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Abstract

Feature selection is an important technique for dimension reduction in machine learning and pattern
recognition communities. Feature evaluation functions play essential roles in constructing feature se-
lection algorithms. This paper introduces a new notion of knowledge granularity, called conditional
knowledge granularity, reflecting relationship between conditional attributes and decision attribute. An
evaluation function to measure significance of conditional attributes is proposed and equivalent character-
ization of attribute reduction is established based on the conditional knowledge granularity. An optimal
algorithm for feature selection is developed on the basis of the proposed evaluation function. Further-
more, a novel approach to performing feature selection in an inconsistent decision system is put forward
through establishing a rough communication between the inconsistent decision system and a consistent
decision system. Simulated experiments verifies feasibility and efficiency of the proposed technique.

Keywords:Conditional knowledge granularity, Rough sets, Attribute reduction, Feature selection, Rough
communication.

1. Introduction

As a very popular mathematical tool to deal with
incomplete, inexact and vague knowledge, rough
set theory29 was originated in 1982 and has at-
tracted much attention from theory and application
domains. Various extensions of rough sets, such as
variable precision rough sets54, rough fuzzy set3,
fuzzy rough sets5,25,52, etc., have been developed

to meet their applications in decision support sys-
tems 9,24, image processing6,32, attribute reduc-
tion 43,47, feature selection18, data mining36, neural
computing53, conflict analysis31, knowledge dis-
covery12,22, rule extracting42, fault prognosis2, in-
formation communication44, classifier designs15,
and so on.

Among applications of rough sets, attribute re-
duction is one of the most essential and useful tech-
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niques of data analysis and processing in machine
learning26, pattern recognition11,41, and artificial
intelligence19. Since redundant information usu-
ally covers a number of attributes or features in real
world applications, which may confuse learning al-
gorithms, cause distinguish slowdown in learning
process and increase risk of learned classifiers to
over-fit training data50, removing superfluous or ir-
relevant features is necessary in classification mod-
eling. The aim of attribute reduction focuses on so-
lution to such a problem and obtains a compact data
set preserving the same discrimination capability as
the original one.

In rough set theory, there are two basic ap-
proaches to finding attribute reducts of an informa-
tion system. One is based on discernibility matri-
ces39. All reducts of attribute set can be obtained
by means of this method. However, it was proved
that finding all reducts or finding an optimal reduct
(a reduct with the smallest number of attributes) is
an NP-complete problem1,46. Another method is
to achieve an approximate reduct where the selected
attributes have higher significance degrees than the
others by an appropriate optimal algorithm. This
method is dynamic and is referred to as feature se-
lection technique38.

A key issue on feature selection lies in establish-
ing an efficient criterion, called an evaluation func-
tion, to assess quality of attributes. The evaluation
function based on dependency is the most widely
used one30. It measures the proportion of the num-
ber of samples in positive regions of classification
in the whole universe and the corresponding fea-
ture selection strategy has been successfully applied
in many domains, such as fuzzy rough sets based
feature selection4,13,17,38, neighborhood rough sets
based feature selection14 and tolerance rough sets
based feature selection28. However, this evaluation
function is not always effective in finding a reduct
of information system, see Example 1 for detailed il-
lustration. It is, therefore, necessary to develop other
evaluation functions to measure significance of at-
tributes. Mutual information based evaluation func-
tion is such a classical uncertainty measure applied
to feature selection.

Mutual information reflects relevance between

conditional attributes and decision one. The induced
evaluation function has been extensively applied to
fuzzy rough sets based feature selection37,48, vari-
able precision rough sets based feature selection8,
dominance rough sets based feature selection16,
rough sets and Bayesian networks based feature se-
lection 40, dynamic mutual information based fea-
ture selection23, and normalized mutual information
based feature selection7. However, mutual infor-
mation of knowledge relies strongly on prior proba-
bility of knowledge that is unknown in information
systems. In practice, the prior probability has to be
replaced by posterior probability. Errors will be in-
evitably caused in feature selection and the classifi-
cation performance will decrease in machine learn-
ing.

The concept of information granularity, initialed
by L.A. Zadeh51, regards discontinuous informa-
tion as a mass of information granularity. It reflects
the degree of legibility of information. The notion
of granularity of knowledge or knowledge granu-
larity, derived from information granularity, can de-
scribe classification performance of knowledge and
has been extensively applied to feature selection in
information tables and evaluation of decision per-
formance20,21,33,34,35. However, it cannot be used
directly to perform attribute reduction or feature se-
lection in decision systems.

In order to extend the concept of knowledge
granularity from information tables to decision in-
formation systems, a new notion of knowledge gran-
ularity, called conditional knowledge granularity, is
introduced to characterize relationship between two
attribute subsets. An evaluation function is devel-
oped based on the new notion to assess significance
of features in consistent decision systems to perform
attribute reduction and feature selection. Equivalent
characterizations for attribute reduction are estab-
lished in information systems as well as in incon-
sistent decision systems. An optimal algorithm of
feature selection is designed according to the pro-
posed evaluation function.

It is well-known that inconsistent decision sys-
tems usually appear in data mining and machine
learning community. Unfortunately, the proposed
method of feature selection cannot be directly used
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in inconsistent decision systems. This paper designs
a rough communication44 between an inconsistent
decision system and a consistent decision systems
to realize the problem of feature selection in an in-
consistent decision system. Such a mapping from an
inconsistent decision system to a consistent decision
system transforms the problem of finding a reduct
of inconsistent decision system to that of finding a
reduct of the induced consistent decision system.

The rest of this paper is organized as follows.
Section 2 reviews some basic concepts on rough
sets, as well as the method of feature selection based
on dependency. In Section 3, the notion of con-
ditional knowledge granularity is introduced in in-
formation systems. Its properties are wholly in-
vestigated. Section 4 concerns the issue on fea-
ture selection based on the proposed conditional
knowledge granularity in consistent decision sys-
tems. An equivalent characterization of attribute re-
duction and an optimal algorithm for feature selec-
tion are established in decision information systems.
Section 5 considers the problem of feature selection
in inconsistent decision systems. A rough communi-
cation between an inconsistent decision system and
a consistent decision system is designed to deal with
this problem. Experiments and analysis are shown
in Section 6 and conclusions follow in Section 7.

