

A Software Behavior Trustworthiness Measurement Method based on Data Mining

Yuyu Yuan1, Qiang Han1,2
1. School of Computer Science, Beijing University of Posts and Telecommunications

XiTuCheng No.10, HaiDian Strict, Beijing, 100876, China
{yyy1012, nxhanq}@gmail.com

www.bupt.edu.cn
2. School of Computer Science and Engineering, Beifang University of Nationalities

WenChang, XiXia Strict, Yinchuan, Ningxia, 750021, China
www.nun.edu.cn

Abstract

This paper presents a congruence measurement method by partitions to apply software trustworthiness measures in
dynamic behavior feature datasets. The datasets are generated at software running time. And the method compares
the datasets with the static attribute feature datasets generated at software testing time. So this method can make
recommendations for users in services selection time under the environment of SaaS. The measurement method is
carried out in three stages: firstly, defining the concept of trust, software trustworthiness, static and dynamic feature
datasets with fundamental calculating criteria; secondly, providing a group of formulas to illustrate congruence
measurement approach for comparing the two types of feature datasets; lastly, giving an architecture supported by
software trustworthiness measurement algorithm to evaluate conceptualized hierarchical software trustworthiness.

Keywords: Software Behavior; Software Trustworthiness; Trust; Measurement Method; Data Mining.

1. Introduction

Trust is essential to most human transactions1 as well as
for Internet based software applications. Numerous
research papers have addressed trust and software
trustworthiness in recent years, but mainly from a
security point of view. A decision to trust is usually
associated with an explicit or implicit assessment of
risk1. Therefore we consider trust as a subjective
concept sourced from the human mind, and related to
this, software trustworthiness as an objective concept, a
comprehensive characteristic in Cloud Computing2,3.
Only if software trustworthiness is consistent and match
the expectation of users’ trust, users will accept the
services provided by software.

Testing4 and data mining techniques5 can be used to
analyze different types of software engineering data to
substantially assist in building software trustworthiness6,

7, 8. In this paper, we propose a measurement method for

software trustworthiness based on black box testing and
data mining techniques to support trustworthiness
measurement for Internet-based software9, 10.

The organization of the remainder of this paper is as
follows. Section 2 discusses related work. Section 3
describes measurement concepts. Section 4 presents a
group of formulas for congruence measurement of
distance between behavior feature datasets and attribute
feature datasets. Section 5 proposes a framework for the
trustworthiness concept hierarchies, measurement
architecture and measurement algorithm, including the
components it is comprised of. Finally, section 6
provides a conclusion and future research directions.

2. Related Work

There has been a lot of research on trust and software
trustworthiness related to evaluation and measurement.
Marsh formalized trust as a computational concept11.

International Journal of Computational Intelligence Systems, Vol. 4, No. 5 (September, 2011), 817-825

Published by Atlantis Press
 Copyright: the authors
 817

Yuyu Yuan, Qiang Han

Limam et al. described a framework for reputation-
aware software service selection and rating as a devise
for service recommendation to provide SaaS consumers
with different choices12. Chen et al. discussed the
confidence software developing trends and its key
technical points based on formal methods13. Fang et al.
proposed a software assurance model S3R(security,
safety, reliability, survivability) to describe the
discipline of software assurance14. Liu et al. introduced
the background, significance, current status, scientific
objectives, associated scientific problems and the
expected results of the major research plan of
trustworthy software set up by the National Natural
Science Foundation of China15. As the software
behavior has become more and more complex in the
open environment of Internet, measurement of software
behavior to evaluate software quality is the critical
difference from traditional measurement method in
closed environment. Qu put forward the new subject of
‘Software Behavior’ to describe software behavior16
systematically and detailed. Mei et al. discussed the
concept of software analysis, following main software
analysis technologies from the view of static analysis
and dynamic analysis17. Shen et al. summarized novel
software theories and technologies for trusted
computing18. In the area of software trustworthiness
measurement standards, Yuan et al. proposed a set of
recommended standards introducing the model for
trustworthiness of services platform as well as a
certification and monitoring scheme for trustworthy
service applications19. Trustworthy Service
measurement cannot lose support of service computing
technologies. For this aspect, Zhang et al. illustrated
foundations, and realization of services computing20,21.

