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Abstract 

Cellular manufacturing (CM) has been identified as an innovative practice for manufacturer to achieve efficiency as 
well as flexibility under an uncertain environment. This study addresses a new mathematical robust model for a 
cellular manufacturing problem integrated with tactical aspects under supply chain network characteristics in the 
presence of uncertain internal parameter (processing times) and external parameter (demands). The model aims to 
minimize total cost consisting expected value and variance of tactical cost (scheduling), strategic cost (employment 
of suppliers in supply chain network) to produce exceptional elements as well as the cost of resource 
underutilization. The model can give up a series of the solutions that are less sensitive to the changes in input data. 
To solve the robust model, an efficient hybrid method based on new combination of genetic algorithm (GA), 
simulated annealing (SA) in a parallel structure are proposed under an optimization rule. The effectiveness of the 
proposed model is demonstrated by numerical results and the trade-off between solution robustness and model 
robustness is also analyzed. 

Keywords: Cellular manufacturing, group scheduling, Robust optimization, Uncertain demand and processing time, 
Parallel solution method. 
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1. Introduction and literature survey 

Group technology (GT) is a management concept that 
aims to group products with similar process or 
manufacturing characteristics, or both. Cellular 
manufacturing system (CMS) can be proposed as a 
practical application of GT that determines the groups 
of machines based on similarity of the products 
processed by them. The traditional purpose of CMS is to 

identify machine cells and part families concurrently 
and to assign part families to machine cells in order to 
minimize the intercellular and intracellular costs of 
parts. Aggregating traditional considerations with newly 
ones such as scheduling, stochastic approaches, 
processing time, variable demand, sequencing, and 
layout consideration to the traditional aspects can be 
more practical. Scheduling parts in individual cells is an 
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operational feature that should be determined at the 
design stage. 
In any manufacturing environment, suppliers or supply 
chain network structures have a vital role in order to 
produce different products. A manufacturer can decide 
whether the operations are completed inside the 
manufacturing system or they have to be outsourced to 
the suppliers in a supply chain network. Thus, suppliers 
can affect on the characteristics of operation processes 
which are not completed inside the system. Once there 
are multi suppliers for each product, decision maker 
have to select which supplier is more suitable or is the 
best one for subcontracting products based on the 
different criterions such as transportation, inventory 
policies and location of warehouses. Thus, for each 
product one of the two types of costs will be arisen: 
tactical cost such as scheduling or production planning 
due to produce inside the system and subcontracting 
cost due to employment suppliers under a supply chain 
network. By optimizing this problem, in fact supplier 
network design will be optimized across a supply chain. 
Therefore, integration of tactical and strategic decisions 
in a single problem must have high priority for 
researchers. 
In this paper, we aim to optimize formation of work 
cells according to the optimization of tactical decisions 
(scheduling) and strategic decisions (supplier 
considerations) under an uncertain environment.  
This survey highlights studies that are relevant to the 
uncertainty planning of CMS problems; however, a 
survey of certain conditions will be presented.  
In the literature correspondence to CMS problems, 
uncertainty has been considered in different forms. We 
have classified previous researches into different 
groups, which would be discussed later.  
Group 1) Uncertainty appears in products’ demand and 
products’ mix. In this group, there are two approaches 
employed in order to resolve uncertainty, which are 
stochastic and fuzzy theory. There are also some cases 
where demand is aggregated with tactical aspects such 
as production planning in stochastic form [1], layout 
problem [2] or dynamic and multi period conditions [3]. 
There are also cases where, in other studies, uncertainty 
in products’ demand is treated using fuzzy numbers [4]. 
Group 2) The other group is associated with the 
formulation of CMS problems using fuzzy coefficients 
in the objective function and constraints [5]. 
Group 3) Another group considers uncertainty with 
processing times of products where there are some 
efforts applied for mathematical programming and using 
fuzzy approaches to obtain expected results. There are 

also cases where significant attempts are devoted to 
implement heuristic approaches [6] and [7]. Other types 
of studies formulated the problem as a queue network 
and then analyzed it by queuing theory [8].  
Group 4) Uncertainty occurs for different reasons such 
as fluctuations in design aspects during production 
process. Since, fluctuations in design aspects are not 
certain events, so uncertainty can be formulated by a set 
of possible scenarios in the future. In this way, some 
studies applied interval coefficient to resolve 
uncertainty [9].      
Group 5) There are also some other cases where 
uncertainty is considered in resource availability of 
production equipments where cell formation (CF) 
problems can be formulated by applying probability 
theory [10] and [11]. In addition, multi processing 
routes is another alternative to be substituted once a 
machine is faced with failure [12, 13].  
Group 6) Uncertainty can also be recognized in 
similarity coefficients. For example, a new similarity 
coefficient has been introduced where applied fuzzy 
theory and then transformed it to a binary matrix [14].  
Group 7) Capacity level of machines is considered to be 
uncertain. Since this critical parameter plays an 
important role to determine bottleneck machine, thus it 
is vital to make flexible decisions under any realization 
of this parameter [15].    
Group 8) Finally, uncertainty in CMS problem can also 
be detected in products arrival time to cells. Classical 
models assume that all products are available at the 
beginning of the production planning while in real 
application we may have some cases where products 
arrive to cell with unknown time which could be studied 
using queuing theory [16]. The cases where a CMS is 
involved with cell formation integrated with scheduling 
([17], [18]), exceptional elements in CF ([19], [20]), the 
implementation of meta-heuristics and heuristics to 
solve large-scale problems are more practical and 
appealing real-case problems ([21], [22]).  
In order to indicate strengths and comparison of our 
work against previous researches, the following 
descriptions are discussed.  
1- A huge portion of investigations regarded to the CMS 
problem in uncertain situations can be divided into three 
groups: (a) fuzzy theory, (b) stochastic optimization, 
and (c) heuristic procedures. 
1a) The most applied approach to resolve uncertainty in 
CMS problems in the literature can be introduced fuzzy 
approach [5], [23], [9]. 
1b) Also, most of the stochastic papers analyzed 
problem actually in certain condition where cases are 
transformed into the certain problems by replacing 
uncertain parameter by its expected value. Then, models 
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are reduced to certain models and solved by certain 
methods. In actuality, many of the previous researches 
have explored the problems in certain conditions. 
Additionally, researchers usually have considered just 
demand of parts to be stochastic, [2], [24], [3]. 
1c) In the last group, some papers have been developed 
to introduce heuristic methods to solve CMS problem in 
uncertain situations, [13], [6], [7]. 
Based on the above discussions, a little research applied 
stochastic programming (2b) with the standard structure 
to solve integrated cell formation problem and tactical 
decisions. Thus, from the view point of authors, there is 
a considerable gap in the literature to research and this 
can indicate strengths of the current research via 
previous works.   
In the structure of any stochastic programming (SP) 
problem, one must decide which decision variables are 
first stage and which are second stage; in other words, 
which variables must be determined first and which may 
be determined after the uncertainty has been realized.  
2- Cellular manufacturing decisions are strategic 
decisions that are affected by operational decisions such 
as scheduling, production planning, layout 
consideration, utilities, productivity and etc. Thus, in 
order to enhancing decision making regarded to 
formation of cells, it is essential to incorporate strategic 
decisions with operational decisions in a unique 
problem. Recently, researchers have had some efforts in 
order to integrate two types of decisions. But the lack of 
literature is that most of them are done in certain 
situations while in real-world most of the operational 
parameters are uncertain; and thus, integrated problems 
must be more studied in uncertain situations [17], [18], 
[25]. 
In our paper, both mentioned drawbacks are solved 
concurrently where cellular manufacturing problem is 
incorporated with group scheduling problem under a 
supply chain design framework in stochastic solution 
space and these can show dominance of our work rather 
than the others. 

