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Abstract

This paper investigates a novel approach to the design of two-dimensional recursive digital filters using
differential evolution (DE) algorithm. The design task is reformulated as a constrained minimization
problem and is solved by an Self-adaptive Mutation DE algorithm (SAMDE), which adopts an adaptive
mutation operator that combines with the advantages of the DE/rand/1/bin strategy and the DE/best/2/bin
strategy. As a result, its convergence performance is improved greatly. Numerical experiment results
confirm the conclusion. The proposed SAMDE approach is effectively applied to test a numerical example
and is compared with previous design methods. The computational experiments show that the SAMDE
approach can obtain better results than previous design methods.

Keywords: Two-dimensional recursive filters; Differential evolution; Self-adaptive mutation; Constrained
optimization.

1. Introduction

Multidimensional digital signal processing is one of
the important development directions of the digi-
tal signal processing. In the multidimensional sig-
nal processing, two-dimensional (recursive or non-
recursive) filters are the most widely used algorithm
or processor. During the last three decades, two-
dimensional (2-D) digital filter design has received
growing attention and has been applied in many ar-
eas such as digital image processing, seismic data
processing, pattern recognition, astronomy and ap-
plied physics, robotics and mechanical engineering,
etc [1], [2]. Moreover, two-dimensional filter math-

ematics can be used in grid methods for solving par-
tial differential equations, distributed control, and it-
erative learning control, etc.

The most popular design approaches for 2-D fil-
ters are based either on appropriate transformation
of 1-D filters [2-4], or on appropriate optimization
techniques [5-17]. One of the major problems un-
derlying the design task is to satisfy the stability
criterion for the filter transfer function. However,
most of the existing algorithms [3-10] may result in
an unstable filter. Although various techniques have
been proposed in order to overcome these instability
problems, the outcome is likely to be a system that
has a very small stability margin and therefore of no
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essential practical importance [5], [12], [13].

In recent years, intelligent optimization algo-
rithms as an alternative to deal with complex and
difficult real-world optimization problems are em-
ployed to solve the 2-D filter optimal design prob-
lem. V. M. Mladenov et al. used a continuous-time
neural network to the design of 2-D recursive fil-
ter [11]. N. E. Mastorakis et al. proposed a new
design method for two-dimensional recursive filters
using genetic algorithms [12]. J. T. Tsai et al. pro-
posed a hybrid Taguchi-genetic algorithm (HTGA)
to solve the design problem of 2-D recursive dig-
ital filters and obtained better results than previ-
ous design methods [13]. S. T. Tzeng proposed
an effective GA approach for designing 2-D real
FIR digital filters with complex-valued frequency
responses in [14]. In [15], W. Fang et al. intro-
duced a novel quantum-behaved particle swarm op-
timization (QPSO) algorithm and used to solve the
design problem of 2-D recursive digital filters. S.
Das and A. Konar [16] investigated a novel approach
to the designing of two-dimensional zero phase in-
finite impulse response (IIR) digital filters using a
new variant of PSO called MEPSO. J. T. Tsai et al.
[17] introduced a Taguchi-based immune algorithm
(TBIA) and applied to solve the design problem of
two-dimensional recursive digital filters.

Designing digital 2-D recursive filters is a multi-
parameter optimization problem, and there are nu-
merous local optima when the number of parame-
ters is large. Therefore, it is worthy to further ap-
ply an efficient evolutionary algorithm to solve the
digital 2-D recursive filter design problems. Differ-
ential evolution (DE) algorithm, developed by Storn
and Price [18,19], is a salient optimizer which can
be used in a broad variety of highly nonlinear and
complex optimization problems [20-21]. In 1st In-
ternational Contest on Evolutionary Computation in
1997, DE has evolved in an effort to improve upon
it’s the third place [20], and been one of the most
excellent EAs for solving the real-valued optimiza-
tion problems. The DE algorithm has gradually be-
come more popular and has been used in many prac-
tical cases such as control engineering, chemistry,
electromagnetic, robot [22-27], mainly because it
has demonstrated good convergence properties and

