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Abstract 

This paper analyzes the collective behaviors of swarm robots that play role in the aggregation scenario. Honeybee 
aggregation is an inspired behavior of young honeybees which tend to aggregate around an optimal zone. This 
aggregation is implemented based on variation of parameters values. In the second phase, two modifications on 
original honeybee aggregation namely dynamic velocity and comparative waiting time are proposed. Results of the 
performed experiments showed the significant differences in collective behavior of the swarm system for different 
algorithms. 
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1. Introduction 

Cooperation of multiple robots is an interesting area in 
the robotics field. Performing a joint task with 
interactions among a large number of simple robots 
could solve a complex problem in real world 
application. Furthermore, coordination of the multiple 
robots for solving a complex problem can be completed 
in a short period of time. Swarm robotics is a new 

concept of multi-robot collaboration which is inspired 
from nature.1 It has several differences with ordinary 
multi-robot researches.2 In this regard, Dorigo and 
Şahin3 defined a set of criteria for swarm robotics 
research as follows: 
 Swarm robotics is the study on the large number of 

simple robots which cooperate to solve a problem. 
 Swarm research concentrates on collective behavior 

of homogeneous robots. Hence, homogeneity and 
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scalability are important requirements of swarm 
robotics.  

 Generally, defined task for swarm robotics are hard 
to solve by a single robot. Therefore, swarm task 
should be defined based on: (i) a complex task 
which could not be solved by an individual robot or 
(ii) if the problem is solvable by an individual, the 
use of swarm would improve the efficiency to solve 
the problem.  

 Swarm robots have a limited sensing ability and 
rely on local communication. 

Generally, swarm algorithms take inspiration from 
behaviors of social insects and animals.2 Schools of fish, 
flocks of birds, colonies of termites and ants,4 foraging,5  
and aggregation of honeybees6 are examples of swarm 
behavior. Ant colony optimization and particle swarm 
optimization are the most successful applications of 
swarm in problem solving that have been used in variety 
of applications.7,8,9 Aggregation is a natural behavior of 
social insects and animals to find food or path.10 
Usually, environmental cues are used as a marker for an 
optimal zone such as humidity for sow bugs or light and 
temperature for flies. Conversely, self-organized 
aggregation is another type of aggregation that does not 
require any cues,11 such as school of fish or aggregation 
of cockroaches.12 In early robotic research by Kube and 
Zhang,13 the light source was employed as the 
aggregation cue. Melhuish et al.14 performed 
aggregation of robots around an infra-red (IR) 
transmitter. Each robot after reaching the marked zone 
with IR starts to play sound similar to frogs and birds. 
Size of group is estimated based on intensity of 
choruses. Therefore, based on the estimated swarm size, 
robots could control the cluster size. Schmickl et al.15 
presented a cue based aggregation of simple robots that 
used limit communication. Garnier et al.16 simulated 
cockroaches’ aggregation behavior with micro robots. 
Group of these robots were deployed into circular white 
arena for 60 minutes. The robots executed proposed 
aggregation algorithm by Jeanson et al.,17 which was 
inspired from cockroach behavior. Based on this 
algorithm, cockroaches prefer to stay in a peripheral 
environment with constant time between be in 
stationary (resting) and in motion. The resting time 
increases when there are other cockroaches. The 
aggregation behavior of honeybees is another inspired 
example of insects’ aggregation which has been 
implemented by swarm micro robots.6 According to this 

aggregation behavior, young honeybees tend to 
aggregate around a comfortable zone which is an 
optimal temperature between 34 and 38°C.18 Details of 
this algorithm and its implementation will be explained 
in the following section.  

In this paper, an imitation of honeybee aggregation 
with miniature size mobile robots is presented. The 
effects of several parameters such as waiting time, arena 
size, environmental perception, population sizes, and 
velocity on performance of the swarm system are 
analyzed. Afterwards, two modifications on original 
BEECLUST algorithm which are dynamic velocity 
(DV) and comparative waiting time (CWT) are 
proposed. These modifications are not in contrast with 
the swarm robotics criteria.3 Hence, performance of 
swarm is evaluated based on the proposed 
modifications. Finally, a new modified algorithm based 
on combination of the proposed modifications is 
presented. In addition, the environmental adaptability of 
the proposed algorithms is investigated.  