Data mining, the automated or semi-automated
extraction of useful knowledge from large poorly
structured data sources, is a hot topic in many fields22,23.
Gay et al. showed in their paper that treatment learners
can outperform traditional numerical optimization
routines in isolating small sets of critical system
parameters24. As we have argued above, trust is a
subjective concept derived from human social networks.
Huang et al. presented an approach to a formal-
semantic-based calculus of trust and explored how to
develop decentralized public-key certification and
verification25,26 scheme. For trusted cloud computing,
Hwang suggested using layered trust-overlay networks

over cloud-based data centers to implement reputation
systems27. For causes of distrust in software, Zhan et al.
presented a software distrust chain28. Addressing the
problem of anticipating software execution effect and
behavior, Fang et al. proposed research methods for
behavior-aware networked software trustworthiness29.
Trustworthiness measurement has close relations to
services composition. Zeng et al. proposed a dynamic
evolution mechanism for trustworthy software based on
service composition30. Shao et al. discussed design,
assets evaluation and evidence collection mechanism for
software trustworthiness31,32,33. Bao et al. researched the
trustworthiness evaluation method for domain software
based on actual evidence generated from software
lifecycle34. Besides the above mentioned research, there
are several papers about trustworthiness and dynamic
evolutionary complexity35,36,37,38,39,40 as well as
reputation propagation41,42,43.

The difference between the above mentioned work
and our work is that they focused on trustworthiness
measurement or trust management, whereas our work
provides a detailed measurement concept with formal
trustworthiness calculation formulas and algorithms to
improve consistency and matching subjective trust
expectations with objective trustworthiness.

3. Measurement Concept

In this section, we introduce the formal definitions of
trust and trustworthiness, static and dynamic
trustworthiness data and measurement criteria.

3.1. Trust and Trustworthiness

Definition 1. Trust is a three-tuple 2

11 2(, ,)E
EE E t , where

： 1E is trustor, 2E is trustee, 2

1

E
Et is the value of trust

made by 1E upon 2E , where:
2

1
1 2 , 1 2 ; [0,1]     E

EE E E E t

Definition 2. Software Trustworthiness T is a
combination attribute consisting of sub-attributes
according to the requirement. [0,1]T  ; the greater the
value of T , the higher the trust in the software is.

Definition 3. Software Initialization Trustworthiness

()sitT s is set at software startup, () [0,1]sitT s ; greater
values of ()sitT s means higher trust the initialized
software is required.

Published by Atlantis Press
 Copyright: the authors
 818

 A Software Behavior Trustworthiness Measurement Method based on Data Mining

Definition 4. Software Trusted Threshold ()sttT s , which
is set by the user before software running, () [0,1]sttT s
, greater values of ()sitT s means higher trust in the
terminated software is required.

Definition 5. Software Runtime Trustworthiness ()srtT s
，which is measured at software run time by a software
measurement tool or agent according to its actual
behavior and evaluated by the user.

There is no doubt that trustworthy software running
condition should be () () () sit srt sttT s T s T s . Otherwise,
the software should be terminated.

3.2. Static and Dynamic Trustworthiness Data

From the view of software engineering, all of the
software’s initial attributes can be reflected in Software
Test Data (STD). It is well known that any partition of
STD can be uniquely associated with an equivalence
relation on STD . So we define STD as the static
trustworthiness data to reflect Software Initialization
Trustworthiness ()sitT s through equivalence partition of
Black Box Test before delivering the software.

On the contrary, all dynamic attributes of the
software can only be reflected by Software Executed
Data (SED). So we define SED as dynamic
trustworthiness data to reflect Software Runtime
Trustworthiness ()srtT s through an equivalence
partition approach to Black Box Test after delivering
software and comparing with equivalence partition on
STD .

Definition 6. Assume X is a finite collection of STD or
SED , we recall that an equivalence relation R on X is
a mapping  : 0,1 R X X . Therefore, we now
denote Rs as Static Data when Rs a real case of is R
defined above and collected from a software test
environment before it was delivered to use.

Definition 7. Taking the equivalence relation R as
Rule-Type information, according to Artificial
Intelligence Theory, we can apply introduce the theory
for software trustworthiness measurement and
evaluation. R represent in:

; [0 ((), (,)) 1] if R then H CF R CF H R
Where: H means trustworthiness of owning trustee.

