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Abstract 

This paper proposes the concept of intervention rule which tries to reveal the interventional relationship between 
elements in a system in the following three aspects. (1) Casual relationship. Intervention rule shows which element 
is the cause and which element is the consequence. (2) Quantitative relationship: Intervention rule shows the 
quantitative intensity of how the change of the causal element interferes with the change of the consequential 
element. (3) Multi-scale intervention relationship. Intervention rule shows the intervention at different 
decomposition scale of the original system, since sub system may exhibit different mechanism from the original 
system. This paper first introduces a general intervention rule framework, and then transforms the framework into 
concrete intervention rules for complex network data and time series data. Then, it proposes two algorithms to mine 
the intervention rules from the two different systems. Finally, the experimental results show that multi-scale 
intervention rules do exist in real dataset. And the intervention intensity of each sub graph and sub series are always 
4 or 5 time larger than intervention intensity of the original data. 
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1. Introduction  

1.1. Background  

In order to regulate financial market, reduce 
unemployment rate and control the spread of influenza, 
intervention is a widely used technique. However, 
before conducting intervention, the decision maker must 

make sure how much profit and loss the intervention 
may both engender. If profit is principal, the 
intervention should be executed. Otherwise the decision 
maker should try to carry out another intervention plain. 
Thus, intervention analysis has important economical 
value for the government.   

In another aspect, mining multi-scale intervention 
rules has the following advantages. 
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(1) The data generated from complex system always 
contains information in different aspects. Thus if 
the data can be decomposed correctly, the 
interesting pattern hidden in the data can be mined 
out much more easily.  

(2) As association rule can only reveal the co-
appearance of two subjects, intervention rule may 
be more useful at revealing the casual and 
intervention relationship between two subjects. 

1.2. Motivation 

(a)The observation of multi-scale phenomenon  

Figure 1 shows the breath rate and heart rate time series 
of a patient suffering from sleep apnea. The patient may 
occasionally suffocate while sleeping. Thus, the burst of 
breath rate will cause abnormal fluctuate of heart rate. 
However, if we just analyze the original data (Figure 
1,a), no relationship between breath rate and heart rate 
is visibly explicit. If we retain only those points at odd 
timestamp intervals (Figure 1,b ), it’s easy to see that 
they exhibit similar patterns.     
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a. Original time series of breath rate and heart rate 
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b.Decompose the original series into multi-scales to detect at what 

scale breath rate interferes with heart rate 

Fig. 1. Multi-scale phenomenon 

 
This observation shows that much more explicit 

relationship may exist at different decomposition scales 
of the original system. 

(b)The quantification of intervention  

From Figure 2(a), it is easy to see that the burst of 
breath rate will cause the burst of heart rate. But it is not 
quite convincing to say that breath rate interferes with 
heart rate, because not every burst of breath rate will 
cause the burst of heart rate. However, figure 2(b) 
shows that heart rate bursts each time after breath rate 
bursts. It is proper to say that breath rate interferes with 
heart rate. 
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a. heart rate irregularly changes with breath rate 
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b. heart rate regularly changes with breath rate 

Fig. 2. Intervention quantification 

Zhang [1], et all, proposes the concept of naïve 
intervention rule. She uses the confidence index to 
quantify intervention intensity, i.e. intervention intensity 
= r1 / r2. r1 is the burst times of heart rate and r2 is the 
burst times of breath rate.  
     In this paper, we adopt correlation to measure 
intervention intensity, i.e. intervention intensity = 
correlation( X1 , X2 ). X1  is the changing series of breath 
rate and X2  is the changing series of heart rate. 
     Although there are a lot of numerical index to 
quantify intervention intensity, we consider correlation 
to be more appropriate. Since correlation is easy to 
calculate and requires strong liner relationship which 
may guarantee the intensity of the intervention rules.  

(c)The direction of intervention 

   Association rule can reveal that the co-occurrence of 
breath rate and heart rate id frequent. But it can not tell 
which the cause is and which the consequence is. 
However, by using the intervention rule, it is easy to 
find that the intervention intensity from breath rate to 
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heart is 0.75 and intervention intensity from heart rate to 
breath is only 0.22. Thus it is rational to say that the 
burst of breath rate causes the burst of heart rate.  