2. Honeybee Aggregation Behavior 

Heran19 has found that, young honeybees tend to stay in 
an optimal zone in their comb. The collective behavior 
of honeybees demonstrated the optimal zone is 
recognized with temperature in between 34 and 38°C. 
Honeybees produce clusters around the optimal 
temperatures. In this aggregation, honeybee requires a 
thermal cue. 

Regarding to study on aggregation behavior of 
honeybees, several experiments were performed by 
Schmickl et al.18. In that study, a group of young 
honeybees (1 day old) were placed in a dark arena. In 
one part of the arena, an IR-lamp was mounted that 
provided a temperature gradient with non-linear 
distribution. The arena was divided to four thermal 
zones, zone A (33- 36°C), zone B (29- 33°C), zone C 
(26- 29°C), and zone D (25- 26°C). Results of the 
experiments revealed that, density of clustering in 
nearing with optimal temperature (zone A) was higher 
than other zones. In addition, the increase of the 
population size was another effective parameter for 
achieving the fast aggregation.  

In order to study on individual behaviors, 10 bees 
were selected and their behaviors were captured. 
Individual behaviors demonstrated that, honeybees are 
able to distinguish between obstacles and other bees. 
The second emerged phenomenon from individual 
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behavior was the waiting time after each encounter that 
is happened between two bees. This waiting time was a 
variable depends on the temperature. Waiting time in 
zone A was longer in comparison with the other zones. 
The third interesting behavior of individuals was the 
inability of a single honeybee to find the optimal zone. 
Single honeybee had random motion and could not 
detect the high temperature zone. 

Based on the evaluated individual behaviors of 
honeybees,6, 18 those behaviors are fitted in the 
described criteria of swarm robotics.3 Inefficiency of a 
single bee to detect the optimal zone, simple perception 
of homogeneous individual agents, and effects of the 
population size are clearly illustrated in honeybee 
aggregation. Therefore, bio-inspired BEECLUST 
algorithm was proposed based on the findings of 
thermotactic behavior of honeybees (See Refs. 6 and 18 
for more details).  

3. Imitation of Honeybee Aggregation 

This section explains description of mobile robot, 
swarm algorithms, and experimental configurations 
which are used in this study.  

3.1. Description of AMiR 

Previously, we have introduced an autonomous 
miniature robot (AMiR)20 as an open-hardware swarm 
robotic platform. It is a small size low-cost platform 
with feasibility of playing roles in swarm scenarios. The 
robot is designed with size of 70x70 mm and an AVR 
micro-controller is deployed as the main processor to 
control all functions such as communication, trajectory, 
perception, power management, and user defined tasks. 
AMiR provides 16 KB flash memory for programming 
and 1 KB internal RAM and 512 byte EEPROM, which 
are enough memories for swarm applications. 
Moreover, the micro-controller has eight channels 
analog to digital converter (ADC) which are used for 
distance and light intensity measuring.  Fig. 1 shows an 
AMiR robot that is equipped with a light sensor. 

AMiR is equipped with six IR proximity sensors (in 
60°) which are used for obstacle detection and also 
inter-robot communication.21 Based on viewing angle of 
IR components (~60°), the robot covers surrounded area 
with maximum range of 12 ±1 cm. Two micro DC 
motors with internal gear are utilized for motion of 
robot with maximum speed of 10 cm/s.22 Power of robot 
is supplied with a 3.7 V lithium-polymer battery for 

autonomy of about 2 hours. A firmware library 
including basic functions of robot is developed. Open-
source gcc compiler (C programming) is selected as the 
programming language of robot. Latest version of the 
programming library and compiler are available at: 
www.swarmrobotic.com. 
 

 

Fig. 1.  AMiR mobile robot, open-hardware swarm robotic 
platform 

3.2. Inspired Algorithm 

The aggregation behavior of honeybee that was 
described in Section 2 reveals that, agents follow a 
simple collision-based algorithm6 as shown in Fig. 2. 

  

Move Forward 

STOP 

Yes

No 

Collision? 