The rule can be explained:
Given R occurred with probability ()CF R , trustee

is the software itself, the trustworthiness of rule (,)R H
with probability (,)CF H R . So the trustworthiness of
software is H with probability ()CF H .

We can calculate ()CF H through Criteria 1-5:
Criteria 1. According to the definitions above, ()CF H
can be calculated as follows:

() () (,) ()sitT s CF H CF H R CF R   (1)

Criteria 2. Given 1 2(...)    nR R R R , then

1 2() ((), (),..., ()) nCF R Min CF R CF R CF R (2)

Criteria 3. Given 1 2(...)    nR R R R , then

1 2() ((), (),..., ()) nCF R Max CF R CF R CF R (3)

Criteria 4. Given that 1 2, ,..., ,...,i nR R R R have same H , then Software Initialization Trustworthiness ()sitT s can be
represented by the combination trustworthiness ()CF H generated from STD as:

1 1

1 1

1
() () , () 0 .5, [1,]

() () () , () 0 .5, [1,]

()

 

 

              
               

 

 

nn

i i
i i

nn

i i
i i

i
i

C F H C F H C F H i n
in

C F H C F H C F H n C F H i n
i

C F H  
1

1
,









      


n

otherw ise
n

 (4)

4. Congruence Measurement by Partitions

In section 3 we have introduced the definition of STD
and SED associated with the ()sitT s calculated on STD .

In this section, we consider formulating congruence
measurement from the perspective of partitions on STD
and SED in order to calculate ()srtT s .

Published by Atlantis Press
 Copyright: the authors
 819

Yuyu Yuan, Qiang Han

 Assume that we have two partitions of the test space

X . According to the definition above, X is comprised

of:
   ,

1

Card R H

i
i

X R


  (5)

1
1

,..., , , ,
Tp

STD T Tp Ti Tj Ti
i

P R R R R i j R STD X


      (6)

1
1

,..., , , ,
Eq

SED E Eq Ei Ej Ei
i

P R R R R i j R SED X


      (7)

It is critical is to obtain a mapping Cong:

 0,1 STD SEDP P indicating the degree of congruence

or similarity between STDP and SEDP .

4.1. General Measure congruence

 Here we calculate the congruence between STDP and

SEDP using the underlying equivalence relations. We

note that if for x y we indicate by ,x y an unordered

pair, , ,x y y x , then if X has   (,)n Card R H

elements, then we have
()(1)

2
2 2

cn n n
n

  
  

  unordered pairs.

We now suggest a general measure of congruence

between partitions of STDP and SEDP which we express in

terms of their underlying equivalence relations.

(,) (,)
(,)

(,) (,)

_ (,)
 1

2

SED SED
U

STD SED
STD STD

U

STD SED

CF R x y CF R H
Cong P P

CF R x y CF R H

Diff Val P P

n






 
 
    
     




(8)

Here

_ (,) STD SEDD Diff Val P P is the number of pairs

that have different values in STDP and SEDP . Then we can

calculate the Software Runtime Trustworthiness ()srtT s

from the Software Initialization Trustworthiness ()sitT s

/() (,) () 1 ()

2

 
 
        
     

srt STD SED sit SED STD sit

D
T s Cong P P T s R T s

n

(9)

4.2. Measure congruence by partitions

In the subsection above, we have introduced a general

measure of similarity or congruence, between two

partitions on STD and SED using the underlying

equivalence relations. That formula (9) implies that we

should traversal all of the equivalence relations from the

STD and SED circularly. So the largest complexity of

the formula (9) is

    2
) | ,O Card R R H X .

We now consider the perspective of the partitions

themselves. Taking into account the formulas (6) and

(7), without loss of generality we can assume q p . If

q p we can augment the partition SEDP by adding

q p subsets 1 2 ...Ep Ep EqR R R     . Thus in the

following we assume the two partitions have the same

number of classes, q . We now introduce an operation

called a pairing of STDP and SEDP , denoted  ,STD SEDg P P ,

which associates with each subset TiR of STDP a unique

EiR from SEDP grouped according to  ,
i

R H X . We

then have that a pairing  ,STD SEDg P P is a collection of

q pairs,  ,Ti Eig P P . We now associate with each pairing

a score,  ,STD SEDg P P , defined as follows. Denoting

.g j Tj EjD P P  , for 1j  to q , we obtain:

    .
1

()
,

()

q
Ei

STD SED g j
j Ti

CF H
Score g P P Card D

CF H

 
  

 
 (10)

We will now use this to obtain congruence,

  ,
(,)

()
 STD SED

STD SED

Score g P P
Cong P P

Card X
 (11)

Then we can calculate ()srtT s from ()sitT s

() (,) () srt STD SED sitT s Cong P P T s (12)

Through analysis, the complexity of formula (12) is,

 () ()O Card STD Card SED , which is less than or

equal to the complexity of (,)STD SEDCong P P in formula

(17) because () ()Card STD Card X and

() ()Card SED Card X according to formula (6) and

(7).

