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Abstract

This paper presents a new 7%, state estimator for Takagi-Sugeno fuzzy delayed Hopfield neural networks.
Based on Lyapunov-Krasovskii stability approach, a delay-dependent criterion is proposed to ensure that
the resulting estimation error system is asymptotically stable with a guaranteed %, performance. The
proposed %, state estimator can be realized by solving a linear matrix inequality (LMI) problem. An
illustrative numerical example is given to verify the effectiveness of the proposed 7, state estimator.
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1. Introduction

Neural networks have been intensively studied in the
past decade and have found several application in ar-
eas such as signal processing, static image process-
ing, and pattern recognition. It has been shown that
these applications depend on the stability and per-
formance of neural networks. Among various neural
networks, Hopfield neural networks ! have been ex-
tensively studied and successfully applied in combi-
natorial optimization, signal processing, and pattern

recognition 2.

Fuzzy logic method has proven to be an effi-
cient approach to treat the analysis and synthesis
problems for complex nonlinear systems. Among
several fuzzy methods, Takagi-Sugeno (T-S) fuzzy
models provide a useful method to describe complex
nonlinear systems using local linear subsystems >4,
These local linear subsystems are smoothly blended

through fuzzy membership functions. Recently, the
T-S fuzzy models are used to express some complex
nonlinear systems by having a set of delayed Hop-
field neural networks as its consequent parts. Since
the T-S fuzzy models have the outstanding approx-
imation ability, T-S fuzzy delayed Hopfield neu-
ral networks 73219 are recently recognized as an
appealing tool in approximating nonlinear systems.
Stability problems for T-S fuzzy delayed Hopfield
neural networks have been investigated in 67:8910,

On the other hand, the states of neural networks
are not often completely available in the outputs of
neural networks in many applications. Thus, it is
important to estimate the states of neural networks
through measurements in order to make use of neu-
ral networks in practical applications. Wang and
his colleagues obtained a delay-independent crite-
rion for state estimator design of delayed neural net-
works in !!. The authors in '? investigated a state es-
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timator of delayed neural networks and proposed a
delay-dependent condition such that the estimation
error system is asymptotically stable. Recently, in
13 the state estimation problem for a class of neu-
ral networks with discrete and distributed delays was
further considered.

In physical systems, there exist model uncertain-
ties and system noises. It is known that JZ, ap-
proach is robust to disturbance variances and model
uncertainties '*. Analysis and synthesis in an %,
framework have some good advantages such as ef-
fective disturbance attenuation and less sensitivity
to uncertainties. Huang and Feng proposed an 7,
state estimation method for delayed neural networks
15, Can we obtain an %, state estimator for T-S
fuzzy delayed Hopfield neural networks? This pa-
per answers this interesting question. To the best of
our knowledge, for the JZ, state estimation of T-S
fuzzy delayed Hopfield neural networks, there is no
result in the literature so far.

In this paper, we propose a new %, state es-
timator for T-S fuzzy delayed Hopfield neural net-
works. This state estimation method is a new con-
tribution to the topic of recurrent neural networks.
The proposed scheme ensures that the estimation er-
ror system is asymptotically stable and the 7%, norm
from the external disturbance to the estimation er-
ror is reduced to a predefined level of disturbance
attenuation. Based on Lyapunov-Krasovskii stabil-
ity approach, a sufficient existence condition for the
proposed 7%, state estimator is represented in terms
of linear matrix inequality (LMI). The LMI problem
can be easily solved by using standard convex opti-
mization algorithms 6.

This paper is organized as follows. In Section
2, we formulate the problem. In Section 3, an LMI
problem for the JZ, state estimation of T-S fuzzy
delayed Hopfield neural networks is proposed. In
Section 4, a numerical example is given, and finally,
conclusions are presented in Section 5.