is principally easy to be understood.
The contribution of this paper is to propose a

novel DE algorithm to solve the 2-D recursive digi-
tal filters. In this work, the design task of 2-D recur-
sive filters is formulated as a constrained optimiza-
tion problem. The stability criterion is presented as
constraints to the minimization problem. Thus, a
generalized filter design framework has been illus-
trated, which is suitable for application of any global
optimization algorithm. An self-adaptive mutation
DE algorithm (SAMDE), which adopts adaptively
two different mutation operator, is presented to im-
prove the DE’s convergence properties over difficult
fitness landscapes. The effectiveness of the modi-
fied version is validated by using several classical
Benchmark functions and a specific design problem.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the filter
design methodology and its reformulation as a con-
strained minimization problem. In section 3, the DE
algorithm is presented briefly at first, and then the
SAMDE algorithm is introduced in detail. In section
4, numerical experiment is demonstrated to test the
effectiveness of the proposed approach. The appli-
cation of the proposed method to the present prob-
lem is described firstly in section 5, then, the results
of applying the proposed method to a specific design
problem and performance comparisons with other
optimization techniques are presented. Finally, the
paper is concluded in section 6.

2. Problem Formulation

Digital filters are broadly classified into two main
categories namely, finite impulse response (FIR) fil-
ters and infinite impulse response (IIR) filters. An
FIR filter is one whose impulse response is of finite
duration. Generally, the output of such a filter is cal-
culated solely from the current and previous input
values. On the other hand, an IIR filter is one whose
impulse response continues for ever in time. The
current output of such a filter depends upon previous
outputs. They are also termed as recursive filters.

Compared with FIR filters, frequency response
with narrow transition band can be easily realized
with IIR filters and this feature makes them suitable
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for a broad range of applications such as the model-
ing of random fields for image processing and com-
puter vision [16]. Another potential advantage re-
tained in IIR filters is that a given set of frequency
response characteristics typically may be met by an
IIR filter of considerably lower order than a corre-
sponding FIR design [2]. Since they are more chal-
lenging to implement and allow for higher degrees
of precision and practical efficiency, the 2-D IIR fil-
ter is selected as the focus of our proposed method-
ology. Our problem is now formulated as follows.

For design purposes, we consider the following
2-D transfer function for our filter [12-13]:

H(z1,z2)= H0

L
∑

i=0

L
∑
j=0

ai jzi
1z j

2

K
∏

k=1
(1+bkz1 + ckz2 +dkz1z2)

,a00 = 1.

(1)
where ai j, bk, ck and dk are coefficients of the filter,
L and K are orders of the numerator and denomina-
tor, respectively, with K � L, H0 is a constant. The
variables z1 and z2 can be interpreted as complex
indeterminants in the discrete Laplace transform (z
transform).

Consider Md, the desirable amplitude response
of the 2-D filter as a function of the frequencies
ω1 and ω2, (ω1,ω2 ∈ [0,π]). The design prob-
lem is to determine the coefficients in the numera-
tor and denominator of Eq. (1) in such a fashion
that M(ω1,ω2)=H(e jω1 ,e jω2) follows the desired re-
sponse Md(ω1,ω2) as closely as possible. Such
an approximation of the desired response can be
achieved by minimizing

J = J(ai j,bk,ck,dk,H0)

=
N1

∑
n1=0

N2

∑
n2=0

[|M(ω1,ω2)|−Md(ω1,ω2)]p (2)

where ω1 = (πn1/N1), ω2 = (πn2/N2), and p is an
even positive integer (usually p=2 or p=4).