 Robot? Turn random

Wait 
depends on 
luminance 

Light 
Measuring 

Turn randomº

Yes 

No 

 

Fig. 2. Algorithm of honeybee aggregation (BEECLUST) 

Decisions are made after each collision. This 
collision does not physically occur between robots 
chassis. Thus, an inter-robot collision is defined to 
detect other robot’s IR radiations. Robots transmit IR 
radiation continuously.21 Captured values of the IR 
receivers are checked by the main processor and it 
produces an interrupt when the IR reaches a defined 
threshold level. IR reflections and its intensity levels are 
used to distinguish between wall and other robots. 
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When robot detects the IR radiation, it turns off its 
emitters, and recaptures IR level. If there is IR radiation, 
it will be another robot. This simple principle helps 
robots to distinguish between obstacle and other robots. 
After detecting an obstacle, the robot rotates and 
executes obstacle avoidance routine. Conversely, if the 
robot detects another robot, it stops and measures 
ambient light using light sensor. Robots are equipped 
with extension lighting sensor for measuring ambient 
light intensity. This module is placed on top of robot’s 
main board.  

A delay function is implemented for calculating the 
waiting time after each collision. The higher luminance 
results in a long wait. Waiting time w(t) is a function of 
luminance, which follows proposed model by Schmickl 
et al.18: 

 



2

2

max )(

)(
)(

ts

ts
wtw   (1) 

 
wmax is the constant value of maximum waiting time 

for a collision in highest luminance, S(t) is the 
luminance value of spot which is captured by light 
sensor, and θ is the parameter which illustrates the 
steepness of the waiting curve with respect to 
luminance. These parameters are estimated based on 
empirical experiments. For Ref. 18, these values were 
defined as wmax = 66 and θ = 7000.  Estimation of these 
values is dependent on the robot platform and the 
experimental configuration. 

3.3. Arena Configuration 

Shape, texture, size, and color of arena are important 
parameters for analyzing a swarm behavior. It is 
important that a similar configuration of arena is 
employed for all experiments. In this study, arena is 
made out of white body plastic in size of 120x80 cm. 
Circular covered area by each robot with maximum 
perception is approximately 800 cm2 (πr2). Six AMiRs 
are deployed in this study; hence the arena is setup two 
times larger than area covered by all robots (4800 cm2). 
Recording robots behavior is important to analyze the 
social and individual behaviors of robots during each 
task. For capturing robots’ behavior, a digital camera 
was mounted on top of the arena. 

A fluorescent lamp was mounted in one part of 
arena as the optimal temperature zone. The luminance 
of arena’s light was between 80 and 980 lux as shown in 
Fig. 3. Similar to the performed experiment in Ref. 6, a 

static environment with constant value of luminance is 
employed for all experiments. 

 

 

Fig. 3.  Spatial distribution of luminance of arena with 
fluorescent lamp (about 1000 lux) 

4. Experimental Setup 

Experiments include two steps: i) implementation of 
BEECLUST with AMiR and analysis of the effective 
parameters in the aggregation performance, and ii) 
implementation of the proposed modifications and their 
performance analysis. 

4.1.  Honeybee Aggregation 

The first experiment is BEECLUST6 that was shown in 
Fig. 2. In this phase, the effects of several physical 
parameters relative to inter-robot collision such as 
number of the participants, arena size, speed of the 
robots, and sensing threshold are discussed. Waiting 
time after each collision, w(t), is also another effective 
parameter on collective behavior of swarm robots.  

4.2. Modified Honeybee Algorithm 

In this phase, two modifications on BEECLUST 
algorithm are proposed. Dynamic velocity and 
comparative waiting time are the proposed 
modifications on original honeybee aggregation.6 These 
modifications should follow the swarm robotics 
criteria.3  

4.2.1. Dynamic Velocity 

The first modification is a function to implement DV 
that depends on the ambient light. Based on the intensity 
of ambient light, the arena is divided to three zones. 
Three levels of velocities are defined for different 
zones. In area with high luminance (more than 750 lux), 
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the robot uses low speed for its motion (3 cm/s). This 
speed determines to stay in the high luminance zone 
which correspondingly results in more inter-robot 
collisions in that zone. Robot selects moderate velocity 
(6 cm/s) in the second zone (600-750 lux). In the dark 
zone (less than 500 lux), robot moves fast to leave that 
area (10 cm/s). For implementing DV, the robot 
measures ambient light’s intensity continuously.  