2. Preliminaries

We firstly recall some basic concepts on rough sets.
An information system or an information table49 is
a four-tupleS= (U ,A,V , f ) satisfying

(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes or fea-

tures;
(3) V = ∪a∈AVa andVa is the value set of attributea;

and
(4) f is a mapping fromU×A toV such that, for any

x∈U and for anya∈ A, f (x,a)∈Va ⊆V.

For any subsetB of attribute setA, an indiscerni-
bility relationRB onU is defined as

RB = {(x,y)∈U×U | f (x,a) = f (y,a),∀a∈ B}

It is obvious thatRB is an equivalence relation
induced byB and we denote by[x]B the equivalence
class ofx with respect toRB. U/RB = {[x]B | x∈U}
is therefore a partition ofU induced byRB, denoted
by U/B if there is no confusion arisen. Each equiv-
alence relationRB, or alternatively, the subsetB, is
called a piece of knowledge inS.

For a subsetX⊆U , the lower approximation and
the upper approximation ofX with respect to knowl-
edgeB are, respectively, defined by

RB(X) = {x∈U | [x]B ⊆ X}
RB(X) = {x∈U | [x]B∩X 6= /0}

RB(X), denoted also byPosB(X), is called the
positive region ofX with respect toB, whereas
U \RB(X) is the negative region, whereX \Y de-
notes the set minus ofX by Y. If RB(X) 6= RB(X),
X is referred to be a rough set inS= (U ,A,V , f )
and it can be represented generally by the pair
(RB(X) ,RB(X)). BNB(X) = RB(X) \RB(X) is re-
ferred to as rough boundary set ofX with respect to
B. The objects inRB(X) canbe totally perceived and
precisely classified byB, but the objects inBNB(X)
cannot.

Definition 1. Let S= (U ,A,V , f ) be an informa-
tion system. An attributea∈ A is said to be dispens-
able inA if PosA\{a}(X) = PosA(X) for all X ⊆ U ,
whereasa ∈ A is called not dispensable or inde-
pendent inA if PosA\{a}(X) 6= PosA(X) for some
X ⊆U .

In data mining, one of main purposes is to re-
move all dispensable attributes and to generate a
reduct of information system, which preserves the
same classification performance for objects as the
original one. In mathematics the definition of reduct
can be presented as follows.

Definition 2. 29 Let S= (U ,A,V , f ) be an informa-
tion system. A subsetB⊆ A is called a reduct ofA
in S if for all X ⊆U ,

(1) PosB(X) = PosA(X);
(2) PosB\{a}(X) 6= PosB(X) for anya∈ B.

It is verified that in classical rough set theory
the equivalent statement thatRB = RA if and only if
PosB(X) = PosA(X) for all X ⊆U is true. With this
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consequence a simplified characterization for reduct
can be reached.

Proposition 1. Let S= (U ,A,V , f ) be an informa-
tion system. A subset B⊆ A is a reduct of A in S if
and only if

(1) RB = RA;
(2) RB\{a} 6= RB for any a∈ B.

An information systemS = (U ,A,V , f ) is re-
ferred to be a decision information system, or a deci-
sion system (decision table), whenA is divided into
two nonempty subsetsC and D, called the condi-
tional attribute set and the decision attribute set, re-
spectively.

In a decision systemS= (U ,C∪D ,V , f ), the
degree of dependency ofD onC is defined by

γ(D|C) =
|POSC(D)|

|U |
wherePOSC(D) =∪Di∈U/DRC(Di) is the positive re-
gion of D with respect toC and|X| denotes the car-
dinality of setX. S is called a consistent decision
system if γ(D|C) = 1, e.g.,D depends totally on
C, whereasS is an inconsistent decision system if
γ(D|C) < 1, e.g.,D depends partially onC.

Proposition 2. Let S= (U ,C∪D ,V , f ) be a de-
cision system and B⊆C. Thenγ(D|B) = γ(D|C) if
and only if PosB(D) = PosC(D).

Proof Let B⊆C, then[x]C ⊆ [x]B for all x∈U ,
and soPosB(D)⊆ PosC(D).
⇒: If γ(D|B) = γ(D|C), one has|PosB(D)| =

|PosC(D)|. It is natural that the equationPosB(D) =
PosC(D) holds.
⇐: It is obvious.

Themeasure of dependency can be used to eval-
uate significance of attributes in decision systems.
Based on this measure, redundant attributes can be
removed and a reduct of attribute set can be reached.

Definition 3. Let S= (U ,C∪D ,V , f ) be a decision
system. An attributea∈C is called relative dispens-
able with respect toD if γ(D|C \ {a}) = γ(D|C).
B⊆ C is called a relative reduct ofC with respect
to D in S if it is the greatest subset ofC that every
element inB is not dispensable.

For short, a relative reduct of a decision system
is called a reduct if there is no confusion arisen.
With Definition 3 an equivalent characterization for
reduct of a decision system can be obtained.

Proposition 3. Let S= (U ,C∪D ,V , f ) be a deci-
sion system. A subset B⊆ C is a reduct of C with
respect to D in S if and only if

(1) γ(D|B) = γ(D|C); and
(2) γ(D|B\{a})< γ(D|B) for any a∈ B.

Proposition3 provides ones a theoretical warrant
to find reducts ofC in S. In large scale systems,
however, it is difficult or even impossible to find all
reducts ofC, though to find all reducts is unneces-
sary in theoretical investigation as well as in appli-
cation community. To find an optimal reduct of at-
tribute set is more practical. To proceed with such a
technique, an evaluation function is very essential in
establishing such an optimal algorithm for attribute
reduction or feature selection.

Definition 4. (Evaluation function based on
dependency)Let S= (U ,C∪D ,V , f ) be a decision
system andB⊆C. The evaluation function based on
dependency is defined as, for any attributea∈C\B,

Sigγ(a,B,D) = γ(D|B∪{a})− γ(D|B)

It is a fact that the evaluation function based on
dependency is a classical measure in assessing the
significance degree of attributes in decision systems,
where the value of evaluation function at attribute
a is designated as the significance measure ofa in
S. It is evident that ifγ(D|B∪{a}) = γ(D|B), the
significance degreeSigγ(a,B,D) of a is 0 anda is
therefore dispensable inB. In addition, the larger
the significance degree of a feature, the more sig-
nificant the feature is. The subset of selected fea-
tures is expected to be a family of attributes in which
each element has the largest significance degree inS.
However, a reduct can not always be obtained by this
method in decision systems.