Eq.(2) can be restated as

J =
N1

∑
n1=0

N2

∑
n2=0

[∣∣∣∣M(
πn1

N1
,
πn2

N2
)
∣∣∣∣−Md(

πn1

N1
,

πn2

N2
)
]p

(3)

Hence, the aim is to minimize the difference be-
tween the actual and desired amplitude response
of the filter at N1 ×N2 points. For bounded input
bounded output (BIBO) stability the prime require-
ment is that the z-plane poles of the filter transfer
function should lie within the unit circle. Since the
denominator contains only first-degree factors, it is
known that the stability conditions are given by [1-3]

|bk + ck|−1 < dk < 1−|bk − ck| , k = 1,2, · · · ,K,

or
|bk + ck|−1 < dk, k = 1,2, · · · ,K,

dk < 1−|bk − ck| , k = 1,2, · · · ,K. (4)

Thus, the design of 2-D recursive filter is equivalent
to the following constrained minimization problem:

minimize

J =
N1

∑
n1=0

N2

∑
n2=0

[∣∣∣∣M(
πn1

N1
,
πn2

N2
)
∣∣∣∣−Md(

πn1

N1
,
πn2

N2
)
]p

(5)
subject to the constraints

|bk + ck|−1 < dk, k = 1,2, · · · ,K,

dk < 1−|bk − ck| , k = 1,2, · · · ,K, (6)

where N1, N2, and K are given positive integers, and
p is an even positive integer. Without loss of gen-
erally let us assume K=2, choose the values p=2,
N1=50, and N2=50, the corresponding constrained
optimization problem (5) becomes

minimize

J =
50

∑
n1=0

50

∑
n2=0

[∣∣∣M(
π
50

n1,
π
50

n2)
∣∣∣−Md(

π
50

n1,
π
50

n2)
]2

(7)
subjected to the constraints imposed by inequalities
(6) with k=1, 2.

There are 15 parameters in the present problem
and represented by the vector as

X=(a01,a02,a10,a11,a12,a20,a21,a22,b1,b2,c1,c2,
d1,d2,H0)T

In [11], the problem has been tackled using neu-
ral networks. In [12] and [13], a binary coded GA
and a hybrid GA are attempted to solve this problem.
It is also been optimized by a quantum-behaved PSO
and a modified PSO algorithm in [15] and [16], re-
spectively. In this paper, a much better solution has
been obtained using the improved DE algorithm.
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3. Self-adaptive Mutation DE Algorithm

3.1. Basic DE Algorithm

DE is a simple yet powerful evolutionary al-
gorithm for global optimization, which uti-
lize NP D-dimensional parameter vectors X

t =
{Xt

1,X
t
2, · · · ,Xt

NP} as a population for each gen-
eration t, NP is the population size, and Xt

i =
(xt

i1,x
t
i2, · · ·xt

iD)(i = 1, · · · ,NP) represents the pa-
rameter vector to be optimized. The initial pop-
ulation is chosen randomly and should cover the
entire parameter space. At each generation, DE em-
ploys both mutation and crossover to produce one
trial vector for each target vector. Then, a selec-
tion phase takes place, where each trial vector is
compared to the corresponding target vector. The
better one will enter the population of the next gen-
eration. For each target vector Xt

i , a mutant vector
Vt

i = (vt
i1,v

t
i2, · · · ,vt

iD) is generated as

Vt
i = Xt

r1
+F · (Xt

r2
−Xt

r3
) (8)

where F > 0 is a real parameter, called mutation
constant or difference vector scale factor, which
controls the amplification of the difference vector
(Xt

r2 − Xt
r3) so as to avoid search stagnation. Ac-

cording to Storn and Price [18], the F is set in (0, 2].
r1, r2, r3 are indexes, randomly selected from the set
{1,2, ...,NP}. Note that indexes must be different
from each other and from the running index i so that
NP must be a least four.

The DE algorithm has several various strategies
based on the individual to be perturbed, the num-
ber of difference vectors used in the mutation pro-
cess and the type of crossover scheme. The different
strategies can be denoted as DE/x/y/z[18,19], where

x specifies the individual to be perturbed. It can
be “rand” or “best”. “rand” means a randomly se-
lected individual, and “best” for the individual with
the best fitness from the current population.

y is the number of difference vectors for pertur-
bation of x.

z stands for the type of crossover scheme, which
can be “bin” or “exp”. “bin” means crossover is due
to independent binomial experiments, “exp” stands
for crossover is performed as exponential experi-
ments.