Therefore, can we conclude that the performance of

formula (12) is much better than formula (9) just by

Published by Atlantis Press
 Copyright: the authors
 820

 A Software Behavior Trustworthiness Measurement Method based on Data Mining

their different complexity? Indeed, with the trend of

SaaS, more and more software components are coming

from third parties, so there no longer exists a steady and

closed STD . For this reason, the precondition of

formula (11) that cluster STD into the test space X

would visibly increase its complexity.

5. Measurement Framework

An important application of measuring congruence

between different partitions on the same test space X

proposed in section 4 is the trustworthiness concept

hierarchies44. In this section, we first conceptualize the

trustworthiness into a basic concept hierarchy chart with

congruence measurement formulas. Then the

measurement architecture and algorithm based on the

chart are presented.

5.1. Trustworthiness Concept Hierarchies

Assume that X is a finite collection of STD or SED . A

trustworthiness concept hierarchy is a collection of

partitions, 1 , ..., rP P . Here kP is called the thk level

partition. The fundamental property of the concept

hierarchy is that each class (granular or cluster) in a

lower level partition is fully contained in one class of

the next more coarse as we go up.

 Formally we have Matrix T as the collection of

partitions:

1 1 1 2 2 2

2 21 21 21 22 22 22 2 2 2 2 2 2

1 11 11 11 12 12

(1,1, /)

 .

: (, ,), (, ,),..., (, ,)

 .

: (, ,), (, ,),..., (, ,)

: (, ,), (,

 



Top

r r r r r r r rqr rqr rqr

q q q

P

P T r w c T r w c T r w c

P T r w c T r w c T r w c

P T r w T r w12 1 1 1 1 1 1,),..., (, ,)

 
 
 
 
 
 
 
 
   q q qT r w

(13)

We note that for m k we have m kq q . For any class

in the thk level, kjT , there exists a class in the thm level,

miT such that kj miT T . Then with m k we have for

any miT that
/mi k

mi kj
j S

T T


  where  / 1,...,mi kS qk . In

addition, every element miT in matrix represents one

 ,R H in formula (1) occurring with probability mir ,

weight miw and composition mode mic of its sublevel

classes. Every element miT has two components: Qand

H .  .mi miT Q Card T , .miT H means its value

contributes to     1 1mim j m jT T T  . Then we obtain the

formula as:

 /

1

1,
mi kCard S

kj mi
j

w c


  (14)

 
 

 
/

/
1

1 ,
mi kCard S

kj mi k mi
j

w Card S c


   (15)

 
 /

1

0 1,
mi kCard S

mi kj kj mi
j

r r w c


      (16)

 
 

 
/

/
1

0 ,
mi kCard S

kj kj mi k mi
j

r w Card S c


     (17)

Now we consider the three classic distribution charts

with highest probability of (13). The first is mapping all

partitions of STD and SED into x rows. The second is

mapping them into y columns. The third is mapping

them into x rows and y columns. Then formulas (18)-

(21) can represent the three classic distribution charts.

 
    1 /11

1
1

(,)





  
    
  

  
 

k i kk
SCard Pw

kj kj
k kj STD SED

k j

Cong w w Cong P P

(18)

 
  1 /()2

1
()

(,)





  
    
  

  

k i kSMax Lw

kj kj
k ij STD SED

ji Min L

Cong w w Cong P P

(19)

Published by Atlantis Press
 Copyright: the authors
 821

Yuyu Yuan, Qiang Han

3
1 2

/ 1 1

    
 
 

w
w w

SED STD
Rows Columns

Cong R Cong Cong (20)

3

() () 
w

srt sitT s Cong T s (21)

5.2. Measurement Architecture

The current subsection describes the architecture of the

measurement system. The component which provides

the initial interaction of the customer with the system is

the web-based user interface. It has functionalities for

uploading three classes of documents: STDP , SEDP , and

Concept Matrix T . For example, they may be uploaded

at company level, and continue to be initialized by the

Matrix Processor into the Partitions Processor stage.