2. Robust Optimization Methodology 

Mulvey et al. [26] proposed robust optimization where 
the method was able to attempt decision makers’ errand 
risk aversion or service level task. Also, their method 
could give up a series of solutions that are less sensitive 
to realizations of the data in a scenario set. The optimal 
solution supplied by a robust optimization model is 
called robust if it stays ‘‘close’’ to the optimal whenever 

the input data vary called solution robustness. A 
solution is called robust if it is ‘‘almost’’ feasible for 
small changes in the input data called as model 
robustness. 

Structural and control constraints are the two types 
of robust optimization constraints. Structural constraints 
are modeled based on the concept of linear 
programming and its input data, which are free of any 
noise. On the other hand, control constraints are applied 
as an auxiliary constraint fluctuated by noisy data. 
Furthermore, in any robust optimization problem, one 
must decide which decision variables are treated in the 
first stage and which ones are considered for the second 
stage; that is, which variables must be set now and 
which may be set after the uncertainty is resolved [27, 
28 and 34]. In robust CMS problem, cell formation (CF) 
decisions must be made now (design variable), before it 
is known which scenario will come to pass due to its 
strategic impact, while scheduling decisions are under 
uncertainty since they are determined in future after 
uncertainty in processing times have been realized 
(control variable).  

In this section, a robust optimization framework 
will be applied where details of this are discussed by 
[29]. Let X be a set of design variable and Y be a set of 
control variable. Also, there are two types of 
constraints: structural constraint and control constraint. 
Since, the coefficients used in the control constraint are 
subject to the noise. Therefore, they depend on the 
number of scenarios and they are indexed by s.  
There are some situations where it is impossible to 
achieve a solution for the model that is both feasible and 
optimal for all scenarios. Consequently, the trade-off 
between solution robustness and model robustness 
should be resolved through application of the decision 
making process. The robust optimization model is 
defined to measure this trade-off. For this purpose, a 
vector error sξ that can measure the infeasibility 
permitted in the control constraint under a scenario s 
will be introduced. Thus, robust model will be 
formulated as follows: 

),...,,(),...,,,( 2121 ss gyyyxfZMin ξξξω ⋅+=     (1) 
bAxST =:            (2) 

seyCxB sssss ∀=++ ξ          (3) 
syx s ∀≥≥ 0,0           (4) 

In the above model, variable vector sy is control 
variable and X is design variable where (2) is structural 
constraint and (3) is control constraint. 
The first term of the objective function computes an 
expected value of ss fp ×  where sp is the probability 

of occurring scenario s and sf is objective function 
value under scenario s. In this research like [29], we 
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focus on the application of stochastic non-linear 
programming model called robust optimization, in 
which higher moment of the distribution of sf is 
proposed in the robust model. Therefore, the optimal 
solution is less sensitive to uncertain and noisy data in 
which the variables or parameters reflect the probability 
of occurrence. The second term of the objective 
function is the infeasibility penalty function where is 
applied to penalize fluctuations of the control constraint 
(3) under some scenarios. When a solution is infeasible 
under some scenarios then fluctuation occurs.  
Weight w is used due to compute the trade-off between 
solution robustness measured by the first term and 
model robustness measured by the penalty term. For 
example, if w is assumed zero, then the objective 
function tries to minimize only the first term and 
solutions may be infeasible under some scenarios. On 
the other hand, if w is assumed a large positive number 
then the second term will dominate the objective and 
solutions may have a large cost.  
In order to model the objective function, we apply the 
objective function proposed by [26] and [29] where 
consists of the mean value with an addition of a constant 
µ times the variance of fluctuations.  

2
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As µ increases, the solution is less sensitive to the 
changes in the data under all scenarios. The objective 
function (5) has a nonlinear and quadratic term which 
needs a great computation time to reach optimal 
solution. To overcome this problem, [29] and [30] 
introduced the following function instead of the 
previous version to reach a linear model: 
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Proof) [26]  
 

3. Robust Optimization to formulate 
CMS problem 

3.1. Real world cases contain uncertain 
processing time 

I) In this paper, uncertainty is considered in internal 
parameter processing times for parts and external 
parameter demands. Note that uncertainty in internal 
and external parameters can be described differently, 

discrete or continues form, based on the properties of 
the real applications. For instance, sometimes it may be 
possible that design of parts is changed during 
production process (group 4 in the literature surveys) 
due to improvement in technology, production 
equipments, customers’ expectations, etc. These 
changes can happen in various industries such as 
computer and mobile phone sets where products' life 
cycles are short and products' design have to be changed 
for many times to satisfy new customers' expectations in 
a long planning period. Therefore, these changes can 
vary design aspects and finally can fluctuate processing 
time and required amount of demands in production 
plan. Note that these changes are not certain events in 
the future. Hence, in order to design cellular 
manufacturing effectively, changes must be predicted as 
some discrete scenarios by given probabilities at the 
beginning of the planning phase.  
II) Also, in some cases such as condition-based 
maintenance system, where after each inspection based 
on the unknown degree of deterioration maintenance is 
performed; the time required for maintenance and also, 
amount of failures are not predictable and will be 
uncertain [11].   
III) For another application, consider a recycling system 
planning for second-hand products at their end-of-life 
phase where products have reverse cycle from end to 
start to be processed such as in reverse supply chains. 
The recycling and reverse process of a product, 
however, is characterized by uncertainties due to 
unknown usage influences on the product. In such case, 
the time needed for recycling products and amount of 
reversed products are uncertain at the beginning 
planning period. 
Above discussions illustrates situations in which 
internal and external parameters (processing time and 
demand) are uncertain at the beginning of the planning 
horizon and therefore the rest analysis must be applied. 