Example 1. Consider a decision information sys-
tem S= (U ,C∪D ,V , f ) shown in Table 1, where
U = {x1,x2, . . . ,x18} is the universe of discourse,
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Table 1: A decision information system
Events Outlook Temp Humidity Windy Decision
x1 Sunny Med Low True Play
x2 Rain Med High True Play
x3 Sunny High Med True Don’t play
x4 Sunny High Med False Don’t play
x5 Overcast High Med False Play
x6 Rain Med High True Don’t play
x7 Rain Low Low True Don’t play
x8 Overcast Med High True Don’t play
x9 Sunny High Med True Play
x10 Overcast Med High True Play
x11 Overcast High Med False play
x12 Rain Med Med False Play
x13 Overcast Low Low True Play
x14 Rain Low Med False Play
x15 Rain Med High False Don’t play
x16 Sunny Med High False Don’t play
x17 Sunny Med Low False Play
x18 Sunny High Med False Play

C = {a,b,c,d} is the set of conditional attributes
with a = Outlook, b = Temperature, c = Humidity,
d = Windy, andD = {Decision}is the set of decision
attribute. Each eventxi ∈U is described by four at-
tributes and is classified to eitherDon′t Playor Play,
the values of decision attribute.

It is clear that γ(D|{a}) = γ(D|{b}) =
γ(D|{c}) = γ(D|{d}) = 0. No conditional attribute
can be sorted out and the reduct ofScannot be effi-
ciently obtained by the method of feature selection
based on dependency.

This example indicates that the evaluation func-
tion based on dependency is not an effective measure
for assessing significance of attributes. In the fol-
lowing an approach to feature selection is proposed
by introducing an efficient evaluation function.

3. Knowledge granularity and attribute
reduction in information systems

The notion of knowledge granularity, derived from
information granularity, can be used to describe
classification performance for the universe of dis-

course by a given knowledge. In this section, we
present some basic results about knowledge granu-
larity in information systems and propose a revised
version of knowledge granularity so as to meet more
applications.

Definition 5. 21 Let S= (U ,A,V , f ) be an infor-
mation system, the knowledge granularity,GK, is a
mapping from the powerset ofA to [0,1] satisfying

(1) Non-negativity.GK(P)> 0 for anyP⊆ A;
(2) Invariability. For anyP,Q ⊆ A with |U/P| =

|U/Q|, if there exists a bijectiong : U/P→U/Q
such that for anyX ∈U/P, there isY ∈U/Q with
g(X) = Y, thenGK(P) = GK(Q); and

(3) Monotonicity. GK(P) 6 GK(Q) for anyP,Q⊆
A with Q⊆ P.

Let U/P = {X1 ,X2 , . . . ,Xn}, it is verified that

GK(P) =
n

∑
i=1

|Xi |2
|U |2

is an expression of knowledge granularity ofP. The
knowledge granularityGK(P) of P can be revised as
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follows.

GK(P) =
n

∑
i=1

|Xi |2
|U |2

=
n

∑
i=1

|[xi1]P|+ |[xi2]P|+ . . .+ |[xisi
]P|

|U |2

=
|[x1]P|+ |[x2]P|+ . . .+ |[x|U |]P|

|U |2

= ∑
x∈U

|[x]P|
|U |2

where Xi = {xi1 ,xi2 , . . . ,xisi
} with |Xi | = si and

∑n
i=1si = |U |.

In order to characterize relationship between
two attribute sets, two new concepts, namely joint
knowledge granularity and conditional knowledge
granularity, are put forward as follows.

Definition 6. Let S= (U ,A,V , f ) be an information
system. ForP,Q⊆A, the joint knowledge granular-
ity of P together withQ is defined by

GK(P : Q) = ∑
x∈U

|[x]P∩ [x]Q|
|U |2

andthe conditional knowledge granularity ofP un-
derQ is defined as

GK(P|Q) = ∑x∈U |[x]P∩ [x]Q|
∑x∈U |[x]Q|

GK(P|Q)canbe considered as an alternative ver-
sion of inclusion degree ofU/Q being included in
U/P. The joint knowledge granularity and condi-
tional knowledge granularity have many properties,
parts of which are listed as follows.

Proposition 4. Let S= (U ,A,V , f ) be an informa-
tion system. For any P,Q⊆ A, one has

(1) GK(P : Q) = GK(P|Q)GK(Q);
(2) GK(P : Q)6 min{GK(P),GK(Q)};
(3) GK(P : Q) = GK(P∪Q);
(4) 1

|U | 6 GK(P)6 1 and 1
|U | 6 GK(P : Q)6 1.

Furthermore, if P⊆Q, then
(5) GK(P : Q) = GK(Q).

Proof (1)− (3) and(5) are obvious from Defi-
nition 6. It is sufficient to verify (4).

It is clear that 1
|U | 6 GK(P)6 1 asshown in Prop-

erty 1-3 in the reference21.
In view of the factGK(P : Q) = GK(P∪Q),

GK(P : Q) has the same range asGK(P).

Since GK(P : Q) 6 min{GK(P),GK(Q)} 6
GK(Q), one has that GK(P|Q) = GK(P :
Q)/GK(Q) 6 1. By the fact that 1

|U | 6
GK(P) and 1

|U | 6 GK(P : Q) 6 1, it is
clear that GK(P|Q) = GK(P : Q)/GK(Q) >
minP,Q⊆A{GK(P : Q)}/maxQ⊆A{GK(Q)} = 1

|U | .
Hence,the following proposition holds.

Proposition 5. Let S= (U ,A,V , f ) be an informa-
tion system. For any P,Q⊆ A, one has

(1) 1
|U | 6 GK(P|Q)6 1;

(2) GK(P|Q)= 1 if P⊆Q;
(3) GK(P|Q) = 1/|U | iff U/P = ω and U/Q = δ ,

whereω = {{x}|x∈U} andδ = {U}.

FromProposition 5, we conclude that the condi-
tional knowledge granularityGK(P|Q) reflects the
close relationship ofP together withQ, and the
larger the value ofGK(P|Q), U/Q is included in
U/P with a higher degree.

Based on the definition and properties of condi-
tional knowledge granularity one has the following
equivalent statements.