4.2.2. Comparative Waiting Time 

Second function is CWT that is dependent on intensity 
of the clustered robots. This behavior is inspired from 
cockroaches aggregation behavior.16 The periodic 
resting time of cockroaches are changed by cluster’s 
size. This resting time is prolonged based on number of 
other stationary cockroaches. For CWT, this behavior is 
combined with BEECLUST for estimating the new 
waiting time. The robot has 6 IR receivers for 
recognizing its neighbors. Thus, the robot is able to 
estimate number of the surrounded robots (φ) after each 
collision. In this case, waiting time is defined as a 
function of luminance and number of neighbors: 

 
 )()( twtwd      , (2) 

 
where wd(t) is the estimated waiting time for CWT 
which updates previous waiting time function (Eq. 1) 
depends on the neighboring robots. Due to the IR 
components topology in main board, φ is between 1 and 
4. In order to prevent clustering in the low luminance 
zone, CWT is applied only in the optimal zone with the 
higher luminance than 750 lux. In area with luminance 
between 500 and 750 lux, φ is not estimated and the 
constant value of 1 is assigned. Fig. 4 illustrates the 
waiting time for the proposed CWT as a function of 
luminance. This function helps the robots to stay for a 
long period in the high luminance area (optimal zone). 

4.3. Number of Inter-Robot Collision 

The robots in aggregation scenario should detect other 
robots and stay with them to allow another robot to 
recognize them. The number of inter-robot collisions is 
an important parameter for the prediction in collision-
based processes. Kernbach et al.6 defined a relationship 
using Eq. 3 to estimate the number of inter-robot 
collisions following the aggregation behavior. This 
relationship uses diffusion behavior of molecular-
kinematic theory in ideal gas.  

 
rsw

s
n NSS

vtNR
n


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22  (3) 

 
ns is the number of inter-robot collisions for an 

individual robot, Rs is the robot’s sensing radius, v is the 
robot’s speed, t is the aggregation time, N is the number 
of robots, Ssw is the size of the experiments’ arena, and 
Sr is the robot’s size.  
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Fig. 4. Estimated waiting time using CWT function depends 
on luminance and number of neighbors 

4.4. Sampling and Statistical Analysis 

In order to data validation, each experiment was 
repeated 20 times and an experiment with duration of 
longer than 15 minutes was assumed as a null 
experiment. The successful aggregation is defined as an 
experiment that all robots are gathered in the light zone 
with the high luminance (>750 lux).  

For statistical analysis, one-way ANOVA was used 
to test the significance of the parameters in aggregation 
behavior. The P-value shows the individual significance 
probability of each independent variable. The term with 
P < 0.005 is considered to be statistically significant.  

5. Results and Discussion 

5.1. Honeybee Aggregation 

This experiment was performed with individual groups 
of 2, 3, 4, 5, and 6 robots in two different arena sizes: i) 
small 60x80 cm and ii) large 120x80 cm. Time required 
for aggregation at the optimal zone with respect to the 
robot number is shown Fig. 5. As shown in the obtained 
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results, the number of participants significantly 
increases the efficiency of the swarm in both area sizes 
(F= 32.45, P < 0.005). Based on the defined time-out 
for each experiment, the individual groups of 2 and 3 
robots could not aggregate in the large arena. This 
phenomenon proves the inefficiency of the low 
populations to solve a joint problem.3 In small size 
arena, two robots also could aggregate though it was not 
a stable aggregation. The number of collisions for each 
individual robot was not changed significantly (P > 
0.005) depending on the number of the robots. Similar 
behavior was reported in Ref. 6. 
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Fig. 5. Aggregation time and number of collision for 

each robot versus the population size in two arena sizes. 
 

Another important sensory parameter was the 
threshold level for the robot’s environmental perception. 
Fig. 6 illustrates the effects of sensing threshold of 
collision detection in different aggregation experiments 
with 6 robots. The results showed that, the suitable 
threshold range is between 300 and 500. In thresholds 
higher than 500, robots must be close together for 
collision to occur. In values less than 300, robots detect 
the collision in a far distance of the clustered robots 
which resulted in stopping in the dark zone. Fig. 7 
reveals the aggregation of six robots using two threshold 
levels of 200 and 600. 

Another important parameter that contributes to the 
efficiency of the swarm was the waiting time after each 
inter-robot collision. The aggregation time is long when 
the waiting time is defined short. During the long 
waiting time, clustered robots are stationary for the long 
period and so chance for other robots to contact them is 

increased. Prolongation of the waiting time will not help 
in completing the task much faster due to limitation of 
the robot’s velocity and the sensory system. 
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in detecting other robots (performed with 6 robots). 