3.2. Model description 

The robust optimization technique introduced in the 
previous section can now be used to study the effects of 
uncertainty in integrated CMS and group scheduling 
problem under a supply chain design. We assume that 
processing time of parts either completed inside the 
systems or by suppliers and also products' demands are 
uncertain and are described by discrete scenarios. We 
have set of scenarios, that each of them may be occurred 
with probability sp where 1=∑

s
sp . Due to multiple 

scenarios in the problem; group scheduling decisions in 
cells must be determined under each scenario. 
Scheduling problem in a cellular manufacturing 
environment is treated as group scheduling problem, 

Published by Atlantis Press 
      Copyright: the authors 
                   840



 Integrating Strategic and Tactical Decisions … 
 

which assumes that all parts in a part family are 
processed in the same cell and no inter-cellular transfer 
is needed. Thus, for a bottleneck cell with higher cycle 
time, there are two alternatives to decrease cycle time: 
duplicating bottleneck machines and outsourcing 
exceptional parts to the suppliers in a supply chain 
network. In this formulation, we minimize total 
expected cost included expected and variance of tactical 
costs (waiting time leads to holding cost) in cells, cost 
of solution infeasibility, total strategic cost (sub-
contracting costs regarded to the employment of 
suppliers in a network) in order to outsource exceptional 
elements and the cost of resource underutilization. This 
cost component occurs when the parts, which have no 
need to be operated on a machine, placed together in a 
same cell. We consider the following assumptions in 
formulation process: 

1. The problem will be formulated by robust 
optimization technique. 

2. There is a single supplier for outsourcing each 
product. 

3. Outsourcing cost included operation cost, 
transportation cost and inventory cost. 

4. The model will have trade-off between solution 
robustness and model robustness.  

5. All parts are available at the beginning of the 
planning period. 

6. While an operation starts on a machine, it cannot 
be interrupted before completion of the process. 

7. Set-up time for parts is sequence independent and 
it is a portion of the processing time. 

8. Machines are available during the planning 
period and they are not failed.  

9. Processing times for each part on each machine 
are uncertain and described by set of discrete 
scenarios.  

10. Cost of sub-contracting to the suppliers and 
underutilization is known and deterministic. 

11. Batch size is constant for all productions. 
12. Machines are always available at the beginning 

of planning period. 
13. Holding cost for all parts per unit time is constant 

and the same. 
14. The maximum number of cells that can be 

formed is specified in advance. 
15. Maximum cell size is known in advance.  
16. Number of operations for each part is 

deterministic and known. 
Notations 
Indexes 
i Part index: {i=1,…,P} 
j Machine index: {j=1,…, M} 
k Cell index: {k=1,…,C} 
s Scenario index: {s=1,…, S} 
r Sequence order index {r=1,…, R) 

Parameters: 
s
iD  Demand for part i under scenario s 
s
ijPT  Processing time of part i on machine j in 

scenario s when an operation is performed in 
cells 

s
ijPTO  The time needed for outsourcing operation j to 

the suppliers for part i under scenario s 
H  Holding cost per unit time in which a part have 

to wait in cells 
MaxNM  Maximum number of machines permitted to be 

located in each cell 
NC  Maximum number of cells to be formed in 

problem 
sP  Probability of scenario s 
ijU  Cost of underutilization if part i has no need to 

be processed on machine j and placed together 
in a same cell 

iCO  The cost of out scouring each operation of part 
i to the suppliers. 

iDD  Due date for part i 

1=ija  If part i needs to be processed on machine j, 

otherwise 0 
µ  The penalty cost of the violation in scheduling 

costs under all scenarios   
ω  The penalty cost of the infeasibility for due 

date restrictions 
Decision Variables 

1=ikX     If part i is assigned to cell k, otherwise, 0 
1=jkY     If machine j is assigned to cell k, otherwise, 0 

1][ =s
riRS  If sequence [r] is assigned to part i under 

scenario s, otherwise, 0 
s
ikTPT    Total processing time of part i needs to be 

processed in cell k under scenario s 
s

krTPR ][    Total processing time of a part with sequence 

[r] in cell k under scenario s 
s
krFT ][     Total flow time of a part assigned to the 

sequence [r] in cell k under scenario s 
including waiting time and processing time. 

s
krDP ][    Demand for a part assigned to the sequence 

order [r] in cell k under scenario s. 
s
ikFlowTime  Total flow time of specific part i 

assigned to cell k under scenario s. 
s
ikξ    The Tardiness of part i assigned to cell k under 

scenario s (infeasibility measurement for due date 
restrictions). 
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CF decisions are scenario – independent: they must 
be made before occurring scenarios and they are made 
based on similarity of processing parts and are 
independent to quantity of processing time. Scheduling 
decisions are scenario – dependent, thus s

riRS ][ , 
s
ikTPT ,

 
s

krTPR ][ , s
krFT ][ , s

ikFlowTime , s
ikξ variables are indexed 

by scenario since they should be made after we realized 
scenario. 
 
Objective Function.  Model (8) finds the optimal 
solution for the robust problem to be used for different 
scenarios and it consists of different terms.  
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The first term indicates the expected value of scheduling 
cost (tactical cost). The second term is the variance of 
the scheduling cost and measures solution robustness 
like [29] described in (6). The third term measures the 
model’s robustness with respect to infeasibility 
associated with control constraints (18) under scenario 
s. Finally, the fourth and fifth terms compute expected 
sub-contracting cost (strategic cost because of suppliers) 
as well as the expected cost of resource underutilization 
that are dependent to scenarios since are weighted by 
products' demand.  
Constraints 
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In the proposed model, in order to simplify modeling 
process, at first model's information are converted from 
parts-based to the sequences-based by equations (15) 
and (16) and then information are returned to parts-
based by equation (18). This is the first time that such 
innovative approach is applied in mathematical 
modeling enables decision makers to solve the problem 
with the least computations.  

Set constraint (9) and (10) indicate that each part 
and each machine must be assigned to exactly one cell, 
respectively. Set constraint (11) computes total 
processing time for each part in a cell for all scenarios. 
Set constraint (12) guarantees that each part must be 
assigned to single sequence order in each scenario. Set 
constraint (13) states that parts must be ordered 
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sequentially in each cell and each scenario. Therefore, 
filling sequence orders must have a decreasing trend and 
sequence [r] cannot be assigned to any part until 
sequence order [r-1] is assigned to the other part. Thus, 
in each cell, one part will have sequence order 1 and the 
other sequences order will be filled by the other parts, 
orderly. Set constraint (14) guarantees that in each cell 
at most one part can be assigned to each sequence order. 
Set constraint (15) computes total processing time for a 
part assigned to the sequence [r] and cell k in scenario s. 
In other words, this equation indicates that which 
processing time is assigned to sequence order [r]. Set 
constraint (16) computes amount of assigned demand to 
sequence order [r] in cell k under scenario s based on 
the part which is located to that sequence order. Set 
constraint (17) calculates total flow time including 
waiting time and processing time for a part assigned to 
sequence order [r] in cell k under scenario s. For a part 