Theorem 6. Let S= (U ,A,V , f ) be an informa-
tion system and a∈ A. The following statements are
equivalent.

(1) a is dispensable in A;
(2) GK(A\{a}) = GK(A);
(3) GK({a}|A\{a}) = 1.

Proof (1)⇒ (2): If a is dispensable inA, then
RA = RA\{a}, and so[x]A = [x]A\{a} for all x ∈ U .
Thus

GK(A) = ∑
x∈U

|[x]A|
|U |2 = ∑

x∈U

|[x]A\{a}|
|U |2 = GK(A\{a})
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(2)⇒ (3): If GK(A\{a}) = GK(A), then

GK({a}|A\{a}) =
GK({a} : A\{a})

GK(A\{a})
=

GK({a}∪(A\{a}))
GK(A)

= 1

(3) ⇒ (1): If GK({a}|A \ {a}) = 1, then
GK(A) = GK(A\{a}), e.g.,

∑
x∈U

|[x]A|
|U |2 = ∑

x∈U

|[x]A\{a}|
|U |2

In view of the fact that[x]A ⊆ [x]A\{a}, there
must be[x]A = [x]A\{a} for all x∈U . Consequently,
RA = RA\{a}, and soa is dispensable inA.

Corollary 7. Let S= (U ,A,V , f ) be an information
system and a∈ B⊆ A. The following statements are
equivalent.

(1) a is independent in B;
(2) GK(B\{a})> GK(B);
(3) GK({a}|B\{a})< 1.

Theorem 8.Let S= (U ,A,V , f ) be an information
system and B⊆A. Then B is a reduct of A in S if and
only if

(1) GK(A) = GK(B); and
(2) GK({a}|B\{a})< 1 for any a∈ B.

Proof It is straightforward from Theorem 6 and
Corollary 7.

The following example shows a straightforward
application of Theorem 8.

Example 2. Given an information systemS =
(U ,A,V , f ), shown in Table 2, whereU =
{1,2,3,4,5,6,7} is the set of objects andA =
{a,b,c,d ,e} is the attribute set in whicha, b, c,
d, and e represent temperature, humidity, wind,
fertilization, and pesticide, respectively. LetB =

{a,b,c,e}, by calculation one has

GK(B) = ∑
x∈U

|[x]B|
|U |2

=
1+1+1+1+1+1+1

72

=
7
49

= GK(A)

GK(B\{a}) = GK(B\{c}) = GK(B\{e})

=
22 +1+1+1+1+1

72 =
9
49

GK(B\{b}) = GK({a,c,e})

=
22 +1+1+22 +1

72 =
11
49

Thatis, for anyx∈B, one hasGK({x}|B\{x}) =
GK(B)

GK(B\{x}) < 1. Therefore,B= {a,b,c,e} is a reduct
of A. The result coincides with practical desire.

4. Feature selection in consistent decision
systems

Definition 7. Let S= (U ,C∪D ,V , f ) be a con-
sistent decision system andB⊆C. The conditional
knowledge granularity of decision attribute setD un-
der the conditional attribute subsetB is defined by

GK(D|B) = ∑x∈U |[x]D∩ [x]B|
∑x∈U |[x]B|

One can see that the quantity|[x]D∩[x]B|
|[x]B| charac-

terizesthe inclusion degree of[x]B being included
in [x]D. Therefore, the conditional knowledge gran-
ularity GK(D|B) can be regarded as a generaliza-
tion of inclusion degree ofU/B being included in
U/D. In combination with Proposition 4 the follow-
ing property is straightforward.

Proposition 9. Let S= (U ,C∪D ,V , f ) be a deci-
sion system, then

(1) GK(D : B) 6 min{GK(B),GK(D|B)} for any
B⊆C;

(2) GK(D : C) = 1 iff S is a consistent decision sys-
tems.
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Table 2: An information system
U a b c d e
1 High Middle Middle fer1 pes1
2 Middle Middle Middle fer2 pes1
3 Middle High Weak fer1 pes2
4 Middle High Middle fer1 pes1
5 High Middle Weak fer1 pes1
6 High Middle Middle fer1 pes2
7 High High Middle fer1 pes2

Theorem 10.Let S= (U ,C∪D ,V , f ) be a consis-
tent decision system and B⊆ C. Thenγ(D|B) =
γ(D|C) iff GK(D|B) = GK(D|C).

Proof SinceS is a consistent decision system, it
is trivial thatγ(D|C) = 1 and thatGK(D|C) = 1.
⇒: Let B ⊆ C, if γ(D|B) = γ(D|C), then

PosB(D) = PosC(D) = U . Therefore, for anyx∈U ,
one has[x]B ⊆ [x]D. As a result,

GK(D|B) = ∑x∈U |[x]D∩ [x]B|
∑x∈U |[x]B|

= 1

⇐: SinceB⊆C, for anyx∈U , one has[x]C ⊆
[x]B. In view of the fact thatGK(D|B) = GK(D|C)
and that GK(D|C) = 1, one hasGK(D|B) =
∑x∈U |[x]D∩[x]B|

∑x∈U |[x]B| = 1. Thus|[x]B∩ [x]D| = |[x]B|, which
implies that for anyx ∈ U , [x]B ⊆ [x]D. There-
fore, PosB(D) = U . The consequencesPosB(D) =
PosC(D) andγ(D|B) = γ(D|C) hold.

Corollary 11. Let S= (U ,C∪D ,V , f ) be a consis-
tent decision system. Then a∈C is dispensable with
respect to D in S if and only if GK(D|C \ {a}) =
GK(D|C), whereas a is independent if and only if
GK(D|C\{a})< GK(D|C).

Corollary 11 guarantees that when a dispensable
attribute is deleted, the conditional knowledge gran-
ularity of decision attribute set under the set of rest
conditional attributes keeps invariant. The following
theorem characterizes attribute reduction of a con-
sistent decision system, whose proof is straightfor-
ward.

Theorem 12.Let S= (U ,C∪D ,V , f ) be a consis-
tent decision system and B⊆C. Then B is a reduct
of C with respect to D in S if and only if

(1) GK(D|B) = GK(D|C); and
(2) GK(D|B\{a})< GK(D|B) for any a∈ B.