1.3. Problem definition 

Definition 1 Intervention Rule Framework. Let X and 
Y be two elements in a system. Multi-scale intervention 
rule describe how X interferes with Y is a two tuple. 
Intervention(X→Y)=( Scale, Intensity).  Scale denotes 
at what decomposition scale X and Y is investigated. 
Intensity = ( correlation( ΔXi , ΔYi ) ), in which ΔXi = 
(Δxi1, Δxi2, …, Δxin) and ΔYi = (Δyi1, Δyi2, …, Δyin). 
Δxij (1≤j≤n) denotes the jth change of X at 
decomposition scale i. Δyij (1≤j≤n) denotes the jth 
change of Y according to Δxij at decomposition scale i.  
     This paper proposes the concept of intervention rule 
which tries to reveal the interventional relationship 
between elements in a system. Section 1 explains the 
idea of multi-scale intervention rules, and what are main 
differences between the intervention rules, association 
rules and causality analysis. Section 1 also introduces a 
general intervention rule framework Section 2 and 
section 3 transforms the framework into concrete 
intervention rules for complex network data and time 
series data and proposes two algorithms to mine the 
intervention rules from the two different systems. 
Section 4 shows the experimental results show that 
multi-scale intervention rules do exist in real dataset. 
Section 5 describes the related work and section 6 
makes conclusion of this paper. 

2. Mining Multi-scale Intervention Rules from 
Complex Network 

Table 1.  Denotation of complex network’s intervention rule 

Denotation Meaning 
X X is a threshold, such that for any vertex v 

belonging to G, the degree of v is larger 
than X 

Y Y is the clustering coefficient of G, in 
which degree(v) is the degree of vertex v 
and mean is the mean value of all 
vertexes’ degree values. 
Yij=∑|degree(v)-mean(Sub_Gi)|(v∈G); 

Scale the sub graph of the original graph at the 
decomposition scale 

Intensity Intensity=Correlation(ΔX, ΔY) 
ΔX=(X1,X2,…, Xk) is the variation series 
of X; ΔY=(Y1,Y2,…, Yk) is the 
corresponding variation series of Y 
according to ΔX; 

Definition 2 G = <V,E>: a citation network graph. 
Each paper v is a vertex in the graph G (v  ∈ V). If one 
paper v is cited by another paper u, there will be an edge 
from u and v, denoted as <u, v>  ∈ E.  
   According to definition 1, the two tuple 
Intervention(X→Y)=( Scale, Intensity) is the multi-
scale intervention rule. The meaning of each denotation 
is described in table 1. 

The goal of mining multi-scale intervention rules 
from citation network is to reveal how the change of X 
interferes with the change of  Y in different sub graphs. 

The following paragraphs will firstly introduce how 
to decompose a citation graph G into sub graphs, and 
then describe the algorithm of mining multi-scale 
intervention rule in each sub graph. 

2.1. Decomposition of the Original Graph 

   The goal of decomposition is to divide the original 
graph G into several sub graphs such that each sub 
graph has much closer properties than the original graph. 
The decomposition algorithm is as follows. 
Algorithm 1: Decompose(G) 
Input: Original graph G 
Output: Decomposed sub graphs of G {Sub_G1, 
Sub_G2,…, Sub_Gk,} 

1. For each node v in G 
2.      Vector(v) = <0,0,…,0>;//The length of Vector(v)   

//is |G|, where |G| is the number of nodes in G 
3. End For 
4. For each node v in G 
5.     Vector(v) = Span(G,v); 
6.     Num(v) = Count(Vector(v)); 

//return number of 1’s in Vector(v) 
7. End For 
8. {Sub_G1, Sub_G2,…, Sub_Gk,}=Cluster(Num (v1), 

Num(v2),…, Num (v|G|)); 
9. return {Sub_G1, Sub_G2,…, Sub_Gk,}; 
The following describes the meaning of algorithm1. 
(1) Line 1~3 is to construct a zero vector Vector(v) for 

each node. The length of Vector (v) is the number 
of vertexes in graph G.  