2. Problem Formulation

Consider the following delayed Hopfield neural net-
work:

i(1) = Ax(t) - WO (x(t — 1)) + (1) + Gd(1), (1)

y(t) = Cx(t) +Dx(t — )+ Hd(t), (2)

where x(t) = [x;(¢) ... x,(t)]T € R" is the state
vector, y(t) = [y1(t) ... ym(?)]7 € R™ is the out-
put vector, d(t) = [di(t) ... di(t)]T € R is the
disturbance vector, T > 0 is the time-delay, A =
diag{—ay,...,—ay} € R™" (a > 0,k = 1,...,n)
is the self-feedback matrix, W € R™" is the
delayed connection weight matrix, ¢(x(r)) =
[01(x(1)) ... ¢u(x(¢))]" : R" — R" is the nonlinear
function vector satisfying the global Lipschitz con-
dition with Lipschitz constant Ly > 0, G € Rk,
C e R™" D e R™" and H € R™** are known con-
stant matrices, and J(r) € R" is an external input vec-
tor.

Based on the T-S fuzzy model concept, a gen-
eral class of T-S fuzzy delayed Hopfield neural net-
works 78910 is considered here. The model of T-S
fuzzy delayed Hopfield neural networks is described
as follows:

Fuzzy Rule i:

IF w; is u;; and ... @y is w;; THEN

(1) =Ax(t) + Wip (x(t — 7))+ Ji(t) + Gid(2), (3)
y(t) = Cix(t) + Dix(t — 7) + Hid (1), 4)

where @; (j =1,...,s) is the premise variable, y;;
(i=1,...,r,j=1,...,5) is the fuzzy set that is char-
acterized by membership function, r is the number
of the IF-THEN rules, and s is the number of the
premise variables. Using a standard fuzzy inference
method, the system (3)-(4) is inferred as follows:

where 0 = [0y, ..., @), hi(®) =w;i(0)/ Y, w;(®),
wi:R*—[0,1] (i=1,...,r) is the membership func-
tion of the system with respect to the fuzzy rule i.
h; can be regarded as the normalized weight of each
IF-THEN rule and it satisfies

hi(w) >0, hi(w) =1.
1

(N

r

Published by Atlantis Press
Copyright: the authors

856



Heo State Estimation for Takagi-Sugeno Fuzzy Delayed Hopfield Neural Networks

For the T-S fuzzy delayed Hopfield neural network
(3)-(4), we design the following full-order state esti-
mator:

Fuzzy Rule i:
IF w; is y;; and ... @y is w;; THEN
x(1) = AR(e) + Wi (R(t — 7)) +Ji(1)
+L(y(t) =3(1)), (8)
y(t) = Cix(t) + Dix(t — 1), 9)
where x(t) = [ (¢) ... X,(¢)]” € R" is the state vector

of the state estimator, y(t) = [y1(¢) ... Y (¢)]” € R™is
the output vector of the state estimator, and L € R"*™
is the gain matrix of the state estimator to be de-
signed. Using a standard fuzzy inference method,
the state estimator (8)-(9) is inferred as follows:

00 = Y h(@) AS0) + W R —7)
HI0) + LG - 5(0)), (10
() = ghxw) (CR()+ DR -] (1)
Define the estli;nation error e() = x(1) —£(¢). Then,

the estimation error system can be represented as
follows:

&(t) = i;hi(w){(Ai —LC))e(t) — LDje(t — 7)
+ Wi (x(r — 7)) = Wip (x(t — 7))
+(Gi— LHi)d(t)}.

Before stating the main objectives of this paper, the
following definitions are introduced.

Definition 1. (Asymptotical state estimation) The

state estimator (10)-(11) is an asymptotical state es-

timator if the estimation error e(7) satisfies
lime(r) = 0.

t—oo

(12)

(13)

Definition 2. (JZ%, state estimation) The state esti-
mator (10)-(11) is an .77, state estimator if the esti-
mation error e(¢) satisfies

/ T (1)Se(t)dr < 7 / TdT (0 ()
0 0

dt, (14

for a given level ¥ > 0 under zero initial conditions,
where S is a positive symmetric matrix. The parame-
ter y is called the .7Z% norm bound or the disturbance
attenuation level.

