation of S−1 in 
Eq. (8) leads to different image reconstruction 
algorithms. The simplest one is to use the transpose of S, 
which corresponds to the linear back projection (LBP) 20 
and Landweber method 21, Eq. (8) is then turned to 

2
2| || |minargˆ GSUG T

MG                      (9) 

In the LBP algorithm the conductivity distribution is 
assumed to comprise a number of discrete regions 
within the measurement space such that the conductivity 
within each region is constant. According to Eq.(6),  

]1...,,1,1[..,/1 
 UtsUSSS TT     (10) 

Eq.(10) shows that the grey values of any pixel is 
calculated using a weighted form, and   is a unit vector 
in the algorithm. 

The Landweber iteration method was originally 
designed for solving the classical ill-posed problem 
using the strategy that is similar to the gradient 

descending algorithm in the optimization process by the 
following equation: 

)ˆ(ˆˆ
1   k

T
kk GSSGG                  (11) 

where the constant is known as the gain factor and is 
used to control the convergence rate. As the iterative 
process described by Eq. (9) proceeds, the norm of the 
capacitance residual will be minimized.  

    Regularization techniques have been adopted in 
order to stabilize the inversion. They are used to 
determine a set of solutions by using prior constraint 
information and select an optimum one. Tikhonov 
method 22 is one of the most popular regularization tools 
for solving ill posed inverse problems. The 
reconstruction is commonly stabilized using the 
Tikhonov regularization by minimization of the follow 
function: 

             )(2/)( 2 gRSggJ                       (12) 

where R(g) is the regularization function, and µ is the 
regularization parameter. The function is often 
expressed in L2 form as: 

2| |)(| |)( ggLgR                            (13) 

where L is an appropriate regularization matrix and g  
is a prior estimate of the permittivity distribution. In 
practice, it is difficult to obtain g when prior 
information is not available. In general, choosing g  as 
zero and L as an identity matrix I give the standard 
Tikhonov regular. 
        After reviewing the indices and D-S theory, we 
will introduce fMCI, a novel index based on fusing 
multiple characteristics and use of fMCI for imaging 
quality evaluation in the next section.  

3. fMCI for the image evaluation of electrical 
tomography 

3.1. Characteristic extraction to general clustering 
evaluation 

The first characteristic studied is a within-cluster 
distance function. Most existing validity indices consist 
of the within- and between- cluster distance functions. 
A combined structure of both within- and between-
cluster distance functions will greatly impact the 
effectiveness of these validity indices. Usually the 
within-cluster distance function is monotonically 
decreasing as the number of cluster (NC) increases.  
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We have previously demonstrated 1 that the extended 
two-order difference of within-cluster distance function 
can help locate the elbow position as the reference 
curves in the gap statistic index1. The extended two-
order difference is defined as  

),2(max)( "'"',",', NCNCNCNCNCNCANCNCNC WWWNCT    (14) 

where A is a set of consecutive values of NC, and this 
set contains all possible number of clusters. When 
NC’=NC-1, NC”=NC+1, T(NC) reduces to the standard 
two-order difference. In light of Eq.(14) the elbow point 
can be found when |A|=11. After applying Eq.(14) to 
four variants of the set Satimage in UCI, we have found 
1 that each of their curves of T(NC) is divided into the 
two sections located above and below the average of 
optimums, respectively. The real NC is close to or 
contained in those sections. Therefore, a proper within-
cluster distance function can determine the real NC to 
some extent. Since T(NC) does not involve the 
integration of within-cluster and between-cluster 
distance functions, T(NC) is a more independent 
measure compared to the existing validity index.  