(2) Line 5 Span(G, v) is to traverse G in breath first 
manner with v as the starting node. If u (u≠v) is 
traversed, then the corresponding index of u in 
Vector(v) is set to 1.  

(3) Line 8 is to conduct k-means upon Num (v1), 
Num(v2),…, Num (v|G|). The clustering results will 
decompose G into several sub graphs. We also try 
other types of cluster methods. However, the 
empirical experimental results of these methods are 
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similar with k-means. So, we choose k-means as it 
is quite simple and well known. To determine the 
number of clusters by k-means, we assign k the 
value from 1 to K and choose the by which the 
algorithm can get minimum error rate. 

Example 1: Figure 3 shows the distribution of Num (v1), 
Num(v2),…, Num (v|G|) of a citation network in the filed 
of HEP(high energy physics). The value of Num(v) of 
each node v is sorted in descending order. It is easy to 
see that the vertexes naturally form three clusters.  
Hypothesis 1: Let {C1, C2,…, Ck} be the k clusters 
when the input of the k-means algorithm is the N×N 
sparse matrix  {Vector(v1), Vector(v2),…, Vector(v|G|)}. 
For any Ci, Cj (i≠j), |Ci|>>|Cj|, or |Ci|<<|Cj|. |C| is the 
number of nodes in cluster C.  
 

 

Fig. 4.  Cluster of nodes in citation network 

 

Explanation: According to the power law property of 
complex network, if we sort |C1|, |C2|,…, |Ck| in 
descending order,  the value will decrease exponentially.   
Thus |Ci|>>|Cj|, or |Ci|<<|Cj|. Example 2 shows such a 
phenomenon in the academic citation network. 
Example 2: Figure 4 shows the distribution of nodes’ 
degree in a citation network. It’s easy to see that there 
are naturally three clusters. 
Proposition 1: Let Result_1 be the clustering result 
with {Vector(v1), Vector(v2),…, Vector(v|G|)} as the 
input of k-means. Let Result_2 be the clustering result 
with {Num(v1), Num(v2),…, Num(v|G|)} as the input of 
k-means.  Assume any node v Sub_G∈ i in Result_1 and 
v Sub_G∈ j in Result_2. Then, Sub_Gi≈Sub_Gj. 
Proof: If u, v are in the same sub graph Sub_Gi in 
Result_1, then u, v must be in the same sub graph say 
Sub_Gj in Result_2. Because if u, v are in different sub 
graphs in Result_2, according to example 1, Num(u) 
will be much larger or smaller than Num(v). For 
example, if Num(u) is 1000, then Num(v) is 10000 or 
100. Thus, Vector(u) and Vector(v) can not be in the 
same cluster i.e Sub_Gi in Result_1. 

Equally, it is easy to prove that if u,v are in different 
sub graphs in Result_1, then u,v are likely to be in 
different sub graphs in Result_2. Thus, proposition 2 is 
proved. 
Example 3: According to figure 4, it is easy to see that 
there are naturally three clusters {C1, C2, C3}, in which 
|C1| ≈ 15000, |C2| ≈ 4000, |C1| ≈ 10. So if node u and v 
are clustered into C1 when the input of k-means 
algorithm is {Vector(v1), Vector(v2),…, Vector(v|G|)}, it 
is not probable that u and v be clustered into different 
clusters when the input of k-means algorithm is 
{ Num(v1), Num(v2),…, Num(v|G|)}.  
Proposition 2: Let N = |G| be the number of nodes in 
graph G. Let Memory(Vector) and CPU(Vector) be the 
consumption of computer memory and the computing 
complexity when the input of the k-means clustering 
algorithm is {Vector(v1), Vector(v2),…, Vector(vN)}. 
Let Memory(Num) and CPU(Num) be the consumption 
of computer memory and the calculating complexity 
when the input of the k-means clustering algorithm is 
{ Num(v1), Num(v2),…, Num(vN)}. We have 
Memory(Vector) = Memory(Num)2 and CPU(Vector) = 
CPU(Num). 
Proof: Memory(Vector) is an N×N matrix. 
Memory(Num) is an N×1 vector. So, it is easy to see 
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v 1 2 3 4 5 6 7 8 
Num(v) 7 1 3 3 0 0 0 0 