Remark 1 The 4, norm ' is defined as
Jo el (2)Se(t)dt
Jo dT(t)d(t)dt

where T, is a transfer function matrix from d(t) to
e(t). vd|leo < Y can be
restated in the equivalent form (14). If we define

T (0)Se(c)do
= food%) d(0)do’

the relation (14) can be represented by

H () < 7.

In Section 4, through the plot of H(t) versus time,
the relation (16) is verified.

This paper designs a state estimator of the form
(10)-(11) for T-S fuzzy delayed Hopfield neural net-
works with a guaranteed performance in the 72,
sense if there exists the disturbance d(r). We
also will show that this state estimator ensures the
asymptotical state estimation when the disturbance
d(t) disappears.

15)

(16)

3. ., State Estimator Design

In this section, we design an 7%, state estimator for
T-S fuzzy delayed Hopfield neural networks. The
following theorem presents an LMI-based criterion
to obtain the .7, state estimator.

Theorem 1 For given v > 0 and S = ST > 0, as-
sume that there exist common matrices P = PT > 0,
0=0">0,R=R">0,U=U" >0, and M such
that

[1,1] ~-MD; U  PG;—MH,;
-DI'M” -R U 0
U -U -1i0 0
(PG, — MH;) 0 0 —72
0 I 0 0
I 0 0 0
wlp 0 0 0
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0 I PW
I 0 0
0 0 0
0 0 0 |<o, (17)

—él 0 0
0o -s!' o
0 0o I |

fori=1,...,r, where
[1,1] = (PA; — MC;)" + (PA; — MC;) + TQ +R.

Then the ¢, state estimation for T-S fuzzy delayed
Hopfield neural networks with the disturbance at-
tenuation level 7y is achieved. Moreover, the gain
matrix of the state estimator (10)-(11) is given by

L=P 'Mm. (18)
Proof. Consider the following Lyapunov-
Krasovskii functional

140 t)Pe(t +/_T/+ﬁ a)dodp
+/_T (t+0)Re(t+0)do
+ {/0 e(t+c)dG]TU [/0 e(t+6)d6] :
- N (19)

Its time derivative along the trajectory of (12) is

e(f)Tpe( 1)+ e (t)Pe(t) + te’ (1) Qe(r)

e 6)do +e(t) Re(t)

V(1)

—1T)Re(t — 1) +e(t) —e(t — 1)U

X [/jre(c)do} + [/ttre(o)do] U

=Y (@ {eT (Ai — LC)T P+ P(A; — LC))]
i=1

x e(t) — e’ (t)PLD;e(t —7) — e’ (t —T)D! LT
X Pe(t) +e” (1) PWi(9 (x(t — 7)) — 9 (3(r — 7)))
+(9(x(r— 1)) — 0(X(t — 7)) W Pe(t)

+e(t)'P(G; — LH;)d(t) +d” (t)(G; — LH;)"

x Pelt) } + 7€ (1)Qe(t) - /ttreT(G)Qe(G)dG
+e(t)TRe(t) — e’ (t — T)Re(t — T) + [e(r)

—e(t—)"U [ /t;e(cr)dc] + [ /t;e(a)da}

x Ule(t) —e(t — 7)]. (20)

If we use the inequality X7Y +Y7X < XTAX +
YT A=Y, which is valid for any matrices X € R™"™,
Y e R A=AT >0, A€ R, we have

— 1)) = ¢(x(r —7)))
—9(x(t —1)))" W, Pe(t)
—9(F( =) (9(x(t — 7))
—o(x (t—f)) +e (1) PWW," Pe(t)
SLG(x(t =) =Xt — 7))  (x(r = 7) -
+ e (1)PWW. Pe(t)

=Lge' (t—1)e(t — 1) +e" () PWW/] Pe(r). (21)

T

x(t—1))

Using (21), we obtain

Depuol
+ PWWIPle(t) — e (t)PLDje(t — t) — e (1 — 1)
x DI L Pe(t) + Lye” (t — t)e(t — 7) +e(1)" P

% (Gi — LH)d(t) +d” (1)(G; —LH,-)TPe(t)}

[(A; —LC))" P+ P(A; — LC;)

