16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

Detecting similarity of R functions
via a fusion of multiple heuristic methods

Maciej Bartoszuk! Marek Gagolewski??

! Interdisciplinary PhD Studies Program, Systems Research Institute,
Polish Academy of Sciences, m.bartoszuk@phd.ipipan.waw.pl
2 Systems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland, gagolews@ibspan.waw.pl
3 Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warsaw, Poland

Abstract

In this paper we describe recent advances in our
R code similarity detection algorithm. We propose
a modification of the Program Dependence Graph
(PDG) procedure used in the GPLAG system that
better fits the nature of functional programming
languages like R. The major strength of our ap-
proach lies in a proper aggregation of outputs of
multiple plagiarism detection methods, as it is well
known that no single technique gives perfect re-
sults. It turns out that the incorporation of the
PDG algorithm significantly improves the recall ra-
tio, i.e. it is better in indicating true positive cases
of plagiarism or code cloning patterns. The imple-
mented system is available as web application at
http://SimilaR.Rexamine.com/.

Keywords: R, plagiarism and code cloning detec-
tion, fuzzy proximity relations, aggregation, pro-
gram dependence graph, t-norms

1. Introduction

A typical case when plagiarism detection is needed
occurs in programming classes. Finding plagiarism
in source codes is not a trivial task, as definitions of
code similarity are fuzzy in their very nature. No-
tably, even if two code chunks are very similar, or
even the same, it cannot be treated as 100% proof
that two students cheated. There might be some
reasons, why two solutions are very similar: one is
when a problem to solve is so simple that it imposes
only one solution. A second one is when a task is
formulated in such a way that it imposes one so-
lution. For example, some form of pseudocode is
provided in a task’s formulation.

That is why the issue of our concern should not
be formulated as a plagiarism detection, but rather
as a similarity code detection problem. The simi-
larity of code can be formulated by mathematical
formula in some way, while judging a plagiarism in-
volves some familiarity with personal relationships
between a group of students, level of skills of every
student and his/her willingness to cheat the tutor.
All such factors are of course hard to quantify.

© 2015. The authors - Published by Atlantis Press

419

Moreover, code similarity detection systems can
be also used for code cloning detection. Code
cloning happens when one person uses the same
piece of code in many parts of a project, while some
form of code refactoring should be used.

In a most general approach, two pieces of code
are similar, when they calculate the same thing.
But there is a problem with this approach, because
all the correct solutions to a homework are similar
to each other according to this definition. So an-
other, more specific definition, can be formulated:
two pieces of code are similar, when they calculate
the same thing in the same way. But definition of
“the same way” is very fuzzy and subjective. The
same way of calculating can consist of using the
same loops, the same function calls and the same
set of variables. But a cheating student might use
some artificial, auxiliary variables, change one type
of loop to another and call some other functions,
which do the same. That is why the method has to
classify “not so similar” functions as similar.

Each algorithm known in the literature, e.g.,
GPLAG [1], JPLAG [2], or MOSS [3], induces its
own operational definition of code similarity. First
of all, the problem with such algorithms is that they
are not fitted well to the nature of functional pro-
gramming languages like R, which is very popular
among data analysts and statisticians. The sec-
ond issue is that no single method gives perfect re-
sults in all the possible cases. In our approach, we
calibrate and aggregate (using a statistical learn-
ing model) the output of four different algorithms.
The intuition behind this approach is that a set of
“weak classifiers” may perform better than individ-
ual ones. The novel idea — comparing to our previ-
ous work [4] — is to make the similarity comparison
results non-symmetric: for every pair of functions
(fi, fj) it may happen that u(fi, f;) # wp(f;, fi),
thus we do not measure directly the degree of f;Nf;,
but f; \ f; and f; \ f; separately. Then, the results
may be symmetrized by using a t-norm, which in-
duces an additional “degree of freedom”, which then
may be calibrated.

The paper is structured as follows. In Sec. 2 we
discuss related work, Sec. 3 establishes the nota-
tion used in this paper, formalizes the problem, and

lists some typical plagiarism attacks. Sec. 4 briefly
recalls the 3 methods of fuzzy proximity measures
used to compare two functions’ source codes in [4]
and describes the fourth method based on a Pro-
gram Dependence Graph with novel improvements.
In Sec. 5 we present an empirical study of the algo-
rithm’s discrimination performance. Finally, Sec. 6
concludes the paper.