(1) Original graph 

(2) According to Num(v), it is easy to see that {1,2,3,4} 
can be clustered into 3 sub graphs, in which Sub_G1={1};   
Sub_G1={2};  Sub_G1={3,4}; 
 

Fig. 3.  Illustration of working process of algorithm 1 
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that Memory(Vector) = Memory(Num)2. Num(i) = 
Vector(i,1) + Vector(i,2) +...+ Vector(i,N). According to 
proposition 1, it is easy to prove that the cluster results 
of the two different inputs are the same. Because the 
computing complexity of k-means algorithm is O(nkt) 
in which n is the number of input points, k is the 
number of clusters and t is the iterating time. Thus, 
CPU(Vector) = CPU(Num). 
Example 4: According to figure 3, {Vector(v1), 
Vector(v2),…, Vector(vN)} is an 7×7 matrix and 
{ Num(v1), Num(v2),…, Num(vN)} is an 7×1 vector. So, 
Memory(Vector) = Memory(Num)2.And the two types 
of input both generate the same clustering result, i.e. 
Sub_G1={1};   Sub_G1={2};  Sub_G1={3,4}. So, 
CPU(Vector) = CPU(Num). 

2.2. Mining Multi-scale Intervention Rules from 
Complex Network (MMIRCN) 

Section 2.1 has already described that the goal of 
intervention rule is to investigate how important nodes 
interfere with the clustering coefficient of a complex 
network. The intervention rule mining algorithm only 
returns those rules with intensity larger than a specified 
threshold, for example 0.5. 
Algorithm 2(MMIRCN): Mining Multi-scale 
Intervention Rule from Complex Network 
Input: Original graph G, α // intensity threshold, 

Step_value// X’s step value of variation ,  
              k// number of sub graphs 
              n//length of X and Y’s series 
Output: intervention rule set  
1. Rule_set=null; 
2. {Sub_G1, Sub_G2,…, Sub_Gk,}←Decompose(G);
3. For i = 1 To k 
4.     For j = 1 To n 
5.         Xij = j*step_value; 
6.         Yij=∑|degree(v)-mean(Sub_Gi)|(v∈Sub_Gi);    
7.     End For 
8.        ΔXi=(Xi1,Xi2,…, Xik); 
9.        ΔYi=(Yi1,Yi2,…, Yik); 
10.       Intensity = Correlation(ΔXi, ΔYi); 
11.       Rule_set←<Sub_Gi,  Intensity>; 
12. End For 
13. Return those rules in Rule_Set with intensity 

larger than α; 
   Line 2 is to decompose the original graph by 
algorithm 1. Line 3~ 12 is to generate intervention rules 
in each sub graph. Line 4~7 is to generate the varying 
sequence of <ΔXi, ΔYi >. Line 8~11 is to generate the 
intervention rule of each sub graph.   

3. Mining Multi-scale Intervention Rules from 
Time Series 

Definition 3 Time series : A time series X is a sequence 
of pairs (timestamp; value).The data values are ordered 
in timestamp ascending order. Let s(i) be the value of 
time series x at timestamp i, and x[i, j]=x(i)x(i+1)…x(j) 
be the subsequence of s at timestamp interval [i, j]. 
   According to definition 1, the two tuple 
Intervention(X→Y)=( Scale, Intensity) is the multi-
scale intervention rule. The meaning of each denotation 
is described in table 2. 

Table 2.  Denotation of time series’ intervention rule 

Denotation Meaning 
X X is a time series in a complex system. 
Y Y is a time series in a complex system. 

Scale Scale denotes the sub series of the original 
series. Here, we adopt wavelet to 
decompose the original series. 

Intensity Intensity=Correlation(X, Y) 
The goal of mining multi-scale intervention rules from 
time series is straight forward. Assume X and Y are two 
time series. Intervention(X→Y) is to measure how the 
change of X interferes with the change of Y. However, 
because the original series may be composed of multi-
scale frequencies, it will be more fruitful to investigate 
the intervention at different decomposition scales.  

The following paragraphs will firstly introduce how 
to decompose a time series into sub series, and then 
describe the algorithm of mining multi-scale 
intervention rule in each sub series. 