+ 2T (1) Qe(t) — /t IT ¢T(6)Qe(0)do +e(t)R

xe(t) — e (t—T)Re(t —7) +[e(r) — e(r — 7)]"
<U [ /t;e(o)dc] + [ /t;e(c)dc} U
—e(t—1)]. (22)
Using Jensen’s inequality 7
[ /[;e(c)dc] "0 [ /t;e(a)da}
< T/ttre(c)TQe(G)dG (23)
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we have P(G;— LH;)
. 0
V(1) < ¥ @) {e" ()[(4 — LC)T P+ P(A; ~ LC)) 0 <0, =
i=1 —2]
w.T _ T ot — 1) — el (t —
+ PW,W; Ple(t) —e’ (t)PLD;e(t —7) —e" (t —17) fori=1.....r, we have

x D L"Pe(t) + Lye” (t — t)e(t — 7) +e(1)" P
x (Gi— LH)d(t) +d" (t)(G; — LH,-)TPe(t)}

+2e” (1) Qe(t) — % [/tt e(G)dG} o

—T

« [ /t;e(c)do} +e(t) Re(t) — (1 — TR

r

V() < Y hi(@){—e" (t)Se(t) + y*d" (1)d(t)}

i=1
= —e(1)Se(t) + YPdT (1)d(¢).
Integrating both sides of (26) from 0 to oo gives
V() =V(0)

(26)

T T
et )+ [ele)—elt— DT [/f e(ﬁ)dc} < —/0 e (t)Se(t)dt—I—}/z/O d" (1)d(1)dr.
. T o Since V(e0) > 0 and V(0) = 0, we have the relation
+ [ / e(o‘)do‘} Ule(t) —e(t — 7)] (14). From Schur complement, the matrix inequality
=T , (25) is equivalent to
. e(t) T {11} —PLD; U P(Gi—LH,)
— Y (@) elt=1) -prl’p -R U 0
“~ J_.e(o)do U v -l 0
a(t) (Gi—LH)TP 0 0 —pI
(1, 1) —PLD, U 0 I 0 0
-DI'L’p (2,2) U I 0 0 0
U -U  —-10 w'p 0 0 0
(G,'—LHI')TP 0 0 0 1 PVVI 7]
P(G,'—LH,') e(t) 1 0 0
0 e(t—1) 0 0 0
0 Llre(c)dc 0 0 0 <0, 27)
2] d(t) —él 0 0
0o —-s' o
—eT(1)Se(t)+y2dT (1)d (1) b, (24) 0 0 1

where
(1,1) = (A; — LC))" P+ P(A; — LC)) + PW;W/ P
+S+70+R,
(2,2) =LjI—R.

If the following matrix inequality is satisfied

where
{1,1} = (A, = LG))" P+ P(A; — LC;) + TQ +R.

If we let M = PL, (27) is equivalently changed into
the LMI (17). Then the gain matrix of the state es-
timator is given by L = P~'M. This completes the
proof. 1

Corollary 1 Without the external disturbance, if we
use the state estimator (10)-(11) with the gain ma-
trix L (18), the asymptotical state estimation for T-S
fuzzy delayed Hopfield neural networks is guaran-

(1,1) —PLD; U
-DI'L’p (2,2) -U
U -v -1
(Gi—LH)™P 0 0 teed.
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Proof. When d(t) = 0, we obtain

V(t) < —e'(1)Se(t) <0 (28)
from (26). This guarantees
lime(r) =0 (29)
[—ro0

from Lyapunov-Krasovskii stability theory. This
completes the proof. |

Based on Theorem 1, the optimal .72, norm bound
for the proposed state estimator is obtained.
Corollary 2 For a given S > 0, the optimal I,
norm bound v is obtained by solving the following
semi-definite programming problem:

min y?

subject to the LMI (17), P >0, Q >0, R > 0, and
U >0.