So the above mentioned strategy (Eq. (8)) can be
denoted as DE/rand/1/bin, which is the standard or
basic and widely used strategy.

Following the mutation phase, the crossover op-
erator is applied on the population. For each mutant
vector Vt

i , a trial vector Ut
i = (ut

i1,u
t
i2 · · · ,ut

iD) is gen-
erated, using the following scheme.

ut
i j =

{
vt

i j, rand( j) � CR or j = randn(i)
xt

i j, rand( j) > CR and j �= randn(i)
(9)

where j=1, . . . , n. rand( j) is the jth evaluation of
a uniform random number generator within [0, 1].
CR is a crossover probability constant in the range
[0, 1], which has to be determined previously by the
user. randn(i) ∈ (1,2, ...,n) is a randomly chosen in-
dex which ensures that Ut

i gets at least one element
from Vt

i . Otherwise, no new parent vector would be
produced and the population would not alter.

To decide whether the trial vector Ut
i should be a

member of the population comprising the next gen-
eration, it is compared to the corresponding target
vector Xt

i , and the greedy selection strategy is used
in DE. The selection operator is as following.

Xt+1
i =

{
Ut

i , if f (Ut
i ) < f (Xt

i )
Xt

i , otherwise
(10)

where f is the objective function, and the minimiza-
tion problem is considered here.

With the members of the next generation thus se-
lected, the evolutionary cycle of the DE repeats until
a stopping criterion is satisfied.

3.2. Self-adaptive Mutation Operator

Among the variants of DE, those strategies with
“best” as the individual to be perturbed have fast
convergence rate and good local search ability, but
they will reduce the diversity of the population and
lead to premature convergence. However, those
strategies with “rand” as the individual to be per-
turbed are good for keeping diversity of the whole
population and global exploration ability, but will
decelerate the convergence rate seriously. Obvi-
ously, the DE/rand/1/bin strategy has good global
search ability since its base vector of mutation vec-
tor is randomly selected in the population. One
of highly beneficial method of DE is the strategy
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DE/best/2/bin [18], which uses the best individual of
the current population as the vector to be perturbed,
so it has powerful local search ability and fast con-
vergence property. A good optimization algorithm
should be such one which has the global exploration
ability to find as many as possible potential global
optimizations at the beginning stage and the local
exploitation ability at the last stage to improve pre-
cision of the solution obtained. Thus, an adaptive
mutation operator combined with the advantages
of strategies of DE/rand/1/bin and DE/best/2/bin is
proposed in this paper. The novel mutation strategy
is as the following.

Vt
i =

{
Xt

r1 +F(Xt
r2 −Xt

r3),if rand < 1− (t/T )2

Xt
b +F(Xt

r1 −Xt
r2 +Xt

r3−Xt
r4),otherwise

(11)
where Xt

b is the individual with the best fitness from
the current population, rand is an uniform random
number generator within [0, 1], t is the current evo-
lution generation, and T is the maximal generation.

The new mutation operator shows that at the
beginning stage, the strategy of DE/rand/1/bin has
more chance to be used, the diversity of the popula-
tion and the chance to get into the global optimiza-
tion are improved greatly. With the evolution going
on, the probability of DE/best/2/bin strategy to be
selected is increased. Consequently, the local search
ability is enhanced and the accuracy is improved,
the convergence rate is also speeded up. All in all,
the new mutation strategy can keep the balance be-
tween the global exploration and local exploitation,
and then improve the convergence rate and accuracy.

3.3. Procedures of the SAMDE Algorithm

The proposed SAMDE algorithm is summarized as
follows.

Step1: Specify parameters of the SAMDE algo-
rithm: population size NP, difference vector scale
factor F , crossover probability constant CR, the
maximum number of generations T ; initialize ran-
domly the individuals of the population and the trial
vector in the given searching space. Set t=0.