2. Related work

Current methods of code cloning detection can be
divided into four groups: textual, lexical, syntac-
tic and semantic approaches. Let us describe these
classes briefly. For a deep survey, we refer to [5].

2.1. Textual approaches

Textual approaches do not apply any transforma-

tions to input data before the actual comparison

and in most cases raw source code is used directly.
An example of such an approach is [6, 7].

2.2. Lexical approaches

Lexical approaches (or token-based techniques)
transform input data into a sequence of lexical “to-
kens” using a parser/compiler-style lexical analysis.
After that the sequence is scanned for duplicates
of tokens subsequences. This approach is more ro-
bust over minor code changes such as formatting or
variable renaming.

Most of state-of-the-art tools are based on this
approach, such as the aforementioned JPLAG [2],
or MOSS [3]. Another examples are [8, 9]

2.3. Syntactic approaches

This method use a parser to convert source pro-

grams into parse trees or abstract syntax trees

(ASTs) which can be procesed using either tree

matching or structural metrics to find clones [5].
Examples of this approach is [10, 11].

2.4. Semantic approaches

These algorithms use static program analysis to pro-
vide more precise information than simply syntactic
similarity. Most of approaches are based on Pro-
gram Dependency Graph, such as [1, 13, 14].

3. Method overview and problem
formulation

Assume that we have n functions’ source codes
F ={f1,.-., fn}, where f; is a character string,
ie. fi € Upe, ZF, X is a set of, eg., ASCII-
encoded characters. Each f; is properly normal-
ized by, i.a., removing unnecessary comments and
redundant whitespaces and applying the same in-
dentation style. Normalization is easy in R, as we
can call £ <- deparse(parse(text=f)).

1
2

420

Before any method of plagiarism detection can be
created, there is a need to recognize what types of
“attacks” can be performed. Below we include a
taxonomy of plagiarism attacks in R language.

Fasy

e Add/remove comments
e Change names of variables
e Change “<-" into “=" or “->”

Moderate

e Change the order of lines of code
e Add/remove line(s) of code
e Expand/shrink of function calls, e.g.:

1 x[order(unlist(lapply(x,£f)))]
and

1 y <- unlist(lapply(x,f))
o <- order (y)
3 x[o]

Hard

e Change loop into its equivalent form (for into
while, but also into lapply), e.g.:

y <- numeric(n)

k <- 1

for(i in x) {
y[k] <- sqrt(i)
k <- k+1

ST W N

}

and

y <- unlist(lapply(x,
function(element){
3 return (sqrt (element))})

DN =

or even

1 y <- sqrt(x)

There are many methods of code similarity detec-
tion known in the literature, such as string-based
[6, 7], token-based [2, 3, 8, 9], or Program Depen-
dence Graph-based [1, 13, 14]. Every method fo-
cuses on different features of code. In this paper we
define 4 similarity measures puq, ..., @4, which take
as arguments text representations of two functions
fi and f;. Every method returns a value from 0
to 1, formally pi(fi, f;) € [0;1] for & = 1,...,4,
informing how much f; is similar to f;. Value 1
indicates that one function is a proper subset of a
second function, while 0 means that these two func-
tions have nothing in common.

Standard approaches treat code similarity as an
equivalence relation, while we propose a subset-type
relation, which is not symmetric. Let us consider an
example, where fi:

s <- 0
for(i in x){s <- s + i}

B~ W N

and fo:

s <- 0
for(i in x){s
m <- 0
for(i in x){m <- m*i}

<- s + i}

We are rather interested in methods which return
u(f1, f2) = 1 and, say, u(fa, f1) = 0.5.

4. Four code similarity measures

The usage of the first three methods was proposed
in [4]. Let us briefly recall these methods and after
that the fourth, new method (with proper modifi-
cations for the R language) is described in detail.

4.1. Edit distance

The first method is based on simply comparing
plain-text of functions’ source code. In the first ver-
sion of our system we used the Levenshtein distance.
Informally, the Levenshtein distance between two
strings is the minimum number of single-character
edits (i.e. insertions, deletions, or substitutions) re-
quired to change one string into the other one.

In the current version we use the adist() func-
tion from the TRE library with an argument
partial=TRUE. This function is not symmetric, e.g.:

adist ("abcxxx", "abc", partial=TRUE)
returns 3, while
adist("abc", "abcxxx", partial=TRUE)

returns 0.
Our first method is defined as:

adist(fi 5 f])
il

where | f;| is a length of source code of f;.