After that stage, the three classes are stored in three

Repositories. Next, the Congruence Engine creates

/SED STDR as the trust ratio of SED and STD. Finally, the

Measurement Processor calculates ()sitT s , ()srtT s to

Recommender in order to give users recommendations.

The specific components of the architecture are

described in Fig.1, which illustrates the architecture.

Moreover, trust is a subjective concept, so it may

continuously evolve and be analyzed by the Reputation

Analyzer for revising recommendations more precisely

and correctly. We will specially discuss problems

related to Reputation Propagation in subsequent papers.

ST DP

SEDP
T

Fig.1 Measurement System Architecture

5.3. Measurement Algorithm

According to the formulas (1)-(21) presented above, we

now propose a measurement algorithm by integrating

the formulas. The aim is to archive a recommendation to

the users at services selection time according to

trustworthy software running condition in section 3.

Here the algorithm is illustrated as follows:

0: Initialization: ()sttT s , STDP , SEDP , Concept Matrix

T of Hierarchy Trustworthiness with every element’

component Qand H initialized to Zero.

Stage1: Calculate ()sitT s .

1: 1i j k  

2: for each partition TiR in STDP :

2: for each level partition kP inT :

3: for each class kjT in kP :

4: if    , ,Ti kjx y R x y T   

5:  . .kj kj TiT Q T Q Card R 

6: endif

7: endfor

8: endfor

9: endfor

10: 1j k 

11: for each level partitions kP inT :

12: for each class kjT in kP :

13: if        1 1. 0 & . &kj kjk i k iT Q T c T T    

14:      1 1. . .kjk i k iT H Min T H T r  

15: else if

16:        1 1. 0 & . &kj kjk i k iT Q T c T T    

17:      1 1. . .kjk i k iT H Max T H T r  

Published by Atlantis Press
 Copyright: the authors
 822

 A Software Behavior Trustworthiness Measurement Method based on Data Mining

18: endif

19: endfor

20: endfor

21: () .sit kT s T H

Stage2: Calculate ()srtT s

22: 1i j k  

23: for each partition EiR in SEDP :

24: for each level partitions kP inT :

25: for each class kjT in kP :

26: if    , ,Ei kjx y R x y T   

27: if . 0kjT Q 

28: 0 .kjT Q else

29:  . .kj kj EiT Q T Q Card R 

30: endif

31: endif

32: endfor

33: endfor

34: endfor

35: for each row and each column in T :

36: calculate
1


w

Cong .

37: calculate
2


w

Cong .

38: endfor

40: calculate /SED STDR of formula (16).

41: calculate
3w

Cong of formula (28).

42: calculate
3

() () 
w

srt sitT s Cong T s

Stage3: Generate Recommendation

43: if () () ()sit srt sttT s T s T s 

44: ' 'Recommending True .

45: else ' 'Recommending False .

46: output: Recommending .

Algorithm End.

6. Conclusion and Future Work

Many initiatives have been proposed to extract structure
and apply trustworthiness measurement to Internet-
based software. In this paper, a testing and data mining
based measurement method applying dynamic behavior
datasets and static attributes datasets for software
trustworthiness is proposed. The aim is to make
recommendations to users of whether or not the verified
software is running following consistently what it has
declared to do. The method complies with subjective
trust expectations of users; hence, the subjective trust
judgment is directly linked with the objective software
trustworthiness; this is the main new point of this paper.

In future work we include the development of a
measurement method for executing a client program in a
distributed computing environment to demonstrate its
performance. In addition, this paper is mainly applying
through Black Box Test to study external behavior
feature datasets. In the future, we plan to study software
internal behavior track datasets through Write Box Test
based on Stochastic Petri Net technology.

Acknowledgements

This work was supported by the National Natural

Science Foundation of China (90818006, 61010306008);

National Science and Technology Major Project of

China (2009ZX01039-001-002). National Basic

Research 973 program of China (2007CB311101).

Ningxia Natural Science Foundation of China

(NZ0955). Furthermore, we shall express our deep

thanks for the recommendation of Jorgen Boegh and the

anonymous viewers.