assigned to sequence order [r], amount of ∑
−

=

1

1
][

r
s

kTPR
ψ

ψ  

shows waiting time and s
krTPR ][  indicates processing 

time. Therefore, the time in which the process of a part 
assigned to sequence [r] ends will be sum of the two 
mentioned terms. Note that since in group scheduling 
processing, the amount of time for all operations of each 
part are summed to make a single process, so process of 
a part assigned to sequence [r] cannot be started unless 
grouped operation of a part assigned to sequence [r-1] is 
finished. Set constraint (18) determines total flow time 
for a specific part i which is assigned to cell k under 
scenario s based on the sequence order of the part. Set 
constraint (19) is a control constraint and used to 
guarantee that parts under each scenario have no 
tardiness. The left side of this constraint has two terms. 
The first term shows total flow time of parts in 
manufacturing cells and the second term explains total 
time for outsourced operations to the suppliers which 
are not completed in cells. It is assumed that if operation 
j of part i needs to be outsourced, the time required for 
completion will be s

ijPTO  instead of s
ijPT . It is noted 

that for each part if total time for completion all 
operation is less that its due date then under 
minimization the deviation 0=s

ikξ , whereas if the part 

has lateness then 0>s
ikξ  and the infeasible solution is 

reached and all infeasibilities are minimized in the 
objective function. Set constraint (20) specifies 
maximum number of machines allowed in each cell. Set 
constraint (21) is an auxiliary constraint similar to (7) 
and is applied to linearize objective function discussed 
in equation (5). The last set constraint indicates type of 
decision variables. 

3.3. Model Linearization 

Since, the proposed model is nonlinear one; we 
reformulate the model as a mixed-integer linear 
programming model by introducing new sets of 
variables and auxiliary constraints to improve 
computational efficiency. In some terms such as 
objective function, set constraints (11), (13), (14) and 
(19), pure quadratic 0-1 term is composed where two 
binary variables are multiplied to each other. Also, in 
some terms such as set constraints (15) and (18), 
quadratic mixed 0-1 term is composed where a 
continuous variable and a binary variable are multiplied 
to each other. In this section, we will try to linearize 
these terms applying linearization methods. In the first 
group, linearization method for pure 0-1 problems 
proposed by [31] will be applied. Also, linearization 
method for mixed 0-1 problems proposed by [32] will 
be applied for the second group.  
To linearize the proposed model, above techniques are 
applied as the following types: 
Type 1) ijkLP1  will be substituted with ikX × jkY using 

in objective function and set constraints (11) and (19) 
([28]). 
Type 2) s

rikLP ][2 will be substituted with 
s
riik RSX ][× using in set constraints (13) and (14) ([28]). 

Type 3) s
rikLP ][3 will be substituted with 

s
ik

s
ri TPTRS ×][ using in set constraint (15) ([29]). 

Type 4) s
rikLP ][4 will be substituted with 

s
ri

s
kr RSFT ][][ × sing in set constraint (18) ([29]). 

 

3.3.3 Linear Model 
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(22) 
 
Constraints:   Set constraints (9)- (10)- 
(12)- (16)- (17)- (20) and (21) without change 
Set constraint (11) altered as: 

skiLPPTTPT
M

j
ijk

s
ij

s
ik ,,01

1

∀=×−∑
=

        (23) 

Set constraint (13) altered as: 

rskLPLP
P

i

P

i

s
rik

s
rik ,,22

1 1
][]1[ ∀≤∑ ∑

= =
+               (24)  

Set constraint (14) altered as: 

rskLP
P

i

s
rik ,,12

1
][ ∀≤∑

=

                           (25) 

Set constraint (15) altered as: 

skrLPTPR
P

i

s
rik

s
kr ,,03

1
][][ ∀=−∑

=

         (26) 

Set constraint (18) altered as:   
 

skiLPFlowTime
R

r

s
rik

s
ik ,,04

1
][ ∀=−∑

=

      (27) 

Set constraint (19) altered as:         

skiDDPTOLPXaFlowTime i
s
ik

M

j

s
ijijkikij

s
ik ,,)1(

1

∀≤−×−×+∑
=

ξ

                                (28) 
kjiXLP ikijk ,,1 ∀≤                             (29) 

kjiYLP jkijk ,,1 ∀≤                             (30) 

kjiYXLP jkikijk ,,11 ∀−+≥               (31) 

srkiXLP ik
s

rik ,,,2 ][ ∀≤               (32) 

srkiRSLP s
ri

s
rik ,,,2 ][][ ∀≤               (33) 

srkiRSXLP s
riik

s
rik ,,,12 ][][ ∀−+≥              (34) 

srkiTPTLP s
ik

s
rik ,,,3 ][ ∀≤                            (35) 

srkiRSMLP s
ri

s
rik ,,,3 ][][ ∀×≤             (36)

 
srkiRSMTPTLP s

ri
s
ik

s
rik ,,,)1(3 ][][ ∀−×−≥      (37) 

srkiFTLP s
kr

s
rik ,,,4 ][][ ∀≤               (38) 

srkiRSMLP s
ri

s
rik ,,,4 ][][ ∀×≤            (39) 

srkiRSMFTLP s
ri

s
kr

s
rik ,,,)1(4 ][][][ ∀−×−≥    (40) 

 
In above formulation, auxiliary constraints (29), (30) 
and (31) guarantee linearization type 1. Auxiliary 
constraints (32), (33) and (34) ensure linearization type 
2. Auxiliary constraints (35), (36) and (37) indicate 
linearization type 3. Finally, auxiliary constraints (38), 
(39) and (40) guarantee linearization type 4. Also, M is 
a large positive number.  
The proposed linear model will be discussed 
analytically and sensitivity analysis will be performed 
respect to the robust optimization terminology in the 
section 5.  However, the proposed linear model is NP-
hard problem, and thus applying it for real world 
applications requires an effective solution procedure 
that can solve it in large- scales. Therefore, in the next 
section, we introduce an effective solution approach 
based on the combination of two solution methods 
under an optimization rule and then detailed 
computational results will be presented in section 5.   

4. The Parallel Solution Procedure 

There exist many innovative combinations of different 
types of metaheuristics methods in order to solve 
problems regarded to the manufacturing environments 
[33], [34] and [35].  In this section, we propose a 
parallel structured solution approach to solve introduced 
stochastic and nonlinear model in large-scale, 
efficiently. The proposed algorithm involves new 
combination of genetic algorithm (GA) and simulated 
annealing (SA) under an optimization rule where both 
algorithms try to find sub optimal solution in a parallel 
structure considering exchanging data and information 
between each other. In addition, Fig 1 illustrates the 
conceptual framework of our method.  
In this process, GA and SA algorithms attempt to obtain 
sub optimal solution and also share their information 
about the best solution, simultaneously. In this way, 
each algorithm sends information about sub optimal 
solution to the other algorithm through some designed 
information channels. By these channels, SA receives 
the best solution from all solutions generated by GA and 
then creates the best neighborhood solution by its own 
procedure based on the solution received. Furthermore, 
when SA forms the best neighborhood solution, and 
then sends it to the set of solution created by GA 
process. Thus, SA solution has a chance to be selected 
for the next generation and participation in GA process. 
This interaction between GA and SA transfers 
information between the best neighborhood solution 
found by SA and also the set found by GA. This cycle 
continues until both algorithms reach high quality 
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No