It is easily seen that for a pair of identi-
cal strings we obtain the value of 1. On the
other hand, for “abc” and “defghi” we get 0, as
adist(“abc”, “defghi”) = 3 and |“abc”| = 3.

pa(fi, fi) =1 —

4.2. Tokens

Methods based on tokens are quite popular. Two
known tools, JPLAG [2] and MOSS [3] are based
on tokens. The difference between our approach
and the classic one is that we do not use a symmet-
ric metrics. At the last step we divide common part
of functions (generally it is a number of common to-
kens) by a number of tokens of one function, not the
sum of tokens from two functions. The similarity of
two token strings f; and f; (obtained from f; and
f; using compiler-style lexical analysis) is computed
via:

coverage(tiles)

:U’2(fz/7fgl): ‘f,|

DU W N

421

where coverage(tiles) is a number of common tokens
of f; and f.
For more details please refer to [4].

4.3. Function calls counts

The third method is very effective and dedicated to
the R language. Let R denote the set of names of
all possible R functions and ¢;(g) be equal to the
number of calls of g € R within f;. This method is
defined with:

> ger min(ci(g), ¢ (9))
ZQER cl(g)
Again, it is not a symmetric method and we ob-

tain this property by dividing numerator by sum of
function calls for one function only.

ws(fi, f5) =

4.4. A method based on a Program
Dependence Graph

The first three methods are not dedicated to cases
when a plagiarist swaps two lines of code, change
loop type (e.g., for loop into while loop, or, what
is more complex, into apply function), or does
something which we call function calls’ “expand-
ing/shrinking”. For example, the following function:

sortlist <- function(x, f) {
x[order (unlist (lapply(x, £)))]

}
is “expanded” into:

sortlist <- function(x, f) {
vl <- lapply(x, f)
v2 <- unlist(vl)
o <- order(v2)

x[o]

That is why we decided to implement a method
based on the Program Dependence Graph (PDG),
firstly introduced in [12]. One of the known antipla-
giarism system based on PDG is GPLAG [1] with
some modifications discussed in [13, 14].

The Program Dependence Graph is a graph, in
which single expressions are nodes and there are two
types of edges: control dependency and data depen-
dency edges, see Figs. 5 and 6. The former tells us
about loop and if statements structure. The sub-
graph of PDG, where there are control dependency
edges only is called Control Dependence Subgraph
(CDS). The latter tells us if an expression is get-
ting data from another expression (e.g., we use vari-
able a, so we use data from assignment to variable
a), or is a source of data for another instructions.
The subgraph of PDG, where there are data depen-
dency edges only is called Data Dependence Sub-
graph (DDS). What is more, we will use term con-
trol flow edges, which are not a part of PDG, but
are needed to construct DDS. Control flow edges
just tell us about order of expressions (nodes).

4.4.1. Program Dependence Graph creation

In this section the process of creation the Program
Dependence Graph (PDG) is described. Firstly, the
Control Dependence Subgraph (CDS) has to be gen-
erated, and after that the Data Dependence Sub-
graph (DDS) creation is based on the CDS. The
algorithm is strongly based on [15]. The reader can
find more details in that technical report.

The algorithm has been implemented in C++ us-
ing the Rcpp package and the Boost Graph Library.

Control Dependence Subgraph Every vertex in the
PDG has two properties: USES and GEN. USES
are names of variables which are used in a cor-
responding statement. GEN is a variable’s name
which is created in a corresponding statement.
For example, for “i<-a+b” statement, USES are
{“a”,“p”} and GEN is “i”.

The algorithm starts by creating an artificial ver-
tex “Entry” in PDG. It is a vertex, on which every
top level expression will be control dependent. Af-
ter that, we call CreateCDS() (see Fig. 1) which
iterates over every expression in a function. This
function determines what is the type of an expres-
sion and calls appropriate helper function for it, see
Fig. 2 for an example. For details, like dealing with
break or next statements, we refer reader to [15].
The next paragraphs describe the changes we made
to the algorithm, so it is more adjusted to the R
language.

R is a functional language. It is the a very com-
mon practice to call one function and provide it as
an argument to another function (compare to “ex-
pand/shrink” of function calls in Sec. 3). Our im-
plementation ensures that such alterations result in
the same PDG.