3.1. Decomposition of the Original Time Series 

   This paper adopts wavelet transform to conduct 
decomposition on time series data. The decomposition 
algorithm is as follows. 
 
Algorithm 3: Decompose(X) 
Input: Original time series X=x(1)x(2)…x(L), 
            //Assume the length of S is L 
            k //total decomposition scales 
Output: Decomposed sub series of X {Sub_X1, 
Sub_X2,…, Sub_Xk,} 
1. For i = 1 To k 
2.        Sub_Xi = Wavelet_Decompose(X,i); 
3. End For 
4. Return {Sub_X1, Sub_X2,…, Sub_Xk,}; 

Wavelet_Decompose(X,i) is to decompose the 
original time series X into k different sub series. Sub_Xi 
is the sub series at decomposition scale i(1≤i≤k). One 
point need to empathies is the choice of mother wavelet. 
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Because different mother wavelets have different 
wavelet coefficients, not all kinds of wavelet transform 
are suitable for intervention rules mining. In Section 5.2, 
in order to calculate the directional correlation 
coefficients between two time series, we need to retain 
inflexion points of X in Sub_Xi. Only even symmetrical 
wavelet can satisfy this requirement. The odd 
symmetrical wavelet will transform the inflexion points 
of X into zero in Sub_Xi. So we choose discrete meyer 
wavelet [23] as mother wavelet. It is even symmetrical 
and orthogonal. The details of wavelet decomposition 
will be omitted here. 

3.2. Mining Multi-scale Intervention Rules from 
Time Series (MMIRTS) 

     The goal of intervention rule by definition 1 is to 
investigate how the change of Sub_Xi interferes with 
the change of Sub_Yi at scale i. The intervention rule 
mining algorithm only returns those rules with intensity 
larger than a specified threshold, for example 0.5. 
 
Algorithm 4(MMIRTS): Mining Multi-scale 
Intervention Rule from Time Series 
Input: time series X, Y  

k //total decomposition scales  
α // intensity threshold 

Output: intervention rule set  

1. Rule_set=null; 
2. {Sub_X1, …,Sub_Xk,}← Decompose(X); 
3. {Sub_Y1,…, Sub_Yk,}← Decompose(Y); 
4. For i = 1 to k 
5.       Intensity = Correlation(Sub_Xi, Sub_Yi); 
6.       Rule_set←(<Sub_Xi, Sub_Yi >,  Intensity); 
7. End For 
8. Return those rules in Rule_Set with intensity 

larger than α; 

 

3.3. Traditional Correlation vs Directional 
Correlation 

Intervention naturally has direction, i.e. X→Y or 
Y→X. But the traditional correlation can not represent 
the direction. So, this paper proposed two types of 
intervention intensity r1 and r2.  

r1 = TraCorr(X,Y) (1)

r2 = DirCorr(X,Y) (2)

TraCorr is the traditional correlation, while DirCorr is 
directional correlation introduced by this paper. The 

following paragraphs will concentrate on explaining 
DirCorr. 
Definition 4 Let X=X[1, t] be a time series. Then a) x(i) 
(1<i<t) is called burst point of X if |x(i)|>|x(i-1)| and 
|x(i)|>|x(i+1)|.  
Definition 5 Let X[1, t] and Y=[1, t] be two time series 
with equal length t. The Directional Correlation 
between X and Y (DirCorr(X, Y)) is defined as: 

∑
=

−
==

m

k t
YXDirCorr

1
ji,kkkkji, )ij))(wj,Y(i),j,Corr(X(i*w),( (3)