Remark 2 The zero-initial condition is for e(t).
Since the transfer function matrix T,4 is defined un-
der zero-initial condition, there exists no the initial
state error e(0) in the definition of the . norm.
However, since there exists the initial state error
e(0) in real problems, the performance criterion
(14) can be slightly modified into

(30)

/O " (1)Se(t)dt
<y /0 4T ()d()di + € (0)Pe(0)
+ /_ OT /ﬁ o7 (@) 0e()dadB

0

+ | e'(o)Re(o)do

—T

+ [/_Ore(a)dcr} TU [/_Ore(o)dc] .

In this case, we can easily obtain Theorem 1.

Remark 3 The LMI problem given in Theorem 1 is
called the feasibility problem. In addition, the solu-
tion of the problem in Corollary 2 can be obtained
by solving eigenvalue problem in 7y, which is a con-
vex optimization problem. Many LMI problems can

be solved efficiently by using standard convex opti-
mization algorithms '°. In order to solve the LMI
problems, this paper utilized MATLAB LMI Control
Toolbox '8.

4. Numerical Example

Consider the following T-S fuzzy delayed Hopfield
neural network:

Fuzzy Rule 1:

IF w is M1 and ... wyis His THEN

X(t) = Ax(t) + Wig (x(r — 1)) +J1 (1)

+Gd(1), (31)
y(t) = Cx(t) + Dix(t — 1) + Hd(t), (32)
Fuzzy Rule 2:
IF o, is Up; and ... @y is oy THEN
X(t) = Agx(t) + Wao (x(t — 1)) + J2(2)

+God(1), (33)
(1) = Cox(t) + Dax(t — 1) + Had (),  (34)

where
_ [ a@) _ | di®)
SO A R B
B 1
O(x()) = | T ] ,
L 14e 220
-3 0 —4.2 0

Ar=1 g —25]’ AQ:[ 0 —35}’

1 05 1 0
&:_01}’®:“81y

[ —1 04 1 -0.8
wi= o-ﬂJ’%_{M.st

| sin(z) | —cos(z)
h(r)= | cos(r) ] () = [ sin(2¢) } ’

Ci=[1 0], G=[0 1],

Di=[05 1], D,=[-1 03],
H=[-1 04], H,b=[01 —-03].

The fuzzy membership functions are taken as
hy(®) = sin®(x;(¢)) and hy(®) = cos?(x;(¢)). For
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the design objective (14), let the 7, performance
be specified by y = 0.75 with § = I, where I € R>*?
is an identity matrix. If we solve the LMI (17) by
the convex optimization technique of MATLAB, we

have
p_ 1.0591 —0.4367
| —0.4367 1.4127 |’
—0.0672
M= [ 0.1233 ]

Figure 1 shows the plot of H(¢) versus time when
dy(t) = cos(20¢) and d,(t) = sin(10¢). This figure
verifies H (o) < y* = 0.5625, which means that the
2 norm from the external disturbance d(f) to the
estimation error e(¢) is reduced within the .22, norm
bound y. When the initial conditions are given by

| o[

and the external disturbance d;() (i = 1,2) is given
by a Gaussian noise with mean 0 and variance 1, the
simulation results for the JZ, state estimator design
are shown in Figures 2-4. Figures 2 and 3 show the
true states x (¢) and x(7) and their estimations X (¢)
and X; (), respectively. Figure 4 shows the responses
of the estimation error e(¢). These simulation results
demonstrate that the proposed estimator reduces the
effect of the external disturbance d(¢) on the estima-
tion error e(t).

1.5

—1 :| ) (35)

x(0) = [

0.01
0.009
0.008
0.007
0.006

£ 0.005
0.004

0.003

0.002

0.001

time(sec)

Fig. 1. The plot of H(t) versus time

-0.5F

-151

i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
time(sec)

Fig. 2. Responses of the state x| (¢) and its estimation X (¢)

15

i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
time(sec)

Fig. 3. Responses of the state x,(¢) and its estimation X; ()

time(sec)

Fig. 4. Responses of the estimation error e(r)
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5. Conclusion