First of all we fetch the most nested call. We cre-
ate a vertex in a PDG for it. USES are variables
used as arguments in this call. GEN is some gen-
erated unique name. After that we substitute this
most nested call with the generated unique name. A
function call which gets this most nested call as an
argument will have this generated unique name in
its USES. Informally, we expand every call in such
a way that we assign every call to a variable and
after that we use these variables as an arguments in
consequent calls (see “expanded version” in Sec. 3).
The pseudocode for processing a function call is in
Fig. 3.

Another modification is that in the R language
there is another type of a loop: the apply() func-
tion. It is a function which takes a vector, list,
matrix or data frame as an argument and applies
a given function on every its element (or row or
column for matrices and data frames). There are
also other functions like it: lapply (), mapply(),
sapply () etc. What is more, we cannot rely on the
name of a function, as it can be very easily changed,

e.g., apply2 <- apply.

0 O UL W

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

422

That is why we implemented the following ap-
proach: we check if some argument of a function
call is an anonymous function. If this is the case,
we assume that it is an apply-like function and ex-
pand it as a normal loop, like for. Arguments to
this anonymous function are the iterating variables
(and we get them into GEN) and the another ar-
guments of the apply-like function are the variables
names for USES.

The example of CDS can be seen in the Fig. 5.

Before we can get further we also have to create
control flow edges. A control flow edge connects two
vertices if and only if two corresponding expressions
immediately follow each other. Control flow edges
in PDG enable to recreate the order of expressions
in a function. For more information please refer
to [15].

createCDS (node n,
{
for(node nl1 in n.children()) {
switch (TYPEOF (n1)) {

case FOR:
createForNode (nl,parent) ;
break;

case WHILE:
createWhileNode (nl,parent);
break;

case REPEAT:
createRepeatNode (nl,parent);
break;

case IF:
createIfNode (nl,parent);
break;

case BREAK:
createBreakNode (nl,parent);
break;

case NEXT:
createNextNode (nl,parent);
break;

case ASSIGNMENT:

case CALL:
createCallNode (nl,parent);
break;

vertex parent)

}
}
}

Figure 1: Pseudocode of CDS building in general

Data Dependence Subgraph After we obtain CDS,
we can produce DDS. We have to introduce an-
other properties to vertices of PDG: IN and OUT.
These are dictionaries, where a key is a variable
name (character string) and a value is a vertex in-
dex, where the variable name is generated. The
pseudocode which produces DDS is listed in Fig. 4.
What is important, we have to get predecessors of
a vertex in a control flow subgraph (graph where
there are only control flow edges).

One of the novel ideas was to create transitive

© 0~ O O Wi

— =
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1

createForNode (node n,
{
//statement below creates new vertex
//in program dependence graph
forVertex = CreateNewVertex();
CreateControlEdge (parent, forVertex);

vertex parent)

//in statement below for
//"for(i in z)"
//we get wvariable
forVertex.GEN =
getIterationVariableFromFor (n);
//in statement below for
//"for(i in z)"
//we get wariable
forVertex.USES =
getUsedVariablesFromFor (n);

ngon
7

"ot
T

node nl = getBodyOfFor(n);
createCDS(n1, forVertex);
//statement below makes proper edges
//for "break" and "next" statements
makeStructuredTransfers (forVertex);

Figure 2: Pseudocode of CDS building for for state-
ment

createCallNode (node n, vertex parent)

{
//every function which gets an
//anonymous function as an argument
//%is exzpanded to a loop construct
//like for or while
if (isApplyFunction(n))
createApplyLoop(n);

//statement below creates new wvertezx
//in program dependence graph
callVertex = CreateCallVertex();
CreateControlEdge (parent, callVertex);

//statement below can approach another
//function call as as an argument

//and call createCallNode () for it again

callVertex.USES =
parent);

if(n is assignment)
callVertex.GEN =
n.leftVariableOfAssignment;
else
callVertex.GEN =
createUniqueName () ;

}

Figure 3: Pseudocode of CDS building for function
call statement

data edges. For example, consider two chunks of
code:

d <- (b + c) * e

getAllCallArguments (n,

423

createDDS (Graph CDS)
{
bool changes = true;
while (changes) {
changes = false;
//use breadth first search
foreach(vertex v in CDS) {
v.IN = U P.OUT,
P is a control flow
predecessor of v
v.0UT = v.0UT U v.IN
}
for (variableName in v.USES) {
for(vertex vl in
v.0UT [variableName]) {
CreateDataEdge (vl, v);
}
}
v.0UT[v.GEN].insert (v);
if (there is change in v.0UT)
changes = true;