Report the best solution up to now

End

Yes

solution, simultaneously.  In other words, each 
algorithm has two main duties. The first is to find the 
best sub optimal solution by its own procedure and the 
second is to assist the other algorithm to reach solutions 
by sending its information about solution space. By this 
way, performance of the both algorithm will be 
improved, significantly and they are able to reach the 
best solution, concurrently. For more features, each box 
in Fig 1 will be discussed at the rest of this section.   
Since the structure of finding the best solution in GA 
and SA has many similarities such as neighborhood 
solution, solution representation, fitness function, next 
solution and mutation process, thus we have decided to 
combine these algorithms to enhance strengthen of both 
them. In addition, because other algorithms such as tabu 
search and ant colony or swarm optimization have 
different procedures to find solution, so they cannot be 
combined with GA or SA and cover weaknesses. In 
other words, SA can be completely a sub-ordinate 
section of GA because it can be adjusted as a mutation 
process to find neighborhood solution but other methods 
due to many differences with GA cannot be combined. 
Finally, in our opinion the best combination is 
constructed by GA and SA.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

4.1. Optimizing method: Shortest Processing Time 
rule 

Since the aim of scheduling information is to minimize 
expected waiting time of parts in cells, thus an 
optimization rule for scheduling is considered as a sub-
ordinate part of the algorithm. This method is based on 
shortest processing time (SPT) rule which is approved 
by theory of neighbor pairs that it can minimize total 
waiting time for parts assigned to a same cell under each 
scenario as follows. This can leads to improvement of 
solution procedure performance: 
In order to minimize waiting time for parts under each 
scenario, sequence of parts should be planned so that 
the part with shorter processing time to be processed 
earlier. 

4.2. Parallel algorithm phases 

4.2.1 GA boxes 

• GA Initialization. Initialization phase consist 
of defining chromosome structure, population size, 
cross over and mutation rates and number of 
generation.  
FIGURE 1. Conceptual framework of the proposed algorithm 
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• Hierarchical solution structure. In order to encode CF 
and scheduling information for both parts and 
machines, a two-layer hierarchical schema is 
proposed. In the first layer, a string of integer 
numbers is used to encode the CF results for machine 
and then part genes. In the second layer with s rows, 
scheduling information denoting sequence order of 
each part under each scenario will be specified. The 
genes regarded to the first layer were used to control 
the genes in the second layer under a hierarchical 
manner. For illustration, consider a data set included 
7 parts and 5 machines to be classified into two 
manufacturing cells under two scenarios. Table 1 
indicates a typical chromosome structure. The allele 
of each gene in the first layer represents the cell 
number to which the machine or part belongs. For 
instance, machine 1 is assigned to cell #1 and so on. 
As such, cell #1 contains machines 1, 2 and 5 and 
also parts 1, 2, and 4. In the second layer, 
representation contains two rows with 7 genes 
denotes sequence order of each part in a cell under 
each scenario. For example, sequence order of part 3 
is 3 under scenario 1 and is 2 under scenario 2.  

Other initial parameters will be set using a trail and 
error method during numerical procedures to find the 
best value for them.  
 

• Initial Population. The first generation is created 
by initializing the population of 
chromosomes, ][ k

i
k xX = , k = 1, 2, . . ., pop size 

from the feasible 
region{ }nxxgX iii ,...,2,1,0)(|)( =≤ , randomly. 
Six steps will be performed to achieve each 
feasible solution in initial population: 

Step І: Assignment of parts 
In this step, parts are assigned to the cells, randomly. In 
this way, a random number from 1 to # of cells for each 
part is generated, and then the part will be assigned to 
the selected cell. 
Step ІІ: Assignment of machines 
In this step, machines are assigned to cells according to 
capacity of cells. In this procedure, for each machine, a 
random number from 1 to # of cells is generated and a 
cell is generated by chance. If number of machines 
assigned to the selected cell is less than its capacity, the 
machine will be assigned to the selected cell. Otherwise, 
this step is repeated until a feasible solution is reached. 
Step ІІІ: In each cell and under each scenario total 
processing time for each part needs to be processed in 
cell will be computed using eq. (16). 

 
 
 

TABLE 1. Sample of solution structure 
P1 P2 P3 P4 P5 P6 P7 M1 M2 M3 M4 M5

First Layer Cell Assignment 1 1 2 1 2 2 2 1 1 2 2 1
Sch. Under S=1 2 1 3 3 1 4 2 - - - - -
Sch. Under S=2 1 2 2 3 1 3 4 - - - - -

Second
layer  

 
 
Step ІV: When total processing time for all parts in cells 
and under all scenarios is found, based on the SPT rule, 
scheduling decisions under all scenarios will be made. 
Thus, in each cell and under each scenario a part with a 
shorter processing time has priority and is processed 
earlier that leads to minimization of waiting time under 
all scenarios. At the end of this stage, for some parts it 
may be possible that due date restriction is not satisfied 
and then penalty cost is arisen in the objective function.  
Step V: In this step, in order to decode chromosome 
structure and determine value of the other scheduling 
variables, total processing time of each sequence order 
[r] based on the part assigned to it in cell k and scenario 
s is determined by using eq. (20). 
Step VI: Once sequence order of each part under each 
scenario has been determined, then it is possible to 
compute tardiness of each part in each scenario by 
comparing the time that processing time ends against 
due date restrictions. In other words, infeasibility index 

for each part under each scenario can be determined and 
penalty cost in objective function will be found.   
• Crossover Operator. Selected parents ,...,, 321 VVV ′′′  

are grouped to the pairs ),....,(),,( 4321 VVVV ′′′′  

without loss of generality to be combined. For all 
parts and machines, a random real number λ from 
the open interval (0, 1) is generated. Since each part 
/ machine is assigned to different cells in a pair of 
solutions (parents), thus in order to produce new 
solution (child), part / machine will be assigned to 
one cell with probability 0.5 based on the value of 
parameter λ. The crossover operator on 2V ′  and 1V ′  
produce one child X with assignment decisions are 
illustrated in figure 2. Once assignment decisions of 
new child are found then steps III to VI described in 
initialization phase will be performed to decide 
scheduling information.   

• Mutation operators. Mutation is designed to prevent 
premature convergence and to explore a new 
solution space. In order to have the most efficient 
process two types of mutation operators have been 
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designed. In the first type, a conventional group 
exchange mutation operator is used in which 
exchanges all genes’ alleles between two cut points 
for layer 1 at one time for parts or machines [29]. 
Sample of this type is illustrated in Figure 3. 