Step2: Evaluate the fitness value of each indi-
vidual in the current population, and find the best
fitness and corresponding best individual xtb in the

current population.
Step3: If the stopping criteria are satisfied, then

go to step 8. Otherwise, do the next steps.
Step4: Generate a mutant vector according to the

new mutation operator (Eq.(11)) for each individual.
Step5: According to Eq.(9), do the crossover op-

eration and yield a trial vector.
Step6: Do the selection operation in terms of

Eq.(10) and generate a new population.
Step7: t = t+1, return to Step2.
Step8: Output the optimal solution and stop.

4. Numerical Experiment

To demonstrate the effectiveness of the adaptive
mutation operator, a comparison among SAMDE,
DE/rand/1/bin and DE/best/2/bin is carried out in
this section. Four classic benchmark functions are
used to estimate the performance of the proposed
SAMDE algorithm. The variety of dimensions and
functional forms make it possible to fairly assess
the effectiveness, efficiency and accuracy of the pro-
posed approach. The test functions are as following.

Schaffer

f1 = 0.5−
sin2

√
x2

1 + x2
2 −0.5

(1+0.001(x2
1 + x2

2))2
, xi ∈ [−100,100]

(12)
Rosenbrock

f2 =
30

∑
i=1

[100(xi+1 − x2
i )

2 +(xi −1)2], xi ∈ [−50,50]

(13)
Rastrigin

f3 =
30

∑
i=1

[x2
i −10cos(2πxi)+10], xi ∈ [−5.12,5,12]

(14)
Griewank

f4 =
1

400

30

∑
i=1

x2
i −

30

∏
i=1

cos(
xi√

i
)+1, xi ∈ [−30,30]

(15)
In our experiments, the following parameters are

used. The mutation constant Fr of DE/rand/1/bin
and Fb of DE/best/2/bin are the same, Fr=Fb=0.5, the
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crossover probability constant CRr of DE/rand/1/bin
and CRb of DE/best/2/bin are 0.1 and 0.9, respec-
tively. Our decision for using those values is based
on the balance between the global exploration and
local exploitation and proposed values from litera-
ture [18-21]. Also, these values were determined
after performing an extensive set of experiments.
The population size is 30 for f1, 100 for f2 ∼ f4.
The maximum number of generations is 300 for f1,
500 for f2, 2000 for f3 ∼ f4. Experiment condi-
tion is: AMD Athlon 3400+ CPU, 512M Memory,
Windows XP operation system, all the program is
realized in Matlab. For fair comparison, all algo-
rithms used the same population size and maximum
function evaluations for each test function. Table 1
summarizes the average results and rate of success-
ful optimization of 50 independent runs for each test
function. If the error between theory optimum and
experiment result is less than 10−4, it is thought that
the algorithm get the optimum.

From the Table 1, it can be observed that the av-
erage best result obtained by SAMDE is more ac-

curacy than those obtained by DE/rand/1/bin and
DE/best/2/bin. In 50 independent runs, SAMDE
has higher rate of successful optimization for each
test function than DE/rand/1/bin and DE/best/2/bin,
hence the global convergence ability of SAMDE is
better than the two DE variants. Fig.1(a)∼(d) are
average best fitness curves of 50 independent runs.
To show the difference further clearly, logarithm op-
eration is used for the vertical axis of Fig.1(b)∼(d).
Observing Fig.1, we can see that at the beginning
stage there is more chance to select the strategy
of DE/rand/1/bin, SAMDE has similar convergence
performance of DE/rand/1/bin. While with the evo-
lution process going on, the chance to select the
strategy of DE/best/2/bin is increased and the con-
vergence speed of SAMDE is accelerated.

According to above experiment results we can
claim that the new mutation strategy can keep the
balance between the global exploration and local
exploitation, SAMDE has obviously better conver-
gence speed, global convergence rate and solution
accuracy than DE/rand/1/bin and DE/best/2/bin.

Table 1. Average results and rate of successful optimization of
50 independent runs.