In Equation (3), X(ik, jk) needs to satisfy the following 
three conditions.(1) For any k, X(ik), X(jk) are burst 
point of X; (2) For any ik≤p≤jk, X(p) is not a burst 
point.(3)X(i1, j1)∪X(i2, j2) ∪‥∪X(ik, jk)=X(1,t);  
Proposition 4. Let X=X[1,t]=(X(i1,j1),…, X(im,jm)), 
Y=Y(1,t) =(Y(i1,j1),…, Y(im,jm)), be two time series 
with equal length t.  
Corr(X,Y)=r. And for any k, 1≤k≤m, X(ik,jk) is an 
monotonic subsequence of X(1,t) and For any k, 1≤k≤m, 
(1) if Corr(X(ik,jk), Y(ik,jk))>r, then DirCorr(X,Y)>r; 
(2) if Corr(X(ik,jk), Y(ik,jk))<r, then DirCorr(X,Y)<r; 
Proof: Consider (1). By Equation 2, if Corr(X(ik,jk), 
Y(ik,jk))>r, we have DirCorr(X,Y)> wi1,j1*r+…+ wim,jm*r 
=r. Thus, (1) is proved. Similarly, it’s easy to prove (2). 
According to proposition 1, The correlation of 
temporally adjacent points will not be weakened by 
other points. Moreover, because those temporally 
adjacent points are selected according to the burst points 
of X, thus, DirCorr(X,Y) can quantify the intervention 
from X to Y. 

DirCorr can reveal the intervention direction in a 
way that DirCorr (X,Y) and DirCorr (Y,X) may be quite 
different. Example 5 shows the results. 
Example 5: Let X[1, 8] and Y[1, 8] be sub series of 
patient’s breath rate and heart rate in real dataset from 
time stamp 1 to time stamp 8. 
X[1,8] =[-1.98, -2.41, -1.41, 0.42, 2.00, 2.41, 1.42, -0.41] 
Y[1,8] =[-0.52, -2.20, -2.59, -1.45, 0.53, 2.21, 2.59, 1.46]  
(1)DirCorr(X,Y)=2/8*Corr(X(1,2),Y(1,2))+4/8*Corr(X(
3,6),Y(3,6))+2/8*Corr(X(7,8), Y(7,8))=0.97 
(2)DirCorr(Y,X)=3/8*Corr(Y(1,3), 
X(1,3))+4/8*Corr(Y(4,7), X(4,7)) = 0.27 
(3)Corr(X, Y) = 0.72  
The results of directional correlation show that the 
intervention from X to Y is much stronger than the 
inverse direction. However, the traditional correlation is 
unable to reveal this relationship. 

4. Experiments and Performance 

The following paragraphs describe the experiment 
results on real datasets. All experiments are conducted 
in matlab6.5, Pentium 2.2G, 2G memory.  
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4.1.   Intervention rules of complex network 

The dataset of complex network is obtained from 
High Energy Physics (HEP)[2] data set. It contains the 
citation network of published papers in the filed of high 
energy physics from.  It contains totally 20469nodes 
and 352785 edges. 

From Figure 5, it is easy to see that the original 
citation network G can be decomposed into three sub 
graphs. The number of nodes in each sub graph is show 
in Table 3. 

Table 3. Number of nodes in each sub graph 

Sub graph of G Number of nodes 
Sub_G1 7078 
Sub_G2 4898 
Sub_G3 8493 

 
According to definition 1, the intervention rule of 

complex network is a two tuple Intervention(X→Y)= 
( Scale, Intensity).X and Y is defined in table 2.  

(a) Intervention(X→Y)=(Sub_G1, Intensity=0.74) 

 (b) Intervention(X→Y)=(Sub_G2, Intensity=0.68) 

 (c) Intervention(X→Y)=(Sub_G3, Intensity=0.70) 

(d) Intervention(X→Y)=(G, Intensity=0.85) 

Fig. 5  Intervention rules in different decomposed sub graphs 
and the original graph 

Figure 5 (a),(b),(c),(d) describes the change of Y 
according to the change of X in three sub graphs and in 
original graph. The corresponding intervention rule is 
shown under the figure. Because in each graph, Y and X 
exhibit logarithmic relationship, so Intensity = 
Correlation (Log(Y), Log(X)).  

From the intervention rules, it is obvious that the X 
and Y value exhibit strong logarithmic relationship. 
Also, it is easy to see that both the original graph and 
each sub graph have strong intervention intensities. 
However, the cluster coefficient of each sub graph is at 
different exponential scale, i.e. 1010, 109, 107. The 
intervention rule of the original graph can not reveal 
such subtle difference. Further more, the results accord 
with the theory of scale free network and show that 
those important nodes strongly interfere with the 
characteristics of complex network. 