The second characteristic we consider is a measure 
termed S(NC) that consists of the ratio between average 
center density CD(NC) and average boundary density 
BD(NC) of all clusters under the calculated NC. For 
example, CD(NC) and BD(NC) in DBSCAN algorithm 
10  may be calculated by the average data number across 
all r-neighborhoods of core data and across all r-
neighborhoods of boundary data 12, 13, respectively, 
where the r-neighborhood is a set of data that is 
centered in the related data objects with radius of r; 
CD(NC) in the most used k-means algorithm 10 is the 
average number of  data in the r-neighborhood of any 
clustering prototype, while BD(NC) is the average 
number of data that fall into the r-neighborhood of the 
middle point between any pair of clustering prototypes. 
To locate the true NC*, we define  

)(/)(max)( NCBDNCCDNCS NC         (15) 

That is, a true NC tends to group the data to the center 
of the clusters and scatter the data to the boundary.  We 
had tested a dataset of 20 clusters in which some 
clusters are partially overlapped as an example1. In 
using CM algorithm, when NC is less than 20, some r-
neighborhoods of clustering prototype are located in the 

overlaps of the in-between clusters that contain few data 
points due to the effect to minimize the objective 
function of the CM algorithm. Hence, CD(NC) is less 
than the value at NC = NC optimal. If NC is larger than 20, 
BD(NC) in S(NC) increases since some neighborhoods 
of middle points fall into high-populated data areas. We 
conclude S(NC) can attain its maximum in the vicinity 
of NC optimal. The S(NC) in fact generalizes the notation 
of the partitioning index we previously proposed. 
Consequently, S(NC)  may better predict the true NC 
independently.  

In summary, we propose two general characteristics 
in clustering evaluation: one is based on an independent 
within-cluster distance function and the other consists of 
a neighborhood based function. Integrating these 
characteristics and available existing validity indices is 
a challenging task. The D-S evident theory is proposed 
to accomplish this task. 

3.2. Proposed Index: Fused Multiple Characteristic 
Index (fMCI) 

In fMCI, the first information source (V1) is from a 
group of indices. For any given dataset, if a group of 
validity indices f11, f12,  …f1m is applicable, let us first 
combine the group of validity indices to construct a 
characteristic for A2X, termed  V1 by a weighting sum 
of values of the group of indices： 

V1(A)=w1 f11(A) + w2 f12(A)+…+  wm f1m(A),      (16) 

where wj is the weight to represent the importance of 
fj(A) for all j, j=1, 2,.., m. The weighting value is 
characterized as  

  


m

j A jjj mjAAmAmw X1 2
,...,2,1|,|/))(/()(    (17) 

where  


m

j jw
1

1 . If wj is greater (less) than 1, the 
impact of f1j increases (decreases). Specially, if there are 
two or more sets of consecutive numbers of clusters 
above the average line, the calculated weighting value 
of Eq.(16) for any A must decrease since these sets have 
to share the value 1 according to the definition of the 
mass function. Inversely, if there is a dominant set of 
number of clusters above average of line, the value of 
Eq.(16) must be 1. Thus Eq.(17) can automatically 
increase and reduce the importance of each index in the 
group of indices. One criticism of the D-S evident 
theory is that Eq. (5) may cause a most unreasonable 
case   called   “rejected   by   one   vote”   for   a   given  
hypothesis. Here, however, the formulation of Eq. (16) 
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ensures the true NC will not be directly rejected if it is 
rejected by one index, but suggested by other validity 
indices.  

Let the second information source (V2) be T(NC) 
and the third information source (V3) be S(NC). Assume 
X represents a frame of discernment consisting of a set 
of values of NC; for any A2X, the focal element in the 
D-S evidence theory is computed as 

,
.,0

)()(

,))()((

)(




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


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ANCallforNCAverFNCFif

NCAverFNCF

Af ii

ANC ii
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where AvgF(NC) is the average of all values of Fi(NC) 
(i=1, 2, 3) for all values of NC. Since the values of 
different validity indices in Eq.(18) may have different 
orders of magnitude, using a weighting sum approach to 
combine a group of validity indices should be 
normalized. The mass functions in the D-S evidence 
theory are normalized as 

3,2,1,2,/)()(  iAallforfAfAm A
iii       (19) 

where  if~  is the average of all values of )(Afi .  
After fusing the above three characteristics by the 

D-S evidence theory, the decision-making rule is that A1, 
A22A  which satisfies  
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then A1 is the decision-making result, where 1 and2 
are pre-established threshold. In this paper we set 1 = 
2 =0.05.  