Definition 8. (Evaluation function based on con-
ditional knowledge granularity) Let S = (U ,C ∪
D ,V , f ) be a consistent decision system andB⊆C.
The evaluation function based on conditional knowl-
edge granularity is defined by, for anya∈C\B,

SigGK(a,B,D) = GK(D|B∪{a})−GK(D|B)

It is noted that a larger quantity ofSigGK(a,B,D)
indicates a stronger association betweenB∪{a}and
D. Therefore, the evaluation function based on con-
ditional knowledge granularity can characterize sig-
nificance of every conditional attribute with respect
to decision attribute set in consistent decision sys-
tems. Succedent examples show that this function
can serve as a rational measure to find a reduct by
an optimal algorithm for feature selection. Such an
algorithm aims to find an attribute with the greatest
amount of significance, or alternatively, to make the
equivalence class of each sample be included in its
corresponding decision class as much as possible.
The forward greedy search algorithm can serve as
evaluating feasibility and efficiency of the proposed
measure for feature selection in consistent decision
systems.

Algorithm 13 Forward greedy search algorithm of
feature selection based on conditional knowledge
granularity in consistent decision systems (FGS-
CKG-CDS):
Input: (U ,C∪D ,V , f )
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Output: red
1: /0→ red,0→ temp
2: for each ai ∈C\ red
3: compute the significance SigGK(ai , red,D) =
GK(D|red∪{ai})−GK(D|red)
4: end for
5: select the attribute ak such that
6: SigGK(ak , red,D) = maxi SigGK(ai , red,D)
7: if temp< SigGK(ak , red,D)
8: temp= SigGK(ak , red,D)
9: red∪{ak}→ red
10: goto 2
11: else
12: return red
13: end if
14: end

In the first iteration, we start the set of se-
lected featuresred with empty set and specify
GK(D|red) = 0. Then adding an attributea with the
greatest value of significanceSigGK(a, red,D) into
red. The rest features in each iteration are all eval-
uated and the one with the greatest significance is
chosen and added intored. The algorithm does not
stop until adding any of the rest features to selected
feature set will not bring any increment.

There exist two main operations of consuming
time in this algorithm. One is to compute the value
of SigGK(a, red,D) and the other is to judge whether
the value ofSigGK(a, red,D) is the greatest one or
not. The first procedure is carried out in a time
complexity O(|U |2), while the time complexity in
the second step isO(|C|2). Therefore, the FGS-
CKG-CDS approach to feature selection works in
a straightforward way with overall time complex-
ity O(|U |2|C|2). In the worst case, the whole com-
putational complexity of this algorithm is|U |2×
|C|+ |U |2×(|C|−1)+. . .+ |U |2 = (|C|+1)×|C|×
|U |2/2.

The FGS-CKG-CDS algorithm has the same
time complexity as the one based on dependence
and as the one based on mutual information. In the
following we present an example to show the pro-
cedure of feature selection by employing the FGS-
CKG-CDS.

Example 3. Given a consistent decision system
shown in Table 3, whereC= {a,b,c,d,e} is the con-

ditional attribute set andD is the decision attribute.
At first, let red = /0, the corresponding knowl-

edge granularity is computed as follows.

GK({a}) = ∑
x∈U

|[x]{a}|
|U |2 = 0.5000

GK(D : {a}) = GK(D∪{a})

=
1+22 +22 +32

82 = 0.2813

GK(D|{a}) =
GK(D : {a})

GK({a}) = 0.5625

In a similar way, one has

GK(D|{b}) = GK(D|{d})

=
1+22 +1+42

22 +62 = 0.5500

GK(D|{c}) =
1+22 +52

1+72 = 0.6000

GK(D|{e}) =
32 +22 +32

52 +32 = 0.6471

It is obvious thatGK(D|{e})=maxx∈C GK(D|{x}),
so e is firstly added tored, i.e., red = red∪{e}=
{e}.

Repeating the same steps we will obtainred =
{e,c,b,d}.

SinceGK(D|red) = GK(D|C) andGK(D|red\
{x}) < GK(D|C) for any x ∈ red, the setred =
{e,c,b,d} is therefore a reduct ofC with respect
to D.

According to the evaluation function based on
dependency for feature selection of Table 3, one ob-
tains a reduct{e,b,d ,c} of C, the same result as
aforementioned, but with different orders. More-
over, with an application of evaluation function
based on mutual information to feature selection,
one obtains a reduct{e,b,a,c,d}, which is larger
than that obtained by the proposed measure.

5. Feature selection in inconsistent decision
systems

Rough communication is initialized as a bridge
between information systems in granular comput-
ing 44. The purpose of this section is to find a reduct
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Table 3: A consistent decision system
U a b c d e D
1 Middle High Middle fer1 pes1 High
2 High Middle Middle fer2 pes1 High
3 High Middle High fer1 pes1 High
4 High Middle Middle fer1 pes1 Low
5 Middle Middle Middle fer1 pes1 Low
6 High High Middle fer1 pes2 Low
7 Middle Middle Middle fer2 pes2 Low
8 Middle Middle Middle fer1 pes2 Low

of an inconsistent decision system by means of con-
structing a proper rough communication and con-
verting the inconsistent decision system to a consis-
tent decision system.

For a decision systemS= (U ,C∪D ,V , f ), if we
denoteV byVC∪VD, whereVC andVD denote the set
of values of conditional attributes and that of values
of decision attributes, respectively, thenScan be de-
noted byS= (U ,C∪D ,VC ∪VD , f ). Meanwhile,
the partition ofU under the decision attribute setD
is symbolled byU/VD. With the idea that a decision
systemS is inconsistent if and only if its boundary
regionBNC(D) = U \POSB(D) is nonempty, we de-
velop the following rough communication between
two decision systems.

Definition 9. Let S = (U ,C ∪ D ,VC ∪VD , f ) be
an inconsistent decision system andS′ = (U ,C∪
D ,VC ∪V ′

D , f ′) be another decision system with
VD 6= V ′

D, and letU/VD = {D1 ,D2 , . . . ,DN} and
U/V ′

D = {D′
1 ,D′

2 , . . . ,D′
M ,D′

M+1} be the partitions
of U with respect to the decision attribute setD (cor-
responding to different decision attribute values).
If there exists a mappingF from S to S′ satisfy-
ing, for eachi ∈ {1,2, . . . ,N}, there exists a unique
j ∈ {1,2, . . . ,M}, and for eachj ∈ {1,2, . . . ,M},
there exists a uniquei ∈ {1,2, . . . ,N} such that

D′
j = F(Di) ,D′

M+1 = U \∪N
i=1F(Di)

thenF is called a rough communication betweenS
andS′. Meanwhile,S′ is called the induced decision
system fromS.