Published by Atlantis Press
 Copyright: the authors
 823

Yuyu Yuan, Qiang Han

References

1. V. G. Cerf, Trust and the Internet, IEEE Internet
Computing. 14(5) (2010) 95-96.

2. G. Pallis, Cloud Computing: The New Frontier of
Internet Computing, IEEE Internet Computing. 14(5)
(2010) 70-73.

3. M. Cusumano, Cloud Computing and SaaS as New
Computing Platforms, Communications of the ACM. 53(4)
(2010) 27-29.

4. D. R. Wallace and R. U. Fujii, Software Verification and
Validation: An Overview, IEEE Software, 6(3) (1989)
10-17.

5. R. R. Yager, Some Measures Relating Partitions Useful
For Computational Intelligence, International Journal of
Computational Intelligence Systems. 1(1) (2008) 1-18.

6. L. Liu and W. Shi, Trust and Reputation Management,
IEEE Internet Computing. 14(5) (2010) 10-13.

7. A. S. Patrick, Building Trustworthy Software Agents,
IEEE Internet Computing. 6(6) (2002) 46-53

8. R. S. Pressman, Software Engineering: A Practitioner
Approach (McGraw-Hill International, 6th edition, 2006).

9. R. Sandhu, The Technology of Trust, IEEE Internet
Computing. 6(6) (2002) 28-29.

10. H. Wang, Y. Tang, G. Yin and L. Li, Trustoworthiness of
Internet-based software, Science in China Series F:
Information Sciences, 49(6) (2006) 759-773.

11. S. P. Marsh, Formalising Trust as a Computational
Concept, doctoral thesis, University of Stirling, Scotland,
1994.

12. N. Limam and R. Boutaba, Assessing Software Service
Quality and Trustworthiness at Selection Time, IEEE
Transactions on Software Engineering. 36(4) (2010) 559-
574.

13. H. Chen, J. Wang and W. Dong, High Confidence
Software Engineering Technologies, Acta Electronic
Sinca, 31(12A) (2003) 1933-1938. (in Chinese with
English abstract).

14. B. Fang, T. Lu and C. Li, Survey of software assurance,
Journal on Communications, 30(2) (2009) 106-117. (in
Chinese with English abstract).

15. K. Liu, Z. Shan, J. Wang, J. He, Z. Zhang and Y. Qin,
Overview on Major Research Plan of Trustworthy
Software, Bulletin of National Science Foundation of
China, 22(3) (2008) 145-151. (in Chinese with English
abstract).

16. Y. Qu, Software Behavior (Publish House of Electronics
Industry, Beijing, CN, 2004). (in Chinese)

17. H. Mei, Q. Wang, L. Zhang and J. Wang, Software
Analysis: A Road Map, Chinese Journal of Computers.
32(9) (2009) 1697-1710. (in Chinese with English
abstract).

18. C. Shen, H. zhang, H. Wang, J. Wang, B. Zhao, F. Yan, F.
Yu, L. Zhang and M. Xu, Research and Development of

Trusted Computing, Sci. China Ser F-inf Sci, 40(2) (2010)
139-166. (in Chinese).

19. Y. Yuan, S. Witold and J. Boegh, Research on Key
Technologies of Software Trustworthiness (Publish
House of Electronics Industry, Beijing, CN, 2010).

20. L. Zhang and J. Zhang, Architecture-Driven Variation
Analysis for Designing Cloud Applications, in Proc. Int.
Conf. Cloud Computing,eds. L. Zhang (Bangalore, India,
2009), 125-134.

21. L. Zhang , J. Zhang and H. Cai, Services Computing
(Tsinghua University Press and Springer, Beijing, CN,
2007).

22. R. J. Hall, Editorial: data mining in software engineering,
Automated Software Engineering, 17(4) (2010), 373-374.

23. A. Garcia-Crespo, R. Colomo-Palacios, J. M. Gomez-
Berbis and M. Mencke, BMR: Benchmarking Metrics
Recommender for Personnel issues in Software
Development Projects, International Journal of
Computational Intelligence Systems. 2(3) (2009) 256-266.

24. G. Gay, T. Menzies, M. Davies and K. Gundy-Burlet,
Automatically finding the control variables for complex
system behavior, Automated Software Engineering, 17(4)
(2010), 439-468.