In this paper, for the first time, an 7, state estima-
tion method for T-S fuzzy delayed Hopfield neural
networks is proposed. This estimator ensures the
asymptotical state estimation and reduces the %,
norm from the external disturbance to the estimation
error within a predefined level of disturbance atten-
uation. It has been shown that the gain matrix of the
proposed 7%, estimator can be realized by solving
the LMI problem. A numerical simulation example
is provided to show the effectiveness of the proposed
€, estimator. The proposed estimation scheme can
be used in several applications. A possible scheme is
to use T-S fuzzy delayed Hopfield neural network to
build a mathematical model from experimental data
and then design a nonlinear controller, based on this
model. Algorithms already exist which ensure er-
ror convergence for identifiers of T-S fuzzy delayed
Hopfield neural networks %10,

1. J.J. Hopfield. Neurons with grade response have col-
lective computational properties like those of two-
state neurons. Proc. Nat. Acad. Sci., 81, 3088-3092
(1984).

2. M. M. Gupta, L. Jin, and N. Homma. Static and Dy-
namic Neural Networks (Wiley-Interscience, 2003).

3. T. Takagi and M. Sugeno. Fuzzy identification of
systems and its applications to modeling and control.
IEEE Trans. Syst., Man, Cybern, 15, 116-132 (1985).

4. K. Tanaka and M. Sugeno. Stability analysis and de-
sign of fuzzy control systems. Fuzzy Sets Syst., 45,
135-156 (1992).

5. K. Cao, X.Z. Gao, X. Huang, and X. Ban. Stabil-
ity analysis of a type of Takagi-Sugeno PI fuzzy con-
trol systems using circle criterion. International Jour-
nal of Computational Intelligence Systems, 4, 196-207
(2011).

6. H. Huang, D.W.C. Ho, and J. Lam. Stochastic sta-
bility analysis of fuzzy Hopfield neural networks with

10.

11.

12.

13.

14.

15.

16.

17.

18.

time-varying delays. IEEE Trans. Circ. Syst. II, 52,
251-255 (2005).

M.S. Ali and P. Balasubramaniam. Stability analysis
of uncertain fuzzy Hopfield neural networks with time
delays. Commun. Nonlinear Sci. Numer. Simulat., 14,
2776-2783 (2009).

H. Li, B. Chen, Q. Zhou, and W. Qian. Robust stability
for uncertain delayed fuzzy Hopfield neural networks
with markovian jumping parameters. I[EEE Trans.
Syst., Man, Cybern. B, 39, 94-102 (2009).

C.K. Ahn.  Takagi-Sugeno fuzzy Hopfield neu-
ral networks for %, nonlinear system identifica-
tion. Neural Processing Letters, In press, (2011),
doi:10.1007/s11063-011-9183-z.

C.K. Ahn. Some new results on stability
of Takagi-Sugeno fuzzy Hopfield neural net-
works. Fuzzy Sets and Systems, In press, (2011),
doi:10.1016/j.fs5.2011.05.010.

Z. Wang, D.W.C. Ho, and X. Liu. State estimation
for delayed neural networks. IEEE Trans. Neural Net-
works, 16, 279-284 (2005).

Y. He, Q.G. Wang, M. Wu, and C. Lin. Delay-
dependent state estimation for delayed neural net-
works. IEEE Trans. Neural Networks, 17, 1077-1081
(2006).

Y. Liu, Z. Wang, and X. Liu. Design of exponential
state estimators for neural networks with mixed time
delays. Phys. Lett. A, 364, 401-412 (2007).

Anton Stoorvogel. The .72, Control Problem : A State-
space Approach (Prentice Hall, London, 1992).

H. Huang and G. Feng. Delay-dependent 72, and
generalized 77 filtering for delayed neural networks.
IEEE Trans. Circ. Syst. I, 56, 846-857 (2009).

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishi-
nan. Linear matrix inequalities in systems and control
theory (SIAM, Philadelphia, 1994).

J Li and S Li. Aumann Type Set-valued Lebesgue
Integral and Representation Theorem. International
Journal of Computational Intelligence Systems, 2, 83-
90 (2009).

P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali.
LMI Control Toolbox (The Mathworks Inc., 1995).

Published by Atlantis Press
Copyright: the authors

862