 
 
 

 
FIGURE 2. Sample of crossover operation 

 
FIGURE 3. Sample of mutation type 1 

 
After this process, due to modification of assignment 
decisions, all cells must be rescheduled again based on 
the steps III to VI.   
In the second type, the algorithm tries to decrease 
amount of infeasibility index regarded to due date 
limitations in order to generate robust solutions. As it 
was discussed earlier employing step VI of initialization 
phase enables us to find parts in which has tardiness or 
has infeasibility in due date restriction. After this step, 
for a selected solution to be motivated number of parts 
with infeasible index will be found. Then, 25% of parts 
will be selected by chance among all infeasible parts. 
Sequence order for each selected part will be changed to 
an earlier order and the part will be processed earlier 
rather than its previous sequence order by generating a 
random new sequence order.   
 
• Selection Process for the next generation in GA 

phase.  The selection process is based on selecting 
50% from the best chromosomes and other 50% 
randomly.  

• Stopping criterion. The genetic algorithm process 
is terminated once the process performs fixed 
number of iterations.  

4.2.2 Simulated annealing algorithm boxes 

- Representation of solution. Each solution represents a 
feasible solution made of hierarchical structure such as a 
solution in GA population. Thus, all characteristics 
described in GA solution representation are applied in 
this section.    
 
• Initialization. In this phase, we describe how to 

procedure initial parameters in SA. Initial and final 
values for the control parameter temperature, 
named as 0T and fT respectively, are determined 

as follows.  
Initial temperature: Due to significant influence of the 
objective function on the initial temperature, some 
illustrative examples are given. Also, its value should be 
large enough so that probability of acceptance of new 
solutions at the initial temperature 0T  reaches at least 
80%. In this way, we generate 100 solutions randomly 
and compute their objective functions defined for each 
of them as ig . We compute the difference between two 

sequential answers denoted by if∆ . So, we compute an 

initial temperature like [36]:  

)8.0(
max

0 Ln
f

T
−
∆

=           (23) 

Pseudo code of initial temperature is shown in Figure 4.  
ü Final temperature: this parameter is set to be: 

008.0 TT f ×=      (24) 

The cooling rate (α) is considered to be a constant. Also, 
an initial solution is produced similar to initial random 
population generation in GA employing steps I to VI.  
Phase 2) Generate feasible neighborhood solution. 
When an initial solution is created, the objective 
function is computed. Then to generate neighborhood 
solution we modify current solution by one of the 
following move types: 
Move type 1: selection of a part randomly, and change 
assignment of the selected part to the new cell by 
chance. 
Move type 2: selection of a machine by chance, and 
finding number of the other cells with free capacity so 
that the selected machine can be assigned to them. 
Then, a new cell with free capacity is found randomly 
and the machine is assigned to it.  
After each type, since assignment decisions are changed 
thus all cells must be rescheduled again by steps III to 
VI.   
Move type 3: Similar to the second mutation type in GA 
process, to improve infeasibility measurement sequence 
order of parts with unsatisfied due date constraints will 
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be altered. By this way, penalty cost for unsatisfied due 
dates will be decreased and the final solution will be 
robust, too.   
Flowchart of this procedure is shown in figure 5. 
• Examine acceptance condition. Determine cost 

difference between current solution and 
neighborhood solution. The metropolis condition 
is used to determine the probability of acceptance 
neighborhood solution. This probability is 

computed as 
iT

Cost

e
∆

where Ti is current 
temperature. The neighborhood will be accepted if 
a random number from interval (0, 1) be less than 
the probability of acceptance and then 
neighborhood solution is replaced with current 
solution. 

• Update counters. Increase counter value by one. If 
the iteration counter value is less than to maximum 
for the current temperature. Otherwise go to stop. 

• Adjust temperature. Adjusting temperature is done 
by cooling rate. Thus, decrease current 
temperature with rate α. In other words, 
temperature in the next process is computed 

as 1i iT T α+ = ×
 where iT  is current temperature. 

If new temperature is greater than final 
temperature, then set counter value as zero, 
otherwise stop. 

• Stopping criterion. The simulated annealing 
process is terminated once the system is frozen. In 
other words, the value of cost function is not 

improved after a certain number of iteration has 
been executed. The SA process is stopped if 
cooling process is iterated n times and we achieve 
final temperature.  

 
Since the other parts of SA algorithm are very well 
known, thus, it’s sufficient to present only the title of 
the other aspects in SA; however, they are applied in 
algorithm coding: 
• Evaluation of current solution and neighborhood 

solution, - Examination of acceptance condition, - 
Update counters, - Adjusting temperature 
( ii TT ×=+ α1 ), - Stopping criteria in each 
temperature, 

4.3 Benchmark heuristic procedure  

To demonstrate efficiency of the proposed method, we 
compare proposed method against branch and bound 
algorithm and also a benchmark heuristic procedure 
(introduced by [37]) with a decomposition structure. 
This algorithm has two phases where in phase I part 
families based on maximization of similarity 
coefficients are determined and in phase II scheduling 
and the other tactical decisions based on previous phase 
are made. For the proposed model, we apply this 
heuristic decomposition procedure using same structure 
and solve the model in two steps.  

 

 
FIGURE 4. Pseudo code of initial temperature 

 
FIGURE 5. Flowchart of neighborhood structure  
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5. Experimental design and research 
hypotheses 

5.1 Trade-off between solution robustness and 
model robustness 

In the first section of computational results, we illustrate 
analytical performance of the proposed linear model 
through sensitivity analysis. The importance of weight 
w in the objective function (8) is to find a trade-off 
between solution robustness (near to optimal solution) 
and model robustness (near to feasible space). Robust 
optimization terminology permits infeasibility in the 
control constraints by means of penalty costs. In the 
proposed research, once w=0, s

ikξ in constraint (18) will 
be equaled to 

i

M

j

s
ijjkikij

s
ik DDPTOYXaFlowTime −×−××+∑

=1

)1( to 

minimize objective function and then the model wants 

to have the highest delay in delivering parts due to have 
not penalties in tardiness events. Therefore, each part 
will have maximum possible tardiness with no penalty 
cost. Thus, total tardiness cost attains the highest value. 
It is obvious that this scheduling plan cannot be adapted. 
Hence, it is critical to analysis the introduced robust 
optimization model with different value of w. Fig. 6 
points up the trade-off between feasibility costs and 
optimality costs. As the weight increases, the expected 
total cost representing solution robustness increases 
significantly, and the expected tardiness cost 
representing model robustness drops. This implies that 
for larger values of w, the solution obtained is 
approaching ‘‘almost’’ feasible for any realization of 
scenario s through the payment of more total costs. The 
expected tardiness will eventually drop to zero with an 
increase in value of w. Based on the decision maker 
preferences; tardiness is specified to be allowable for 
parts up to 15%. This has determined the value of w to 
be 100. The results are consistent with those reached by 
[29] and [39]. 