Figure 4: Pseudocode of DDS building

fun (4d)
and

d <- (b + c) * e
f <-d
fun (f)

A call to function fun() is data dependent on d,
but in the second chunk of code it is dependent on
f. We may add transitive data edges, so that if
vertex B is dependent on A, and C is dependent on
B, we add data edge from A to C. Unfortunately,
adding these edges was computationally demanding
and the results were worse than for a graph without
them. Probably there were too many data edges
and it was easier to find false isomorphisms.

Example of whole Program Dependency Graph
(including DDS) can be seen in Fig. 6.

4.4.2. Finding maximum common subgraph
isomorphism

After we obtain PDGs, we have to compare them in
some way, so we can decide, which ones are similar.
GPLAG [1] and also its successors [13, 14] solve sub-
graph isomorphism problem using the VF algorithm
[16] to decide whether there is a similarity between
two PDGs of corresponding functions. Assume that
there are two PDGs: G and G'. We find a subgraph
S’ of G’ which is isomorphic to G. Of course small
change in G causes that it is not isomorphic to any
S’ C G'. What is more, we have to test it in two
ways: whether G whether a subgraph isomorphic
to G’ and also if G’ is subgraph isomorphic to G.
Authors of GPLAG solve this by introducing the
so-called ~y-isomorphism, which means that, S has

to be a subgraph isomorphic to G’, where S C G
and also |S| > v|G|, v € (0,1]. The use of v = 0.9
is recommended.

We decided to propose a different approach. As-
sume that we need to evaluate how much objects
A and B are similar to each other. In all similar-
ity problems, there is a need to find common part
of A and B, and after that to calculate, how large
is this common part with respect to A and B. The
answer to this problem may be provided by solving
the mazimum common subgraph isomorphism prob-
lem (MCS). Assume that we have again two graphs:
G and G’. Solving MCS is answering the question
“what is the largest subgraph of G isomorphic to a
subgraph of G'?”. We decided to use the McGregor
algorithm [17], which is implemented in the C++
Boost library.

Of course, the mazximum common subgraph iso-
morphism problem is NP-complete, as well as the
subgraph isomorphism problem [18]. We observed
that the McGregor algorithm is finding a subgraph
near to the exact common part quite quickly. Our
heuristic is to compute S max(|V(G)|, |[V(G")]) iter-
ations, where § > 1. In our study we have used
B =5.

Assume that we create a PDG G; for every R
function f; we want to check plagiarism. Denote
the common part of graphs G; and G as a H;;. We
define the fourth method as:

e VHG)
M4(fl7fj) |V(Gl)‘ .

5. Experimental results

To our best knowledge, all methods used in the liter-
ature use symmetric similarity measures. Our novel
contribution is to make these measures not sym-
metric, and, after that, aggregate them by t-norm.
When we consider combining two numbers which
are measures of similarity, we intuitively choose
minimum as an aggregation function, because we
want a number which represents overall similarity
of two functions and we want to avoid false posi-
tives. T-norm seems to be a good choice, as it is
a generalized minimum — it returns values less or
equal to the minimum function.

For a given similarity measure p; and a pair
of functions (f;, f;) we get two degrees of similar-
ity, pr(fi, f;) and pr(f;, fi). We aggregate these
two values with a t-norm. A t-norm is a function
T:[0,1] x [0,1] — [0, 1] which satisfies the following
properties:

e Commutativity: T'(a,b) = T'(b,a)
Monotonicity: T'(a,b) < T(c,d) if a < ¢ and
b<d

Associativity: T(a,T(b,¢)) = T(T(a,b),c)

The number 1 acts as identity element:
T(a,1)=a

424

Among exemplary t-norms we find: minimum
T(a,b) = min(a,b), product T(a,b) = a - b,
Lukasiewicz t-norm: T'(a,b) = max(0,a + b — 1).