According to the definition of rough communica-
tion, it is verified that, for any inconsistent decision

system, its induced decision system is undoubtedly
a consistent decision system.

Given an inconsistent decision system, it is easy
to construct such a mapping (rough communication)
in Definition 9. For example, given a setB ⊆ C,
let F(X) be the positive region ofX with respect to
B, POSB(X), then an inconsistent decision systemS
can be converted to another decision systemS′ by
means of this rough communication.

In the following such a rough communication is
employed to deal with the problem of feature se-
lection in inconsistent decision system. It is ob-
served thatD′

M+1 is composed of the objects that
do not fall into the positive region ofD and that the
values of decision attributes of objects in eachD′

j ,
j = 1,2, . . . ,M, are the same as the ones in some
uniqueDi , i = 1,2, . . . ,N, whereas the value of de-
cision attributes of objects inD′

M+1 is assigned to
another that is different from those corresponding to
D′

j , j = 1,2, . . . ,M. As a whole, the mapping of
rough communication does not change the decision
systemS except the value of decision attributes of
objects in the boundary regionBNC(D) in S.

For example, letS be a decision system as
shown in Table 4, one can obtain thatPOSC(D) =
{u1 ,u3 ,u4 ,u5 ,u6 ,u9} and BNC(D) = {u2 ,u7 ,u8}.
S is therefore an inconsistent decision system. Ac-
cording to the rough communication offered above,
S can be converted to a new decision systemS′ in
which the value of decision attributeD of objects
in BNC(D) is changed to another value, 3, for exam-
ple. That is,{u2,u7,u8} is labelled as a new decision
classD′

3. A new decision systemS′ is constructed
and is shown in Table 5. It is evident thatS′ is a
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Table 4: An inconsistent decision systemS
U a b c d e D
u1 1 1 2 1 1 2
u2 1 2 1 2 2 1
u3 2 2 2 1 1 2
u4 2 2 1 1 1 1
u5 1 2 1 1 1 1
u6 2 1 1 1 2 1
u7 1 2 1 2 2 1
u8 1 2 1 2 2 2
u9 1 2 1 1 2 1

Table 5: The induced consistent decision systemS′

U a b c d e D
u1 1 1 2 1 1 2
u2 1 2 1 2 2 3
u3 2 2 2 1 1 2
u4 2 2 1 1 1 1
u5 1 2 1 1 1 1
u6 2 1 1 1 2 1
u7 1 2 1 2 2 3
u8 1 2 1 2 2 3
u9 1 2 1 1 2 1

consistentdecision system.
In general, it is possible that there exists some

i ∈ {1,2, . . . ,N} satisfyingF(Di) = /0. In which
case, the objects inDi are all assigned toD′

M+1.
However, without loss of generality, it is assumed
that M = N, i.e., every positive region ofDi (i =
1,2, . . . ,N) with respect toB ⊆ C is nonempty.
Thus D′

1 = POSB(D1),D′
2 = POSB(D2), . . . ,D′

N =
POSB(DN), andD′

N+1 = BNB(D).
If one can verify the statement that a subset of

condition attribute set is a reduct of an inconsistent
decision system if and only if it is a reduct of the in-
duced consistent decision system, then one can ob-
tain a reduct of an inconsistent decision system by
rough communication. In the sequel, we will inves-
tigate this issue. The following proposition is obvi-
ous.

Proposition 14. Let S= (U ,A,V , f ) be an infor-
mation system, then for any B⊆ A,

(1) POSB(X)⊆ POSB(Y) for all X ,Y ⊆U with X⊆
Y;

(2) POSB(X) = POSB(POSB(X)) for all X ⊆U.

We firstly study the relationship between an in-
consistent decision system and its induced consis-
tent decision system.

Theorem 15. Assume that S= (U ,C ∪ D ,VC ∪
VD , f ) is an inconsistent decision system, S′ =
(U ,C∪D ,VC∪V ′

D , f ′) is its induced decision sys-
tem, and B⊆C. Thenγ(VD|B) =γ(VD|C) if and only
if γ(V ′

D|B) = γ(V ′
D|C), whereγ(VD|B) and γ(V ′

D|B)
denote the dependency of D on B in S and in S′, re-
spectively.

Proof ⇒: Let γ(VD|B) = γ(VD|C), then
∪Di∈U/VD

POSB(Di) = ∪Di∈U/VD
POSC(Di). There-

fore,POSB(Di) = POSC(Di) for all Di ∈U/VD.
For anyD′

i ∈U/V ′
D, it is clear that

POSB(D′
i) = POSB(POSB(Di)) = POSB(Di) = D′

i
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Thus POSB(D′
i) = POSC(D′

i), for all i =
1,2, . . . ,N, due to the fact thatS′ is a consistent de-
cision system. Furthermore,

POSB(D′
N+1) = BNB(D)

= U \POSB(D)
= U \POSC(D)
= BNC(D)
= POSC(D′

N+1)

As a result,∪D′i∈U/V ′
D
POSB(D′

i)=∪D′i∈U/V ′
D
POSC(D′

i),
i.e.,γ(V ′

D|B) = γ(V ′
D|C).

⇐: If γ(V ′
D|B) = γ(V ′

D|C), then, for all D′
i ∈

U/V ′
D, POSB(D′

i) = POSC(D′
i) due to the fact that

POSB(D′
i) ⊆ POSC(D′

i) and ∪D′i∈U/V ′
D
POSB(D′

i) =
∪D′i∈U/V ′

D
POSC(D′

i). In particular,POSB(D′
N+1) =

POSC(D′
N+1), i.e., BNB(D) = BNC(D). Therefore,

∪Di∈U/VD
POSB(Di) = U \BNB(D) = U \BNC(D) =

∪Di∈U/VD
POSC(Di), and the equalityγ(VD|B) =

γ(VD|C) is implied.

In term of Theorems 15 and the results in Sec-
tion 4 the following corollaries hold.