 

                   FIGURE 6. Correlation between expected total cost and expected tardiness considering variable penalty cost 
 

5.2 Effectiveness of the proposed solution method 

In this section, we evaluate the quality of parallel 
structured algorithm by means of a computational study. 
We test the proposed algorithm on random problems, 
and compare its performance with the solutions reached 
by branch-and- bound (B&B) algorithm by using the 
Lingo 8.0 software and also a heuristic algorithm. 22 
test problems are provided and solved by this method. 
This algorithm is coded in Visual Basic 6.0 and runs on 
a 3.2 GHz Pentium IV computer. To find medium-sized 
problems scale, we have started from a small-sized 
problem and increased gently the size of problem by a 

specific rule until the exact approach could not reach the 
optimum solution within a predetermined run time. In a 
similar fashion, for large-sized problems, we have 
started from the largest medium-sized problem and 
increased the size of the problem by a specific rule until 
the branch and bound algorithm could not reach the 
feasible solution within a run time. These problems are 
generated randomly based on consideration of similar 
data in the literature. 
In the first section, some small cases are generated in 
order to demonstrate the performance of the proposed 
algorithm. We solve them by employing three methods: 
branch and bound algorithm, proposed parallel method 
and benchmark heuristic procedure.  
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In the second section, we generate some medium sized 
problems and since optimal solver is unable to reach 
optimal solutions in a predetermined run time, to 
evaluate efficiency of the proposed method, we consider 
a run time restriction for Lingo solver and compare 
results of parallel method with the best solutions found 
by Lingo as an upper bound. In this way, each example 
is allowed to be solved within 5400 seconds (1.5 hours). 
Thus, to solve the medium sized problems, we consider 
a possible interval for optimum value of objective 

function ( *F ) that constructed by the
boundF and

BestF  
values that are proposed by Lingo software 
where Bestbound FFF ≤≤ * . Based on the Lingo 
software’s documents, the BestF determines the best 
feasible solution found so far. Also, boundF  defines the 
bound on the objective function. This bound is a limit 
on how far the solver will be able to improve the 

objective. At some points, these two values may become 
very close. Given that the best objective value can never 
exceed the bound, the fact that these two values are 
close determines that Lingo’s current best solution is 
either the optimal solution, or very closes to it. At such 
a point, the user can interrupt the solver and accept with 
the current best solution in order to save additional 
computation time. As we said before, we interrupt the 
solver within 5400 seconds (this procedure is similar to 
[36] and [38]). It is noted that CPU time unit is based on 
the second. 

In the third branch, we generate some large sized 
problems and due to inability of Lingo software to find 
feasible solution within 5400 seconds, we just use the 
proposed benchmark heuristic algorithm to evaluate 
performance of the proposed method in large scale 
problems.  

 
TABLE 2. Parameter setting of the total process 

 
Level Values

2 0.85  0.95
2 0.10  0.20
2 20       30
2 250    300
2 0.85   0.95
2 150    200

1

1

K:  number of iterations in each temperature

Parameters
Crossover rate (Pc)
Mutation rate (Pm)
Population size (Ps)

Generations
a : Cooling rate

0T

fT

)8.0(
}{

Ln
fMax i

−
∆

008.0 T×

5.2.1 Numerical experiments in small sized problems 

From Table 3, the presented algorithm is able to find 
and report the optimal and promising solutions in a 
reasonable computational time. This indicates the 
success of our proposed algorithms in small sized 
problems. Also, it is concluded that there is no gap 
between quality of solutions reached by both algorithms 
and optimal solution. It implies that both proposed 

algorithm and heuristic procedures are effective to solve 
the presented model in small sized problems. Table 3 
can show us other information. As mentioned earlier, a 
problem which cannot be solved optimally within 5400 
seconds is in class of medium sized problems. So, 
problems with higher scale rather than example S10 will 
be placed in the class of medium or large sized 
problems. 

TABLE 3. Numerical Experiments for small-sized test problems 
Lingo Optimal 

Solution
Our proposed 

solution
Heuristic 
Solution

OFV CPU time OFV CPU time OFV
S1 3 2 2 1 114.3 1 114.3 <1 114.3
S2 3 2 2 2 121.1 1 121.1 <1 121.1
S3 4 2 2 2 125.8 1 125.8 <1 125.8
S4 5 3 2 1 127.4 26 127.4 <3 127.4
S5 6 4 2 1 133.2 108 133.2 <3 133.2
S6 6 4 2 2 139.4 422 139.4 <3 139.4
S7 7 4 2 2 144.8 1688 144.8 <7 144.8
S8 7 5 3 2 152.9 2412 152.9 <7 152.9
S9 8 6 3 1 154.7 3856 154.7 <7 154.7

S10 8 6 3 2 160.2 5248 160.2 <7 160.2
CPU time unit = second

Test Problem P M C S

OFV: Objective Function Value
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TABLE 4. Numerical Experiments for medium-sized test problems 
Heuristic
solution

OFV (1) CPU time OFV (2) CPU time OFV (3)
M1 9 6 3 1 176.2 >5400 164 <10 164 7.44% 0.00%
M2 9 6 3 2 197.8 >5400 179 <10 179 10.50% 0.00%
M3 10 7 3 1 224.6 >5400 192 <10 196 16.98% 2.08%
M4 10 7 3 2 279.2 >5400 229 <15 235 21.92% 2.62%
M5 11 8 3 1 307.3 >5400 264 <15 278 16.40% 5.30%
M6 11 8 3 2 354.7 >5400 302 <15 312 17.45% 3.31%
L1 12 9 3 1 15.12% 2.22%

Our proposed
solution

Gap 
between
(1) & (2)

Gap 
between
(2) & (3)

Not Feasible Average:

Test 
Problem

P M C S
Lingo's the 
best solution

5.2.2 Effectiveness of the proposed method in the 
medium sized problems 

In this section, some medium instances are generated 
and then solved by both B&B algorithm and benchmark 
heuristic procedure. As it was discussed earlier, Lingo 
solver cannot reach global optimum solutions in 
maximum run time (5400 seconds). Therefore, solutions 
achieved by proposed method are compared with the 
best objective function reached by branch-and-bound 
method as an upper bound for optimal solution. Also, 
we solve these problems by benchmark heuristic 
procedure to validate efficiency of this algorithm in 
solving problems. Table 4 points up results for these 
problems. 
As shown in the last row of Table 4, the average value 
of gap 

100 on)Our(soluti / )(solution)OB)&(BFBest ×− ur  
is 15.12% which implicates to a better performance of 
proposed algorithm rather than the best solution of B&B 
algorithm in limited run time. Indeed, from table 4, 
when scale of problems is increased, solutions obtained 
by benchmark heuristic procedure is to be lie between 
the solutions of B&B and proposed solutions 

( Best
Methodproposed

Best
Heuristic

Best
BB ZZZ ≥≥& ) and therefore, our 

algorithm has also a better performance rather than 
benchmark heuristic algorithm in medium sized 
problems, too (2.22% on average). 