3.3. Fast fuzzy c-means algorithm to image clustering 

In the context of image clustering, a fast version of the 
FCM (f-FCM) algorithm can be used 23. The algorithm 
is based on a 1-dimensional attribute such as the grey 
level. Let HS be the histogram of image of L levels, 
where L is the number of grey levels. Each pixel has a 

feature that lies in the discrete set 

X ={0,  1,…,  L-1}                           (22) 

In this case, each element of the data set represents a 
grey level value, and we can then use  )(luu iil   to 
expresses the membership degree of the l-th grey level 
for the i-th cluster. The objective function in the f-FCM 
can be rewritten as: 

21
0 1 )()()(),,( i

L
l

C
i

m
ilm vllHuLVUJ   

        (23) 

where )(luu iil  represents the membership degree of 
grey level l to cluster i, i=1,2,..,c. Thus, the computation 
of membership degrees of H(l) pixels is reduced to that 
of a pixel with l as the grey level value. Let 

 

  C

i
L
l ilil uuE 1

1
0 || . The algorithm first selects the 

number of clusters C, and updates the partition matrix U 
according to 
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for Ci ,...,2,1 , and 

1
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
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 c
i

m

j

i
ij vl

vlu                 (25) 

for LlCi ,...,2,1;,...,2,1  . When E is smaller than a 
user-specified threshold, the algorithm stops. 

3.4. Evaluation of ET imaging quality 

The f-FCM algorithm is used to cluster all pixels in any 
ET image that is reconstructed by the three most used 
imaging algorithms: LBP, Tikhonov and Landweber 
algorithms respectively, available in our group in 
Tianjin Key Laboratory of Process Measurement and 
Control, Tianjin University 2, 12. For any image, each 
dominant individual color corresponds to a determined 
grey degree. After applying the f-FCM, these pixels 
with the same grey degree consist of a cluster. Ideally, 
the number of clusters in any reconstructed image is 
identical to the real number of clusters, but this often is 
impossible since the limited natural space resolution of 
existing ET imaging techniques 5, 6. Instead, a good 
reconstructed ET image necessarily has the number of 
dominant colors that is as close to the real one as 
possible. Usually, there are a prior number of clusters 
predefined for any investigated materials since the 
components of these materials can be known in advance. 
The ET imaging technique aims to find the distributions 
of these materials in pipe or vessel. The proposed fused 
Multiple Characteristic Index (fMCI) can then be 

Published by Atlantis Press 
      Copyright: the authors 
                   1057



Multi-Characteristic Fused Based Validity Index: Application to Reconstructed Image Evaluation in Electrical Tomography 

 7 

applied to evaluate the quality of these reconstructed ET 
images based on two criteria: Accuracy and robustness 
measure. The Accuracy is measured by the difference 
between the estimated number of clusters by the fMCI 
index and the actual number of clusters, and the 
robustness measure is defined as the difference 
between the optimal and the second optimal number of 
clusters for any validity index. The larger the values of 
the robustness measure are, the stronger the 
representation for the optimal number of clusters will 
be. Consequently, the accuracy and robustness 
measure together can evaluate how well any 
reconstructed ET image is for a given dataset,  
comparing to the three fuzzy clustering validity indices 
PB, PE, and XB discussed in Section 2. 

Fig. 1 is a flowchart for our proposed method. 
 

Cluster pixels in 
reconstructed image

Extract characteristics  
T(NC) and S(NC)

Extract characteristics 
from validity  indices

Fuse all characteristics 
by D-S theory tool

Estimate a number of 
clusters and robustness 

ET image evaluation

ET image reconstruction

 
 
Fig.1. Flowchart of the evaluation processes of the new 
proposed validity indices for the reconstructed images. 

4.     Experiments 

Three artificial and an ET reconstructed image are used 
to test the effectiveness of the fMCI as follows. 