SAMDE DE/rand/1/bin DE/best/2/bin

function Mean Std RS Mean Std RS Mean Std RS
f1 0.999987 7.20e-5 98 0.998399 2.71e-3 67 0.993695 4.70e-3 44
f2 1.9513e-8 4.30e-8 100 1.0774e-4 4.47e-5 79 1.2548e-2 1.35e-2 35
f3 1.332e-15 1.60e-15 100 4.0056e-14 4.55e-14 100 8.9401e+1 6.09e+1 0
f4 2.8402e-8 4.49e-8 100 3.3172e+1 1.18e+1 0 1.512158 1.96859 62

(MB is mean best, STD is standard deviation, RS is rate of successful optimization.)
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Fig. 1. Average best fitness curves of 50 runs for f1 ∼ f4.

5. Illustrative example and comparisons

In this section, we adopt the same example to com-
pare the performance of our presented SAMDE ap-
proach with the performance of some intelligent
computation techniques such as Neural Networks
(NN) [11], genetic algorithm (GA) [12], particle
swarm optimization (PSO) [16] and Taguchi-based
immune algorithm (TBIA) [17]. Moreover, the re-
sult of the traditional method (Lp) given in [5] is
also compared with the result of SAMDE. There
is often a trade-off between result and complex-
ity. Therefore, for fair performance comparison, the
same function evaluations (FEs) as the compared al-
gorithms (except for NN and Lp) was used in the
experiment.

5.1. Handling constraints

The design of 2-D digital IIR filter is essentially
a multi-parameter optimization problem with con-
straints. For optimization problems with constraints,
the penalty-function approach is frequently used to
handle constraints. Here a penalty-parameterless
constraint-handling approach is used to handle con-
straints [27]. A solution i is said to be preferred to a
solution j, if any of the following conditions is true.

(a) Solution i is feasible and solution j is not,
(b) Solutions i and j are both infeasible, but so-

lution i has a smaller overall constraint violation,
(c) Solutions i and j are feasible and solution i

has better objective function value than solution j.
The effect of using this method is that any feasi-

ble solution has a preference than any infeasible so-
lution. Between two feasible solutions, the one with
better objective function value is preferred. How-
ever, among two infeasible solutions, the solution
with a smaller constraint violation has a higher rank.
This constrained-handling principle does not change
the computational complexity of the SAMDE.

5.2. Performance metrics

The performance of the 2-D IIR filters designed
here, are evaluated in terms of the following two
metrics:

(1) Pass-band magnitude ripple

epmr = ||H(e jω1,e jω2)|−1|, ω1,ω2 ∈ [0,ωp] (16)

(2) Stop-band attenuation

A(ω1,ω2) =

−20log10 |H(e jω1 ,e jω2)|, ω1,ω2 ∈ [ωs,π] (17)

where ωp and ωs are the pass-band and stop-band
frequencies, respectively. For a good design, the
maximum pass-band ripple should be low enough
to ensure a distortionless production of the output
signal. On the contrary, the minimum value of stop-
band attenuation should be large in order to ensure
the elimination of the undesired frequency compo-
nents to a high degree.
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5.3. Experiment and results

Let us consider an example of the design problem,
where the user-specification for the desired circular
symmetric low-pass filter response is given as

Md(ω1,ω2)=

⎧⎪⎪⎨
⎪⎪⎩

1,
√

ω2
1 + ω2

2 � 0.08π,

0.5, 0.08π <
√

ω2
1 + ω2

2 � 0.12π,

0, otherwise.
(18)
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Fig. 2. Desired amplitude response of the 2-D filter.

This example refers to a low-pass filter with a
small area of pass-ability. We have to give more em-

phasis in this small area than the other areas as in
[12]. Hence, in the present design method, in order
to give also more emphasis in the passable area of
the filter, we introduce weight factors in Eq.(5). We
use a weight 100 for n1=0, n2=0, e.g., for the point
ω1 = 0, ω2 = 0, while the weights for other 2600
points are 1. A similar preference for the low fre-
quencies has been made in [12]. Fig. 2 shows the
desired amplitude response Md(ω1,ω2).