5.2.3 Efficiency of the proposed method in large 
sized problems 

To estimate quality and efficiency of the solutions 
obtained by our proposed algorithm in large sized 
scales, performance validation is according to the 
solutions reached only by benchmark algorithm. From 
Table 5, summary of this comparison and the other 
attributes of sets are shown. In this way, we define a 
measurement named it ‘quality percent’ computed by 
(heuristic OFV – our OFV)/ our OFV × 100 (Objective 
Function Value). The solution results presented here 
and also the last row show that average value of quality 
percent with value 6.08% associates to a better 
performance of our algorithm rather than heuristic 
procedure in large sized scales. Also, the final cells 
configuration is illustrated in table 6 for problem M3. 

 
TABLE 5. Numerical Experiments for large-sized test problems 

Our 
propose

Heuristic
solution

OFV (1) OFV (2)
L1 15 10 4 1 877 905.2 3.21%
L2 20 15 5 2 1869 1976.3 5.74%
L3 25 18 5 2 11243 12254.9 9.00%
L4 30 20 5 1 16052 17366.7 8.19%
L5 35 25 6 2 21854 23058.2 5.51%
L6 40 30 6 1 29120 30529.4 4.84%

6.08%

Gap between
(1) & (2)

Average:

Test 
Problem

P M C S
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TABLE 6. Solution results for problem M3 

5.3 Sensitivity analysis on amount of uncertainty  

In order to illustration of results, the following 
numerical examples are provided. 
In this section, a comprehensive example is provided in 
order to illustrate effectiveness of the proposed model. 
For this purpose, two numerical examples are designed 
and then solved. All parameters in both examples are 
the same except one parameter and it is "processing 
time for parts" once they are outsourced to suppliers to 

do operations ( s
ijPTO ). Generally, in each example 

there are two choices in order to operate processes of 
parts: operating processes inside the manufacturing 
system or outsourcing them to the suppliers. It is 
assumed that processing time for operations will be 
uncertain and described by discrete scenarios either they 
are completed inside the manufacturing system or by the 
suppliers. In both examples, there are 2 scenarios where 
probability of the first one is p and the second one is 1-
p. In the first example, it is permitted that processing 
time in both situations (doing inside manufacturing 
system or by suppliers) under scenario 2 has up to 100% 
violation compared to the first scenario. In other words, 
the second scenario can have 100% violation rather than 
the first scenario.  
But, in the second example, only processing time for 
operations which are completed inside of the 
manufacturing system have 100% violation. In addition, 
operations which are completed by the suppliers have 
only 40% violation.  
We have solved both examples and final configurations 
of the cells are as follows. Figure 7 points up part-
machine matrix. Figure 8 illustrates work cells formed 
in example 1 and also, figure 9 indicates work cells 
formed in example 2. 
 
 
 
 
 
 
 

 
Figure 7. part-machine matrix 

M1 M2 M3 M4 M5 M6 M7 M8
P1 1 0 1 0 1 0 1 0
P2 0 0 1 0 0 0 1 0
P3 0 1 0 0 0 1 0 1
P4 0 0 1 0 0 0 1 0
P5 1 0 1 1 1 1 0 1
P6 1 0 0 1 1 0 0 0
P7 0 1 1 0 0 1 0 1
P8 0 1 0 0 0 1 0 0
P9 1 0 0 0 1 0 0 0
P10 1 0 0 1 0 0 0 0  

 
 
Figure 8. Configuration of cells in the first example 

M1 M4 M5 M2 M6 M8 M3 M7
P5 0 1 1 0 1 1 0 0
P6 1 1 1 0 0 0 0 0
P10 1 1 0 0 0 0 0 0
P9 1 0 1 0 0 1 0 0

P3 0 0 0 1 1 1 0 0
P7 0 0 0 1 1 1 1 0
P8 0 0 0 1 1 0 0 0

P1 1 0 1 0 0 0 1 1
P2 0 0 0 0 0 0 1 1
P4 0 0 0 0 0 0 1 1

C
el
l 1

C
el
l 2

C
el
l 3

 
Figure 9. Configuration of cells in the second example 

M1 M4 M5 M8 M2 M6 M3 M7
P5 0 1 1 1 0 1 0 0
P6 1 1 1 0 0 0 0 0
P10 1 1 0 0 0 0 0 0
P9 1 0 1 1 0 0 0 0

P3 0 0 0 1 1 1 0 0
P7 0 0 0 1 1 1 1 0
P8 0 0 0 0 1 1 0 0

P1 1 0 1 0 0 0 1 1
P2 0 0 0 0 0 0 1 1
P4 0 0 0 0 0 0 1 1  

By comparing two above figures a very interesting 
result will be discovered. As it can be found, number of 
inter-cell transportation in the first example is 5 and in 
the second example is 6. In other words, 5 suppliers are 
required for operating processes in the first example and 
6 suppliers are required in the second example. This 
result can be justified through the following discussions. 
The concept of above result is that in the second 
example more suppliers are applied in order to do 
operations. It is because of the fact that amount of 
uncertainty (40%) for suppliers' characteristics in the 
second example is less than amount of uncertainty 
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(100%) for suppliers in the first example. Since, robust 
optimization terminology aims to minimize violation of 
solution or uncertainty in the final result, thus in the 
second example, the proposed model tried to find a 
solution with lower uncertainty and violation. So, the 
model selected more number of suppliers with lower 
uncertainty level (40%) in order to minimize total 
uncertainty of the problem. Therefore, the achieved 
numerical result conforms to the expected results of a 
robust model and this can validate effectiveness of the 
proposed model.  

6. Conclusion and Discussions 

In this study, a robust optimization model for cellular 
manufacturing system integrated with group scheduling 
aspects was developed. Assuming a future economic 
scenario that has associated probability, an optimal cell 
configuration is less sensitive to the change in the noisy 
and uncertain data. Manufacturing management can 
obtain a robust solution by a tradeoff between 
optimality and infeasibility measurements. Then 
mathematical method applied to linear the proposed 
model. A new combination of GA and SA is proposed 
where both algorithms aim to reach sub optimal 
solution, concurrently through exchanging data between 
each other. We divided our computational experiments 
to four sections. At first, the trade-off between solution 
robustness and model robustness is analyzed. Also, 
effectiveness of the proposed method was validated 
through three classes: small, medium and large sizes. 
Our contributions research field consists of: considering 
uncertain processing time described by robust 
optimization theory which yields to more flexibility and 
practical aspects in real world cases, integrating cell 
formation problem with scheduling aspects, 
linearization of the model and presenting a parallel 
algorithm which had successful performance in any size 
of problem. 

For future research, we suggest three directions: 
ü Development of the model under more and the 

other stochastic parameters such as costs, 
processing routes and machine availability.  

ü  Considering this problem as a multi objective 
model which considers CF decisions in one 
objective and scheduling in the other objective. 

ü Aggregating proposed model with the other 
production aspects like layout problem 
considerations. 

ü Formulating the problem as a chanced constrained 
programming where the probability of tardiness 
event for parts is less that service level can be 
another novel developments. 

These remain critical issues for future study. 
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