4.2.  Intervention rules of time series 

The dataset is obtained from Santa Fe time series [3] 
data set B1. It contains the breath rate and instantaneous 
heart rate of a sleeping human suffering from sleep 
apnea. We take the former 10000 records and normalize 
both series to zero mean and unit variance.  
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(a) Intervention(hr→br)=(sacle=1, r1=0.79) 
Intervention(hr→br)=(sacle=1, r2=0.12) 

(b)  Intervention(hr→br)=(sacle=2, r1=0.74) 
Intervention(hr→br)=(sacle=2, r2=0.29) 

(c)  Intervention(hr→br)=(sacle=3, r1=0.71) 
Intervention(hr→br)=(sacle=3, r2=0.55) 

(d)  Intervention(hr→br)=(sacle=4, r1=0.56) 
Intervention(hr→br)=(sacle=4, r2=0.16) 

Fig. 6.  Intervention rules from heart rate to breath rate  

(a) Intervention(br→hr)=(sacle=1, r1=0.81) 
Intervention(br→hr)=(sacle=1, r2= -0.20) 

(b)  Intervention(br→hr)=(sacle=2, r1= -0.77) 
Intervention(br→hr)=(sacle=2, r2= -0.23) 

(c)  Intervention(br→hr)=(sacle=3, r1= -0.69) 
Intervention(br→hr)=(sacle=3, r2= -0.47) 

(d)  Intervention(br→hr)=(sacle=4, r1= -0.53) 
Intervention(br→hr)=(sacle=4, r2= -0.14) 

Fig. 7.  Intervention rules from breath rate to heart rate   
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 Intervention(br→hr)=(sacle= original, r1=0.07) 
Intervention(br→hr)=(sacle= original, r2= 0.02) 

 

Fig. 8.  Intervention rules from breath rate to heart rate of the 
original time series  

The original time series of the patient’s breath rate 
and heart rate are decomposed into 4 different frequency 
scales. According to definition 1, the intervention rule 
of time series is a two tuple Intervention(X → Y)= 
( Scale, Intensity).  

Figure 6 (a)~(d) show the change of breath rate with 
the change of heart rate at 4 different decomposition 
scales and the intervention rules from heart rate to 
breath rate. Figure 7 (a)~(d) show the change of heart 
rate with the change of breath rate at 4 different 
decomposition scales and the intervention rules from 
breath rate to heart rate. Figure 8 shows the intervention 
rules discovered in the original time series.  We use hr 
as the abbreviated form of heart rate and br as the 
abbreviated form of breath rate. The corresponding 
intervention rule is shown under the figure and Intensity 
= Correlation (br,hr).  

For each sub series, there are two types of intensities. 
r1 is the intensity using traditional correlation and r2 is 
the intensity using directional correlation. According to 
the intervention rules from heart rate to breath rate 
(Figure 6), although r1 in each decomposition scale are 
quite high, r2 is larger than the threshold 0.5 only in the 
3rd scale.  

According to the intervention rules from breath rate 
to heart rate (Figure 7), although r1 in each 
decomposition scale are quite high, r2 never go beyond 
the threshold 0.5 in all scales. 

Thus, it is rational to conclude that the intervention 
direction is mainly from heart to breath. The results 
accord well with the experimental results in research [4] 
And also, the intensity in the original time series for 
both r1 and r2 are quite weak. Thus, it will be more 
fruitful to mine intervention rule at different scale. 

4.3. Performance of Algorithms 

(a) (MMIRCN): Mining Multi-scale Intervention 
Rule from Complex Network 

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4
Log(X)

C
PU

 ti
m

e 
(m

in
ut

es

 

Fig 9. Performance of algorithms for MMIRCN 

Figure 9 depicts the increase of computing time with 
the increase of X (X is defined in table 2). In algorithm 
2, line 2 consumes the majority of the CPU time. It will 
traverse graph G’ |Sub_G| times (|Sub_G| is the number 
of nodes in Sub_G). G’ is the graph that don not contain 
those nodes with citation number larger than X. Thus if 
X is small, a lot of nodes will be remove from G to form 
G’. The computing time will be decreased.  
(b) (MMIRTS): Mining Multi-scale Intervention 

Rule from Time Series 
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Fig 10. Performance of algorithms for MMIRTS 

Figure 10 depicts the increase of computing time with 
the increase of time series’ length. MMIR denotes the 
MMIRTS algorithm          using traditional correlation. 
MMIR* denotes the MMIRTS algorithm using 
directional correlation. 