 

Fig. 7. (a) Aggregation with threshold level of 600 and (b) 
aggregation with threshold level of 200 

The goal is to find an appropriate wmax and to 
estimate a suitable θ for waiting time model (Eq. 1). In 
this regard, six AMiRs were participated in the large 
size arena with the luminance distribution as shown in 
Fig. 3. Fig. 8 shows the aggregation time with respect to 
different values of wmax. The suitable wmax which is 
happened in the highest luminance (in 980 lux) was 
about 135 sec. This value is two times longer than 
model values in Ref. 18 due to robot’s speed and arena 
configurations. After several empirical experiments, the 
model of waiting time using the new values is shown in 
the following formula: 

 
112500)(

)(
135)(

2

2




ts

ts
tw  .  (4) 

Fig. 9 shows the effects of different velocities of the 
robot in aggregation behavior. Maximum speed of the 
robot was about 10 cm/sec. As expected, velocity of the 
robot directly influenced the aggregation time. This 
experiment was also performed with the long waiting 
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time (about 2 times). Therefore, the effects of velocity 
in the long waiting time were smoother than the 
previous experiment. In slow robots, when a robot was 
stationary for a long period, other robots found the 
chance to reach the immobile robot. 
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Fig. 8. Aggregation time for six AMiRs as a function of 
waiting time 
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Fig. 9. Aggregation time as a function of velocity with two 
waiting times 

Fig. 10 shows captured images of an aggregation 
behavior in time intervals of 75 sec. This experiment 
was performed using the specific parameters of the 
algorithm (wmax = 135, θ = 112500, sensors’ threshold 
level of 440, and maximum velocity of 10 cm/sec). The 
aggregation was achieved around 400 sec in the large 
size arena. 

The robots could solve the problem using simple 
perception without requiring explicit communication. 
The collective behavior of the robots could show that, 
BEECLUST is an acceptable algorithm to be used as a 

swarm behavior. Schmickle et al.18 have demonstrated 
the practicality of BEECLUST with Jasmin micro-
robot. Swarm behaviors must be independent from the 
platform. Hence, the first phase of our experiments 
demonstrated the BEECLUST is not dependent to a 
given platform and it appropriately follows the swarm 
robotics criteria.3 In the second phase, we would like to 
investigate the performance of the swarm with simple 
algorithmic modifications on the original BEECLUST. 

 

 

Fig. 10. A group of six AMiRs could find the optimal zone. 

5.2. Modified Honeybee Algorithms 

In this section, results of the aggregation scenarios with 
proposed modifications are presented. The obtained 
results are statistically analyzed and effects of each 
algorithm are discussed. 

5.2.1. Dynamic Velocity 

This function allows robot to leave the dark zone 
rapidly. On the other hand, motion with minimum speed 
in the high luminance zone increases the number of 
robots in that zone, thus most collisions are occurred in 
the optimal zone. Experiments were performed with 
various numbers of robots to check the swarm 
scalability. Fig. 11 illustrates the aggregation time for 
modified and original algorithms. Although the number 
of collisions was not changed significantly, the 
aggregation times were reduced significantly (F= 46.98, 
P < 0.005). The most imperative difference among the 
original and modified algorithms is the occurring 
collisions in the high luminance zone using DV 
function. Therefore, the scenario could be accomplished 
in shorter time than original BEECLUST. This function 
could reduce swarming time for a group of 6 robots 
from 400 sec to around 300 sec. In addition, group of 3 
robots could complete the scenario in around 600 sec. 
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Fig. 11. Aggregation time and number of collision for 
BEECLUST and dynamic velocity algorithms 

5.2.2. Comparative Waiting Time 

The second experiment was the study on the effects 
of CWT. This function changes the waiting period of 
inter-robot encounters based on number of the 
neighboring robots. The luminance of the zone is 
another effective parameter for estimating the new 
waiting time. Fig. 12 reveals the effects of CWT on 
aggregation time of swarm robots. Statistical analysis of 
the obtained results showed that, the aggregation time 
was significantly reduced (F= 71.40, P< 0.005). Due to 
the long waiting time of the robots in the optimal zone, 
number of inter-robot collisions was decreased and 
collisions usually resulted in stationary in the optimal 
zone. Similar effects of the resting time were reported in 
other aggregation researches.16,18 A group of six robots 
could aggregate at the light area in 200 sec. 
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Fig. 12. Aggregation time and collision of each robot for 
BEECLUST and comparative waiting time 

5.3. New Aggregation Algorithm 

A new aggregation algorithm with combination of 
the described modifications was proposed. Fig. 13 
illustrates the aggregation time for the original and 
proposed modifications. Statistical analysis of the 
results showed that the combined algorithm was 
significantly reduced the aggregation time (F= 91.16, P 
< 0.005). Based on the F-value, the combined algorithm 
of DV and CWT was high effective than others in 
swarm performance.  