Now there is a need to properly aggregate and
calibrate the methods’ output. For that purpose, a
random forest model is used. We created a learn-
ing set, where every observation (f;, f;) is repre-
sented as T(ui(fis fi), pe(f5, fi)) for & =1,...,4.
Additionally, each such a pair is classified so as to
0 denotes no similarity and 1 stands for a similar
pair. As the process of acquiring data from peo-
ple by a web portal is time-consuming (see below),
for the purpose of this experiment we decided to
use an artificial set as a learning set, which is a re-
sult of manual transformations of some predefined
functions. This gives ca. 30 000 unique pairs of func-
tions.

In order to obtain data for testing the perfor-
mance of the proposed solution, we created a web
application which is available at http://SimilaR.
Rexamine.com/. Each user can create an account,
send a group of files and asses the results. Of course,
every expert defines code similarity differently and
sometimes there are cases where one cannot be sure
whether a pair of functions is suspicious or not.
Thus, 5 grades of plagiarism can be chosen: totally
different, dissimilar, hard to say, similar and def-
initely similar. At the time of writing this paper,
ca. 400 pairs have been assessed, which is not big
enough to use as a learning set. Thus, we use these
data in the study as a test set only. Hopefully in
the next study data from the portal will be large
enough for learning and testing purposes.

In order to verify whether a fusion of multiple
methods gives better results than individual meth-
ods, we decided to train a random forest model on
the artificial learning set mentioned above and test
it on the data from our website. We classified op-
tions similar and definitely similar as a plagiarism
class and the rest as not plagiarism.

Table 1 summarizes the results. We show the
performance of every individual method in the first
4 rows and after that we show the results for all
the methods combined. In the study we chose the
product t-norm, because it gave the best results for
all the cases. The last 3 columns denote:

TP + TN
acctracy TP + TN + FP + FN
recall i
TP + FN
N TP
precision TP TP

where TP — number of true positives, i.e. actual sim-
ilar pairs are found, FP — number of false positives,
i.e. similarity is indicated, but it should not, TN —
number of true negatives, i.e. no similarity indicated
correctly, FN — number of false negatives, i.e. there
is no similarity indicated, but it should.

We see that by aggregating the 4 methods we get
a very high recall rate. This means that our system

© 00O O Wi

sum <- function(x)
{
s <- 0
m <- 1
for(i in x) {
s <- s + 1
m <- mx*i

}

if(s < 0) {

s <- -s

print ("Negative s")
}
if(m < 0) {

m <- -m

print ("Negative m")
}

return(s)

(a) Source code of an R function

S S
print(“%e\s")‘(

(b) Control Dependence Graph of an R function

Figure 5: Example of transforming an R function into CDS

sum<-function (x)
{
a <- b
b <- 6
for(i in x)
{
c<-a+b-i
}
}
(a) Source code of an R
function
dency edges

(b) Program Dependence Graph (c)
with dashed transitive data depen-

Dependence

Program
Graph with control flow edges

Figure 6: Example of transforming an R function into PDG

is able to correctly detect most of the similar pairs.
In other words, if the output states that a pair is
dissimilar, then it is highly possible that this is the
case. On the other hand, still the precision rate
should be improved — the system seems to be over-
sensitive and qualifies too many pairs as similar.
This, however, may be due to the nature of our
artificial training set.

6. Conclusions

We see that no single algorithm gives perfect results,
but our novel method of a proper data fusion leads
to much better outcomes. Moreover, it turns out
that our approach of making the individual similar-
ity detection algorithms non-symmetric, and then
symmetrizing them with a t-norm also improves the
method’s performance. This gives another “degree
of freedom”, which may be optimized in order to fit

Table 1: Comparison of performance of systems,
product as a t-norm

7

£ £ 8 0 S S g
) . A o d

B E e < £ &
1 0 0 0 079 074 0.76
0 1 0 0 079 073 0.77
0O 0 1 0 081 080 0.76
0O 0 0 1 072 049 0.78
1 1 1 1 0.8 095 0.77

data better.

Our web application http://SimilaR.Rexamine.
com/ serves as a tool not only for assessing the
performance of our method, but also for gathering
learning and test data. As soon as more data is

gathered, we will be able to calibrate our algorithms
so that they give as good performance measures as
possible.

For future work, we see a need for introducing
some fingerprinting of R functions, so that only
some pairs of them can be examined. It would be
possible to compare new R functions with whole set
of R functions in our database. There is a locality-
sensitive hashing (LSH) method, where hash func-
tions map similar keys to similar hash values. Hal-
stead complexity measures also can be used for that
purpose. These measures operate on the number of
distinct operators, operands and total number of
operators and operands.