Because calculating both the directional correlation 
only need to scan the whole time series constant times, 
so the complexity of MMIRTS using traditional 
correlation and directional correlation are both O(N). N 
is the length of time series.  
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5. Related Work 

Intervention analysis is the common method to 
reveal relationships between objects in human as well as 
biological society. Data mining research community is 
just starting to pay attention to intervention analysis. 

Tang et al. [5] irstly introduced the concept and the 
tasks of intervention rules mining, including 
intervention correlation, intervention type and 
intervention algebra. Zhang et al [1] proposed the naive 
intervention rules mining method based on association 
rules. Yang [6] proposed the algorithm MIPES to mine 
interventions in parallel event sequences by calculating 
the transfer entropy between time series. Guyon [7] 
employed intervention to improve Bayesian causal 
network of human T cells. His main idea is interfering 
with the active or non-active status of proteins to 
measure their effect on the whole protein network.  
     Because this paper focuses on mining intervention 
rules from complex network data and time series data, 
the following will briefly describe the relative work in 
the two fields. 

Literatures [8~11] researched the hidden relationship 
between temporal sequences via pattern matching, such 
as biological, medical and economical time series. 
Several other works [12~15] are devoted to measure the 
strength and direction of information flow between 
simultaneously observed time series.  

In another aspect, multiple resolution analysis (MRA) 
[16] and wavelet transform [17] are widely used in time 
series analysis, such as dimension reduction or signal 
compression. However, as correlation can not indicate 
the direction of intervention, this study introduces 
directional correlation. 
     Multi-scale networks are a common in many social 
and biological complex networks. The early research 
results of [18] shows that the river networks is 
hierarchical and even exhibit fractural property. 
Cardiovascular network, the roots, leaf veins and 
branches of trees all exhibit fractural properties [19]. 
P.S. Dodds investigated the spreading of information 
over hierarchical networks [20]. He concluded that 
multi-scale networks are ultra-robust and scalable [21]. 
Slater’s research shows that the backbones many 
practical networks, such as traffic network, the network 
of provinces of a country, exhibit multi-scale properties 
[22]. Research [23] investigates the scaling and multi-
scale behavior of traffic network and uses wavelet to 
predict the incoming traffic.  Chun-Biu Li presents a 

scheme to extract a multi-scale state space network from 
a single-molecule time series to lift degeneracy in 
molecular study as much as possible [24]. Shino 
proposes new type of point-pattern analytical method to 
identify point agglomerations across multi-scale 
network-based clumps among distributed points along a 
network [25]. Qiao et al. discovered frequent trajectory 
patterns from multi-scale trajectory networks [26, 27]. 

However, although multi-scale network is wildly 
studied, the mining of intervention rules from those 
networks is leaving unconcerned. As the properties of 
different complex network vary a lot, the decomposition 
methods are different. Because this study focuses on 
decomposing the citation network, the width first 
traversing algorithm is adopted for decomposition. 

The organization of the remained sections is as 
follows. (1) Section 4 introduces how to mining multi-
scale intervention rules from complex network. (2) 
Section 5 introduces how to mining multi-scale 
intervention rules from time series data. (3) Section 6 
shows the multi-scale intervention rules discovered and 
the performances of the algorithms. (4) Section 7 
describe conclusions and future work. 

6. Conclusion and Future work  

This study aims to mine quantitative intervention 
rules from complex network and time series data. The 
main contributions include: (a) defined  new concepts of 
multi-scale intervention rules both for network and time 
series; (b) conducted decomposition to divide the 
original data into multiple scales; (c) proposed 
algorithms to mine intervention rules from those 
decomposed sub data. (d) conducted experiments to 
show that the proposed method successfully find 
intensive intervention rules.   

The future work is to apply the idea of multi-scale 
analysis to more interesting biological data such as 
human brain wave, micro array data of DNA. In 
addition, we will employ other intelligent information 
processing techniques as presented in [28-30] to mine 
intervention rules from Complex Systems. 
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