Therefore, a new aggregation algorithm with 
combination of the performed modifications is 
determined as shown in Fig. 14.  
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Fig. 13. Aggregation time for original BEECLUST and 
modified algorithms 

 

 

Fig. 14. Proposed aggregation algorithm based on combination 
between performed modifications 
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5.4. Number of Inter-Robot Collisions  

As for the number of inter-robot collisions represented 
by Eq. 3, Fig. 15 shows an approximation model that 
depicts collision number as a function of population size 
for different algorithms. Aggregations using the 
proposed modifications were accomplished with small 
ns than original BEECLUST. These differences were 
occurred due to the experimental configurations. The 
important point is the convergent behavior for ns. The 
convergent behavior of ns is shown in all algorithms 
with different mean values. As reported in Ref. 6, the 
fluctuation of ns in each experiment was explained by a 
systematic inaccuracy. In the cases of CWT and 
combined algorithms, ns were fluctuated more than 
others with low-population sizes. Based on the 
expectation, this can be compensated with large scale 
experiments. The most important point is the constant 
value of ns for all performed algorithms. Similar to the 
reported results in Ref. 6, ns was independent of  
parameters such as population, arena sizes and platform. 
Hence, the modified aggregation scenarios performed in 
this study are the scalable swarm algorithms.  

As it was expected, the total number of collisions 
that were occurred during each experiment increased 
with increasing populations (Nt = N × ns). 
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Fig. 15. Estimation of collision number for a single robot as a 
function population size  

5.5. Environmental Adaptability  

Finally, the adaptability of the proposed algorithms to 
the environmental fluctuations was investigated. In this 
regard, after an accomplished aggregation for 6 robots 
the position of the fluorescent lamp was changed to 

another side of arena. Fig. 16 shows number of the 
aggregated robots during re-aggregation scenarios. The 
experiments were repeated 20 times for each algorithm 
and mean values of the population sizes were 
calculated. Clearly, after changing the lamp position, the 
robots wait to finish their waiting times. These waiting 
times for CWT and combined algorithms are long 
period due to their definitions. However, these 
algorithms could aggregate around new light position 
faster than others. Therefore, the proposed algorithms 
are able to adapt to the environmental fluctuation. 
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Fig. 16. Average number of the aggregated robots after 
changing lamp position for different algorithms as a function 
of time 

Proposed modifications in this study increased the 
sensing ability of the individual robots slightly. Hence, 
fast aggregation using these modifications was 
expected. This phenomenon was demonstrated in the 
reduced number of collisions for each individual robot. 
It showed that, the most collisions of the robots were 
occurred in optimal zone. The main objective of this 
study was to demonstrate that, a small modification on 
behavior of individual robots results in big changes in 
collective behavior of swarm. This change helps us to 
apply various inspired behaviors of social insects or 
animals for solving a particular problem using simple 
modifications on original algorithms.   

6. Conclusion 

In this paper, an imitation of honeybee aggregation 
with miniature size mobile robots was illustrated. The 
first phase of experiments was the implementation of 
BEECLUST using AMiR. The studied parameters were 
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arena size, number of the robots, sensitivity and velocity 
of the robots, and waiting time after inter-robot 
collision. Based on thermotactic behavior of honeybees, 
two algorithmic modifications in decision making stages 
were proposed. Dynamic velocity and comparative 
waiting time were these modifications. Results showed 
the proposed modifications were significantly reduced 
the aggregation time. A new aggregation algorithm 
using the combination of the performed modifications 
was presented. In addition, the adaptability of the 
algorithms to the environmental fluctuation was tested 
with changing the position of optimal zone. The results 
of this study concluded that, it is possible to define a 
new swarm behavior with modification and combination 
of inspired algorithms without missing the criteria.    
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