In our experiments, the following parameters are
used. As suggested in [16], we select the initial
value of the filter parameters randomly from the in-
terval (-3, 3). In case of the proposed SAMDE al-
gorithm, the same mutation constant and crossover
probability constant are used as section 4. The pop-
ulation size is 50, and the maximum number of gen-
erations is 1000. That is 50,000 FEs, the same as GA
[12], PSO [16] and TBIA [17] for fair performance
comparison. Moreover, the difference between the
actual and the desired amplitude response of the fil-
ter (J) is considered as the fitness function. The vec-
tor X obtained through the use of the SAMDE is

X=[1.83831, -1.16632, 1.44850, -2.47933, -
0.036934, -0.79494, -0.42047, 2.9423, -0.89135,
-0.89205, -0.89011, -0.89328, 0.80637, 0.81008,
0.00030263]T .

Table 2. Performance comparison of the derived filters.

Performance metrics SAMDE TBIA [17] MEPSO [16] GA [12] NN [11] Lp [5]
Fitness function J 2.4555 2.7761 5.7362 5.3083 3.6698 3.604
Maximum epmr 0.1630 0.2976 0.2991 0.5905 0.2549 0.2708
Minimum A(ω1,ω2) 29.161 29.158 19.628 17.434 19.141 18.953

Table 2 shows the performance comparison of
the derived filters in terms of the performance met-
rics mentioned in section 5.2. From Table 2 we can
see that SAMDE obtains lower value of cost func-
tion and lower value of maximum pass-band mag-
nitude ripple than other algorithms, which means
that, compared to other five algorithms, SAMDE
has better convergence performance, and the filter
obtained by SAMDE has minimum distortion pro-
duction of output signal. Regarding to the minimum
stop-band attenuation metric, SAMDE obtains the

highest value, that is the filter obtained by which has
better ability to eliminate the undesired frequency
components. From the Table 2, it can be observed
that the method MEPSO in [16] generated the largest
value of cost function, while the method GA in [12]
yielded the smallest value of minimum stopband at-
tenuation and the largest value of maximum pass-
band magnitude ripple.

The amplitude responses |M(ω1,ω2)| of the con-
sidered 2D-filter using different methods are shown
in Fig.3. From the amplitude responses of the de-
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signed filters in Fig.3, it can be seen that the better
filter, which has desirable coefficients in the trans-
fer function, has smaller difference between the ac-
tual and the desired amplitude responds of the filter
and the flatter shape in the stopband. However, the
worse filter has large error at low frequencies and the
special cross shape in the stopband. A closer look

at these figures reveals that the proposed SAMDE
algorithm yields a better approximation of the de-
sired response as compared to works presented in
[5], [11], [12], [16] and [17]. The ripple in the
stop-band of Fig.3(a) is much less as compared to
Fig.3(b)∼(f).
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(b) Lp technique in [5]
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(c) Neural Network method in [12]
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(d) GA-based method in [13]
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(e) MEPSO method in [17]
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(f) TBIA method in [18]

Fig. 3. Comparison of the amplitude response |M(ω1,ω2)|
of the considered 2-D filter.
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6. Conclusions

In this paper, the SAMDE approach has been pre-
sented to design the 2-D recursive digital filter. The
SAMDE approach adopts an adaptive mutation op-
erator that combines with the advantages of the
DE/rand/1/bin strategy and the DE/best/2/bin strat-
egy. This new mutation strategy can keep the bal-
ance between the global exploration and local ex-
ploitation, and then improve the convergence rate
and accuracy of the DE algorithm. In the studied
problem of designing a 2-D recursive digital filter,
there are many parameters and numerous local opti-
mal and that are challenging enough for evaluating
the performance of the proposed SAMDE approach
and performance of previous approaches. A specific
example of the design problem shows that compared
to the methods of NN in [11], GA in [12], MEPSO
in [16] and TBIA in [17], which, to our knowledge,
are the most recent and the best-known methods to
date, the proposed SAMDE approach can yield a
better approximation of the desired response. Fur-
thermore, the filter obtained has a reasonably good
stability margin since we introduce the desired sta-
bility as appropriate constraints.
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