25. J. Huang and D. M. Nicol, A Formal-Semantics-Based
Calculus of Trust, IEEE Internet Computing. 14(5) (2010)
38-46.

26. J. Huang and D. M. Nicol, A Calculus of Trust and Its
Application to PKI and Identity Management, in Proc.
8th Symp. Identity and Trust on the Internet, eds. K.
Seamons (Gaithersburg, MD, 2009)

27. K. Hwang and D. Li, Trusted Cloud Computing with
Secure Resources and Data Coloring, IEEE Internet
Computing. 14(5) (2010) 14-22.

28. J. Zhan, X. Zhou and J. Zhao, Analysis of the Original
Cause of Software Distrust, in Proc. 2nd Int. Conf.
Software Engineering and Data Mining, eds. G. Kou, Y.
Peng, F. I. S. Ko, Y. Chen, T. Tateyama (Chengdu, China,
2010), pp. 240-245.

29. X. Fang, C. Jiang and X. Fan, Behavior-aware
Trustworthiness Study of Networked Software,
International Journal of Computational Intelligence
Systems. 3(5) (2010) 542-552.

30. J. Zeng, H. Sun, X. Liu, T. Deng and J. Huai, Dynamic
Evolution Mechanism for Trustworthy Software Based
on Service Composition, Journal of Software. 21(2)
(2010) 261-276. (in Chinese with English abstract).

31. Y. Liu, Z. Ma, X. He and W. Shao, Approach to
Transforming UML Model to Reliability Analysis Model,
Journal of Software. 21(2) (2010) 287-304. (in Chinese
with English abstract).

32. S. Cai, Y. Zou, L. Shao, B. Xie and W. Shao, Framework
Supporting Software Assets Evaluation on
Trustworthiness, Journal of Software. 21(2) (2010) 359-
372. (in Chinese with English abstract).

Published by Atlantis Press
 Copyright: the authors
 824

 A Software Behavior Trustworthiness Measurement Method based on Data Mining

33. L. Gu, Y. Guo, H. Wang, Y. Zou, B. Xie and W. Shao,
Runtime Software Trustworthiness Evidence Collection
Mechanism Based on TPM, Journal of Software. 21(2)
(2010) 373-387. (in Chinese with English abstract).

34. T. Bao, S. Liu and X. Wang, Research on
Trustworthiness Evaluation Method for Domain Software
Based on Actual Evidence, Chinese Journal of
Electronics. 20(2) (2011) pp195-199.

35. J. Pan, F. Xu, J. Lu, Reputation-Based Recommender
Discovery Approach for Service Selection, Journal of
Software. 21(2) (2010) 388-400. (in Chinese with English
abstract).

36. Z. Zheng, S. Ma, W. Li, X. Jiang, Z. Zhang and B. Guo,
Dynamical characteristic of software trustworthiness and
their evolutionary complexity, Science in China Series F:
Information Sciences, 52(8) (2009) 1328-1334.

37. Z. Zheng, S. Ma, W. Li, X. Jiang, W. Wei, L. Ma and S.
Tang, Complexity of software trustworthiness and its
dynamical statistical analysis methods, Science in China
Series F: Information Sciences, 52(9) (2009) 1651-1657.

38. W. Wang and G. Zeng, Trusted dynamical level
scheduling based on Bayes trust model, Science in China
Series F: Information Sciences, 50(3) (2007) 456-469.

39. B. Lang, A computational trust model for access control
in P2P, Science in China Series F: Information Sciences,
53(5) (2010) 896-910.

40. R. Zhu, Research on Key Technologies for Trustworthy
Service Composition, doctoral thesis, National University
of Defense Technology, China, 2009.

41. H. Hu, Research on Distributed Access Control Based on
Trusted Computing, doctoral thesis, University of
Science and Technology of China, China, 2009.

42. Y. Zhang, H. Chen, X. Jiang, H. Sheng and Z. Wu,
RCCtrust: A Combined Trust Model for Electronic
Community, Journal of Computer Science and
Technology, 24(5) (2009) 883-892.

43. X. Feng, J. Pan and W. Lu, A Trust-Based Approach to
Estimating the Confidence of the Software System in
Open Environments, Journal of Computer Science and
Technology, 24(2) (2009) 373-385.

44. National University of Defense Technology, Peking
University, Beihang University and CVICSE,
http://www.trustie.net .

Published by Atlantis Press
 Copyright: the authors
 825