4.1. Test on three synthetic datasets 

Simulation experiments are performed in the software 
Comsol 6.7 2. We generate three frames of artificial 
images with size 256 × 256, as shown in Fig. 2. These 
data (voltages) hidden in these original images are used 

to reconstruct the ET images by use of the above three 
ET imaging algorithms, LBP, Tikhonov and Landweber. 
These reconstructed images and are shown in Table 1. 

       
 (a)                          (b)                          (c) 

Fig. 2. Three original artificial images. (a) A big and three 
small circles with the same permittivity.  (b) A triangle and 
three circles with different permittivity. (c) Six peppers with 
the same permittivity. 
 
    Table 1. Reconstructed images and their evaluations 

Tikhonov Landweber LBP 

   

   

   
 

 In Fig.2(a) there are three small circles of radius 23 
each, and a large circle of radius 60 in the first frame of 
image, respectively. The pixels of these three small 
circles have the same grey value 120 and the large circle 
take grey value 160, and the background pixels take 
grey in the value 70. Thus the number of clusters in the 
set of vectors from all circles and backgrounds in the f-
FCM algorithm should be chosen as 3. In Fig.2 (b) the 
pixels of these three small circles take grey values in the 
values, 120, 140, 160, and large circle 95, respectively. 
The background pixels take values in the value 70. Thus 
the number of clusters in the set of vectors from all 
circles and backgrounds in the f--FCM algorithm should 
be chosen as 5. In Fig.2(c) the third frame of image 
consists of six irregularly shaped peppers. These pixels 
of peppers take the same grey values 110 respectively 
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while the background pixels take values in the value 95. 
Thus the number of clusters in the set of vectors from 
all peppers and backgrounds should be chosen as 2. The 
true numbers of clusters in the three original datasets are 
used to compute the accuracy and robustness of these 
images by the fMCI index in the evaluation process. 

 
                                            (a) 

 
                                           (b) 

 
                                            (c) 

Fig.3. Comparison of fMCI and the three fuzzy indices PB, 
XB, and PE in dataset 1-3 that responds to (a)-(c), where the 
circle symbol “○”  stands  for  the  optimal  value  of  any  validity  
index, and the square symbol “□” for the second optimal value, 
the difference between these two symbols represent the 
robustness of the fMCI. 
 
     Table 1 shows these reconstructed images under the 
three reconstructed ET algorithms, where each row 
responds to the same original image and thus to the 
same pixel dataset. Fig.3 shows the estimated number 
of clusters by all validity indices. As opposed to the 
original image, the accuracy and robustness of the 
fMCI index are the highest. The reconstructed images 

that the optimal values of the fCMI index points to 
have the highest space resolution since they are more 
consistent to the original image than the other images. 
The boundary of each cluster in these images is tidy 
and clear. While, the three fused fuzzy validity indices 
cannot accurately estimate the real number of clusters 
number of either in accuracy or in robustness measure. 
The estimated number of cluster by the three indices 
may be far from the number of dominant colors. 
Therefore, these fuzzy validity indices themselves may 
not efficiently evaluate the quality of these 
reconstructed ET images. 

4.2. Test on image reconstruction for a man lung 

The test results from the diagnose process of a man lung, 
and experimental data is taken from 32 electrodes 
around the chest of the man (see Fig.4 (a)). At the same 
time, the scanned XCT image of the man by using X-
ray inversion recovery pulse sequences is available to 
severe as the reference image (see Fig.4 (b)). 
 

                

  (a)                                              (b)                

Fig.4. Experiments tested in a man lung. (a) Data acquisition 
electrodes.  (b) Reconstructed XCT image.  
 