Corollary 16. Assume that S= (U ,C ∪ D ,VC ∪
VD , f ) is an inconsistent decision system, S′ =
(U ,C∪D ,VC∪V ′

D , f ′) is its induced decision sys-
tem, and B⊆ C. Then a∈ B is dispensable with
respect to D in S if and only ifγ(V ′

D|B \ {a}) =
γ(V ′

D|B); whereas a∈ B is independent if and only if
γ(V ′

D|B\{a})< γ(V ′
D|B).

Corollary 17. Assume that S= (U ,C ∪ D ,VC ∪
VD , f ) is an inconsistent decision system, S′ =
(U ,C∪D ,VC∪V ′

D , f ′) is its induced decision sys-
tem, and B⊆ C. Then a∈ B is dispensable with
respect to D in S if and only if GK(V ′

D|B\ {a}) =
GK(V ′

D|B); whereas a∈B is independent if and only
if GK(V ′

D|B\ {a}) < GK(V ′
D|B), where GK(V ′

D|B)
denotes the conditional knowledge granularity of D
under B in S′.

The consequences presented above ensure that a
subset of conditional attribute set is a reduct of an in-
consistent decision system if and only if it is a reduct
of the induced consistent decision system. This con-
clusion can be summarized as follows.

Theorem 18. Assume that S= (U ,C ∪ D ,VC ∪
VD , f ) is an inconsistent decision system, S′ =

(U ,C∪D ,VC∪V ′
D , f ′) is its induced decision sys-

tem, and B⊆C, then B is a reduct of C with respect
to D (related to VD) in S if and only if B is a reduct
of C with respect to D (related to V′D) in S′.

In virtue of these conclusions, the problem of
finding a reduct in an inconsistent decision system
is equivalent to that in its induced consistent deci-
sion system.

Theorem 19.Let S= (U ,C∪D ,VC∪VD , f ) be an
inconsistent decision system, S′ = (U ,C∪D ,VC ∪
V ′

D , f ′) be the induced decision system of S, and
B⊆ C. Then B is a reduct of C with respect to D
in S if and only if

(1) GK(V ′
D|B) = GK(V ′

D|C); and
(2) GK(V ′

D|B\{a})< GK(V ′
D|B) for any a∈ B.

Similar to Definition 8, an evaluation function
based on conditional knowledge granularity in an
inconsistent decision systemS = (U ,C∪ D ,VC ∪
VD , f ) can be defined by, for anya∈C\B,

SigGK(a,B,D) = GK(V ′
D|B∪{a})−GK(V ′

D|B)

Following Theorem 19, an optimal algorithm to
find a reduct of an inconsistent decision system,
called FGS-CKG-IDS, can be designed analogously
to Algorithm 13.

In comparison to FGS-CKG-CDS for feature
selection in consistent decision system, the FGS-
CKG-IDS algorithm is of only one additional step
to judge which the system is consistent or not. In
practical applications, it is not necessary to highlight
inconsistent decision systems. If a decision system
is inconsistent, it is sufficient to reclassify the deci-
sion classes and to construct its induced consistent
decision system by means of rough communication.

In the end of this section, an example is presented
showing validity of the proposed method of feature
selection in inconsistent decision system.

Let S= (U ,C∪D ,VC∪VD , f ) be a decision in-
formation system, shown in Example 1 and Table 1,
whereVD = {Play,Don′t play}.

By computation one obtains thatPOSC(D) =
{x1 ,x3 ,x4 ,x5 ,x7 ,x9 ,x11,x12,x13,x14,x17,x18} and
BNC(D) = {x2 ,x6 ,x8 ,x10,x15,x16}, so S is an in-
consistent decision system. We assign another
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value, ‘Maybe’ for instance, to that of decision at-
tribute D of elements inBNC(D). ThenS is con-
verted toS′ = (U ,C∪D ,VC∪V ′

D , f ′), shown in Ta-
ble 6, whereV ′

D = {Play,Maybe,Don′t play}. It is
clear thatS′ is a consistent decision system.

The FGS-CKG-IDS algorithm is employed to
perform feature selection for the above decision sys-
tem. At first, letred = /0 andGK(V ′

D|red) = 0, then
the conditional knowledge granularity can be com-
puted as follows.

GK(V ′
D|{a}) = 0.4182,GK(V ′

D|{b}) = 0.5890

GK(V ′
D|{c}) = 0.8103,GK(V ′

D|{d}) = 0.4024

Clearly,GK(V ′
D|{c}) = maxx∈C GK(V ′

D|{x}), so
c is added tored, i.e.,red= red∪{c}= {c}. Again,

GK(V ′
D|{c,a}) = 1.0000,

GK(V ′
D|{e,b}) = 0.8889,

GK(V ′
D|{c,d}) = 0.8235

SinceGK(V ′
D|{c,a})=maxx∈C\redGK(V ′

D|{c,x}),
thusred = red∪{a}= {c,a}.

Since GK(V ′
D|red) = GK(V ′

D|C) = 1 and
GK(V ′

D|red\{x}) < GK(V ′
D|C) for anyx∈ red, the

setred = {c,a} is therefore a reduct ofC.

6. Experiments and analysis

In order to verify effects of the proposed approach
to feature selection, comparative experiments have
been implemented to show the results with those
based on dependency and based on mutual informa-
tion.

Six standard data sets from UCI machine learn-
ing data repository, University of California at
Irvine 27 are employed in our experiments. The
number of samples in these data sets varies from
198 to 20000. Some of data sets are mixed with
continuous attribute values and discrete ones. They
are therefore preprocessed by discretizing the ranges
of attributes and segmenting these ranges into sev-
eral equal-width intervals. It is checked that three of
them are consistent decision systems and the rest are
inconsistent, shown in Table 7.

As a widely used technique to test and evalu-
ate classification accuracies for data sets, the 10-fold
cross validation10 is used to divide the samples into
10 subsets at random and nine of them are used as
training set and the rest one as the test set. After 10
rounds, the average value and variation are consid-
ered as the final classification accuracy. In our ex-
periments, the popular CART algorithm, linear sup-
port vector machine algorithm (SVM) and C4.5 al-
gorithm are used to test classification accuracies of
raw data sets and of selected subsets.

Table 8, Table 9 and Table 10 show comparative
results of classification accuracies of feature selec-
tion through the optimal algorithm with three differ-
ent evaluation functions by using CART, SVM and
C4.5, respectively. The columns with “γ”, “ I ” and
“GK ” denote, separatively, the classification accu-
racies of feature selection based on dependency, on
mutual information, and on the conditional knowl-
edge granularity. “

√
” marks the results with the

largest classification accuracy among those.