Acknowledgments

This study was partially supported by the Na-
tional Science Centre, Poland, research project
2014/13/D/HS4/01700.

Maciej Bartoszuk would like to acknowledge
the support by the European Union from re-
sources of the European Social Fund, Project PO
KL “Information technologies: Research and their
interdisciplinary applications”, agreement UDA-
POKL.04.01.01-00-051/10-00 via the Interdisci-
plinary PhD Studies Program.

References

[1] C. Liu, C. Chen, J. Han, and P.S. Yu. GPLAG:
Detection of software plagiarism by program
dependence graph analysis. In Proc. 12th ACM
SIGKDD Intl. Conf. Knowledge Discovery and
Data Mining, KDD ’06, pages 872-881, New
York, NY, USA, 2006. ACM.

L. Prechelt, G. Malpohl, and M. Philippsen.
Finding plagiarisms among a set of programs
with JPlag. Journal of Universal Computer
Science, 8(11):1016-1038, 2002.

A. Aiken. Moss (measure of software simi-
larity) plagiarism detection system. http://
theory.stanford.edu/~aiken/moss/.

M. Bartoszuk and M. Gagolewski. A fuzzy
R code similarity detection algorithm. In A.
Laurent et al., editors, Information Processing
and Management of Uncertainty in Knowledge-
Based Systems, volume 444 of Communications
in Computer and Information Science, pages
21-30. Springer, 2014.

C.K. Roy, J.R. Cordy, R. Koschke. Compar-
ison and evaluation of code clone detection
techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470—
495, 2009

S. Lee, I. Jeong. SDD: High performance code
clone detection system for large scale source
code. In Proc. Object Oriented Programming
Systems Languages and Applications Compan-
ion to the 20th Annual ACM SIGPLAN Con-

426

(8]

[15]

[16]

[17]

[18]

ference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA
Companion 2005, pp. 140-141, 2005

R. Wettel, R. Marinescu. Archeology of code
duplication: Recovering duplication chains
from small duplication fragments. In Proc. 7th
Intl. Symp. Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2005, p. 8,
2005

Z. Li, S. Lu, S. Myagmar, Y. Zhou. CP-Miner:
Finding copy-paste and related bugs in large-
scale software code. IFFEE Transactions on
Software Engineering, 32(3): 176-192, 2006

T. Kamiya, S. Kusumoto, K. Inoue. CCFinder:
A multilinguistic token-based code clone detec-
tion system for large scale source code. IEEE
Transactions on Software Engineering 28(7):
654-670, 2002

V. Wahler, D. Seipel, J. Gudenberg, G. Fis-
cher. Clone detection in source code by fre-
quent itemset techniques. Proc. 4th IEEFE Intl.
Workshop Source Code Analysis and Manipu-
lation, SCAM 2004, pp. 128-135, 2004

W. Evans, C. Fraser, M. Fei. Clone detection
via structural abstraction. Proc. 14th Working
Conf. on Reverse Engineering, WCRE 2007,
pp. 150-159, 2007

J. Ferrante, K.J. Ottenstein, and J.D. War-
ren. The program dependence graph and its use
in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319-349, 1987.

W. Qu, Y. Jia, and M. Jiang. Pattern mining of
cloned codes in software systems. Information
Sciences, 259:544-554, 2014.

W. Qu, M. Jiang, and Y. Jia. Software reuse
detection using an integrated space-logic do-
main model. In Proc. IEEE Intl. Conf. In-
formation Reuse and Integration 2007, pages
638-643, 2007.

M.J. Harrold, B. Malloy, and G. Rothermel.
Efficient construction of program dependence
graphs. Technical report, ACM International
Symposium on Software Testing and Analysis,
1993.

L.P. Cordella, P. Foggia, C. Sansone, and
M. Vento. Performance evaluation of the VF
graph matching algorithm. In Proc. 10th Intl.
Conf. Image Analysis and Processing, ICIAP
'99, page 1172, Washington, DC, USA, 1999.
IEEE Computer Society.

J.J. McGregor. Backtrack search algorithms
and the maximal common subgraph problem.
Software: Practice and Experience, 12(1):23—
34, 1982.

M.R. Garey and D.S. Johnson. Computers and
Intractability;, A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