The cross-section is partitioned into 900 units (pixels) 
for image reconstruction such that it is possible to 
represent the details of the soft tissues of the man lung 
in the reconstructed ERT image. We reconstruct the 
image of the man lung by the LBP, Tikhonov, and 
Landweber algorithms based on these measured data 
(voltages) by 32 electrodes. These reconstructed images 
are shown in Table 2. Usually, the XCT image can 
reflect the bone skeleton of any man chest well, while 
the ERT can better reflect the structure of soft tissues to 
some extent. The man lung approximately contains five 
kinds of tissues according to rough conductivity 
differences, thus the actual number of clusters is taken 
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as 5. After the f-FCM is applied to cluster pixels in any 
reconstructed image, the fMCI index is used to 
automatically to estimate the actual number of clusters 
for each reconstructed image along a group of 
consecutive numbers of clusters, comparing with the 
three fuzzy clustering validity indices PB, PE, and XB 
listed in Section 2.  

Table 2.  Reconstructed images and their evaluations  

Tikhonov LBP Landweber 

   

 
Note: The circle symbol “○”   stands   for   the   optimal   value   of  
any validity index, and the square symbol “□” for the second 
optimal value, the difference between these two symbols 
represent the robustness of the fMCI. 

 
Table 2 shows that the reconstructed images by the 

Tikhonov algorithm are the best where these tissue 
details of a man lung can nearly be identified, and those 
by LBP algorithm is the worst. These results are 
consistent with most observations in literature 21, 23. The 
reconstructed ET image by the Landweber algorithm 
seems to clearer than the LBP algorithm where 
boundaries of different clusters look tidier. In the sense 
of the statistical number of correct partitioned pixels, we 
have found that 38.17 % and 30.5% of pixels have been 
mis-segmented in the classical LBP and Landweber 
algorithms, but only 20.36 % of pixels are mis-
segmented by the Tikhonov algorithm. This 
demonstrates that the Tikhonov algorithm is the most 
acceptable in the three algorithms. Accordingly, the 
estimated number of clusters by the fMCI index is the 
closest to the real one by the accuracy and robustness 
measure. In comparison with the X-ray image, the 

image by the LBP algorithm can be seen that these 
clusters seem unclearly expressed since the clusters 
contain too much tail traces. 
Although the optimal values of the PE and PB indices 
can estimate the correct number of clusters, its 
robustness measure underperform than the fMCI index. 
Therefore, after these individual fuzzy validity indices 
are fused into a more general index, fMCI, the 
generalization can be improved. 

In addition, the fuzziness exponent of a fuzzy 
clustering algorithm including the f-FCM index usually 
may affect the clustering results in a given dataset.  In 
our research we have found that when the values of the 
fuzziness exponent are generally taken 1.7, the 
evaluation results of the f-FCM index is thus most 
acceptable. 

5. Conclusion 

In general, the existing validity indices suffer from the 
problems of uncertainty, instability, and incompleteness 
in clustering evaluations 24, 25. In addition, there is lack 
of a generalized index not bounded to the clustering 
algorithm and the structure of the data space. To address 
these issues, we have proposed a novel approach by 
using the D-S evidence theory to introduce a 
generalized index by combining multiple aspects from 
the clustering process. To accomplish this, we first 
consider combining the three existing fuzzy clustering 
indices as one information source. Two other functions 
independent from applied clustering algorithms and 
structure of data space are introduced as additional 
information sources for the D-S theory. A fused 
multiple characteristics index (fMCI) is introduced by 
fusing the three information sources. Experimental 
results indicate that the fMCI can generally handle 
uncertainty, imprecision, and instability issues in 
clustering evaluation and efficiently evaluate the 
clustering outcomes of any clustering algorithm and any 
structure of data space. Essentially, these experimental 
results provide evidence that the fMCI index obtains a 
favorable evaluation effect for the reconstructed ET 
images. 

Though the evaluation method presented here is 
promising and expected to facilitate further research in 
electrical tomography, there are several directions in 
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which the work may be extended. For example, how to 
effectively define the optimal mass functions for the 
fMCI to further improve the results remains unanswered. 
Second, how to choose the combination rules in the DS-
evidence theory for better estimation of the true number 
of clusters needs to be explored. These are our research 
efforts for the future.  
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