It is observed from the tables that the average
classification accuracy of objects with respect to the
selected attributes based on the conditional knowl-
edge granularity is larger than that based on de-
pendency and based on mutual information when-
ever the test algorithm is taken to be CART, SVM
or C4.5. In detail, they are 0.8612 (based on de-
pendency), 0.8593 (based on mutual information),
0.8726 (based on conditional knowledge granular-
ity) with CART, 0.8554, 0.8572, 0.8579 with SVM,
and 0.7557, 0.7555, 0.7686 with C4.5.

Furthermore, the number of selected subsets with
the highest classification accuracy by the conditional
knowledge granularity is larger than that by depen-
dency and by mutual information with the test meth-
ods, CART and C4.5. They are 0 (based on de-
pendency), 1 (based on mutual information) and 5
(based on conditional knowledge granularity) with
the use of CART, and 3, 2 and 6 with the C4.5 algo-
rithm, whereas the number of selected subsets with
the highest classification accuracy by the proposed
techniques is similar to that based on mutual infor-
mation, but slightly weaker than that based on de-
pendency with SVM.

In addition, the experimental results show that all
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Table 6: The induced consistent decision system
Events Outlook Temp Humidity Windy Decision
u1 Sunny Med Low True Play
u2 Rain Med High True Maybe
u3 Sunny High Med True Don’t play
u4 Sunny High Med False Don’t play
u5 Overcast High Med False Play
u6 Rain Med High True Maybe
u7 Rain Low Low True Don’t play
u8 Overcast Med High True Maybe
u9 Sunny High Med True Play
u10 Overcast Med High True Maybe
u11 Overcast High Med False play
u12 Rain Med Med False Play
u13 Overcast Low Low True Play
u14 Rain Low Med False Play
u15 Rain Med High False Maybe
u16 Sunny Med High False Maybe
u17 Sunny Med Low False Play
u18 Sunny High Med False Play

Table 7: The raw data sets from UCI
Dataset Abbreviation Samples Features Class Consistent
Australiancredit approval Credit 690 15 2 inconsistent
Horse colic Horse 368 23 2 consistent
Mushroom Mushroom 8124 23 2 consistent
Letter Recognition Letter 20000 17 26 consistent
Wisconsin diagnostic breast cancer Wdbc 569 31 2 inconsistent
Wisconsin prognostic breast cancer Wpbc 198 34 2 inconsistent

of the six selected feature sets obtained by the pro-
posed technique have the highest classification ac-
curacies with the use of the popular C4.5 test algo-
rithm.

7. Conclusions

This paper generalizes the notion of knowledge
granularity to conditional knowledge granularity so
as to solve the problem of feature selection in deci-
sion systems. An evaluation function based on the
proposed knowledge granularity is designed to mea-
sure significance of attributes. This function reflects

the measure of a nonlinear combination of inclusion
degrees of equivalence class of each sample being
included in its decision class.

A rough communication between an inconsistent
decision system and a consistent decision system has
been established and the problem of feature selec-
tion in an inconsistent decision system is converted
to that in its induced consistent system. Equivalent
characterizations of attribute reduction have been es-
tablished based on the proposed evaluation function.
Optimal algorithms for feature selection have been
realized in both decision systems.

Numerical experiments and comparative inves-
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Table 8: Comparison of classification accuracies based on different methods with CART
Datasets raw data γ I GK
Credit 0.8273±0.1486 0.8259±0.1474 0.8172±0.1428 0.8302±0.1507

√
Horse 0.9592±0.0230 0.8911±0.0491 0.8996±0.0487 0.9320±0.0447

√
Mushroom 0.9637±0.0990 0.9637±0.0990 0.9685±0.0996

√
0.9637±0.0990

Letter 0.8656±0.0105 0.8569±0.0130 0.8599±0.0105 0.8654±0.0103
√

Wdbc 0.9050±0.0455 0.9227±0.0334 0.9192±0.0380 0.9279±0.0337
√

Wpbc 0.7063±0.0754 0.7068±0.0850 0.6911±0.0953 0.7166±0.0705
√

Average 0.8712 0.8612 0.8593 0.8726

Table 9: Comparison of classification accuracies based on different methods with SVM
Datasets raw data γ I GK
Credit 0.8548±0.1851 0.8548±0.1851

√
0.8548±0.1851

√
0.8548±0.1851

√
Horse 0.8914±0.0443 0.8830±0.0532 0.9157±0.0471

√
0.9076±0.0552

Mushroom 0.9234±0.1261 0.8736±0.1039
√

0.8664±0.1886 0.8736±0.1039
√

Letter 0.8226±0.0109 0.7805±0.0140
√

0.7657±0.0139 0.7707±0.0140
Wdbc 0.9773±0.0248 0.9773±0.0234

√
0.9773±0.0234

√
0.9773±0.0234

√
Wpbc 0.7737±0.0773 0.7632±0.0304

√
0.7632±0.0304

√
0.7632±0.0304

√
Average 0.8739 0.8554 0.8572 0.8579

Table 10: Comparison of classification accuracies based on different methods with C4.5
Datasets raw data γ I GK
Credit 0.8565±0.1852 0.8580±0.1829

√
0.8464±0.1957 0.8580±0.1829

√
Horse 0.9565±0.0479 0.8967±0.1314 0.9185±0.1139 0.9402±0.0818

√
Mushroom 1.0000±0.0000 1.0000±0.0000

√
1.0000±0.0000

√
1.0000±0.0000

√
Letter 0.8791±0.0102 0.8639±0.0116 0.8778±0.0106 0.8806±0.0103

√
Wdbc 0.9332±0.0724 0.9438±0.0661

√
0.9438±0.0661

√
0.9438±0.0661

√
Wpbc 0.7323±0.2980 0.7273±0.3027 0.7020±0.3280 0.7576±0.2842

√
Average 0.7654 0.7557 0.7555 0.7686

tigation on feature selection based on the proposed
evaluation function with that based on classical mea-
sures have been carried out in this paper. It is veri-
fied there the proposed approach leads to more data
sets with higher average classification accuracy of
feature selection. In addition, with the new tech-
nique, it is not necessary to distinguish whether a
decision system is consistent or not in advance.
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