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Abstract

In this paper we introduce the concepts of a multi-
mode multi-relational fuzzy network and a regular
fuzzy equivalence on such a network, and provide
procedures for computing the greatest regular fuzzy
and crisp equivalences contained in a given tuple of
fuzzy equivalences.
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1. Introduction

Social network analysis has originated as a branch
of sociology and mathematics which provides for-
mal models and methods for the systematic study of
social structures. Social networks share many com-
mon properties with other types of networks, and
methods of social network analysis are nowadays
applied to the analysis of networks in general, in-
cluding many kinds of networks that arise in com-
puter science, physics, biology, etc., such as the
hyperlink structure on the Web, the electric grid,
computer networks, information networks or vari-
ous large-scale networks appearing in nature.

In large and complex networks it is impossible to
understand the relationship between each pair of in-
dividuals, but to a certain extent, it may be possible
to understand the system, by classifying individuals
and describing relationships on the class level. For
instance, individuals in the same class can be con-
sidered to occupy the same position, or play the
same role in the network. The main aim of the
positional analysis of networks is to find similarities
between individuals which have to reflect their posi-
tion in a network. These similarities have been for-
malized first by Lorrain and White [17] by the con-
cept of a structural equivalence. Informally speak-
ing, two individuals are considered to be structur-
ally equivalent if they have identical neighborhoods.
However, in many situations this concept has shown
oneself to be too strong. Weakening it sufficiently
to make it more appropriate for modeling social po-
sitions, White and Reitz [21] have introduced the
concept of a regular equivalence, where two indi-
viduals are considered to be regularly equivalent if
they are equally related to equivalent others. Regu-
lar equivalences also play an important role in the
blockmodeling, a method of data reduction which

reduces redundant elements of a network to yield a
simplified model of relationships between types of
elements (cf. [1, 7, 9]).

Regular equivalences have been studied mainly in
the context of one-mode social networks, consisting
of a single set of entities and ties between these enti-
ties of the same or different types. To a lesser extent,
regular equivalences and blockmodeling have been
studied in the context of two-mode networks, which
consist of two sets of entities and ties from one to
another set (cf. [1, 4, 7, 8, 9, 18, 19, 20]). However, in
real situations we often encounter much more com-
plex networks consisting of multiple sets of entities
and ties inside and between some of them. The main
aim of this paper is to provide a general mathemat-
ical model for the study of such complex networks,
which are called multi-mode networks, to introduce
the concept of a regular equivalence on these net-
works, and to provide a procedure for computing
these regular equivalences. It should be noted that
a similar kind of networks, called multilevel net-
works, has been recently studied in [22]. In addi-
tion, we consider an even more general case, also
very common in real situations, where the ties be-
tween entities are fuzzy. Such fuzzy social networks
have been studied in [6, 10, 11, 12, 14, 15, 16].

The methodology used here for computing regular
fuzzy equivalences on multi-mode fuzzy networks is
based on methods for finding the greatest solutions
of so-called weakly linear systems of fuzzy relation
inequalities and equations, developed in [14, 15, 16],
where residual of fuzzy relations play a key role. It is
worth noting that this methodology has been previ-
ously shown to be very efficient in solving some fun-
damental problems of the theory of fuzzy automata,
such as the reduction of the number of states and
the problems of equivalence, simulation and bisim-
ulation.

After this introductory section, in Section 2 we
define the basic concepts of the theory of fuzzy sets
and fuzzy relations that are used in further work.
Then in Section 3 we define a multi-mode multi-re-
lational fuzzy network and the concept of a regular
fuzzy equivalence on such a network, and present
the main results of the paper which provide a pro-
cedure for computing the greatest regular fuzzy and
crisp equivalences on such networks.

The results obtained in this paper generalize the
related results concerning both one-mode and two-
mode fuzzy networks.
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2. Preliminaries

In the paper we use complete residuated lattices as
structures of membership values. A residuated lat-
tice is an algebra L = (L, ∧, ∨, ⊗, →, 0, 1) such that

(L1) (L, ∧, ∨, 0, 1) is a lattice with the least element
0 and the greatest element 1,

(L2) (L, ⊗, 1) is a commutative monoid with the unit
1,

(L3) ⊗ and → form an adjoint pair , i.e., they satisfy
the adjunction property: for all x, y, z ∈ L,

x ⊗ y 6 z ⇔ x 6 y → z. (1)

If, additionally, (L, ∧, ∨, 0, 1) is a complete lattice,
then L is called a complete residuated lattice.

The operations ⊗ (called multiplication) and →
(called residuum) are intended for modeling the con-
junction and implication of the corresponding log-
ical calculus, and supremum (

∨

) and infimum (
∧

)
are intended for modeling the existential and gener-
al quantifier, respectively. An operation ↔ given by

x ↔ y = (x → y) ∧ (y → x), (2)

called biresiduum (or biimplication), is used for mo-
deling the equivalence of truth values. It can be eas-
ily shown that with respect to 6, ⊗ is isotonic in
both arguments, → is isotonic in the second and
antitonic in the first argument. For other properties
of complete residuated lattices we refer to [2, 3].

The most studied and applied structures of mem-
bership values, defined on the real unit interval [0, 1]
with x∧y = min(x, y) and x∨y = max(x, y), are the
Łukasiewicz structure (x⊗y = max(x+y−1, 0) and
x → y = min(1 − x + y, 1)), the Goguen (product)
structure (x ⊗ y = x · y, x → y = 1 if x 6 y and
= y/x otherwise) and the Gödel structure (x ⊗ y =
min(x, y), x → y = 1 if x 6 y and = y other-
wise). Another important set of truth values is the
set {a0, a1, . . . , an}, 0 = a0 < · · · < an = 1, with
ak ⊗ al = amax(k+l−n,0), ak → al = amin(n−k+l,n). A
special case of the latter algebras is the two-element
Boolean algebra of classical logic with the support
{0, 1}. The only adjoint pair on this Boolean algebra
consists of the classical conjunction and implication
operations. This structure of truth values is called
the Boolean structure.

In the sequel L will be a complete residuated
lattice. A fuzzy subset of a set A over L, or sim-
ply a fuzzy subset of A, is any mapping from A
into L. Ordinary crisp subsets of A are considered
as fuzzy subsets of A taking membership values in
the set {0, 1} ⊆ L. Let f and g be two fuzzy sub-
sets of A. The equality of f and g is defined as
the usual equality of mappings, i.e., f = g if and
only if f(x) = g(x), for every x ∈ A. The inclusion
f 6 g is also defined pointwise: f 6 g if and only
if f(x) 6 g(x), for every x ∈ A. Endowed with this
partial order the set LA of all fuzzy subsets of A
forms a complete lattice, in which the meet (inter-
section)

∧

i∈I fi and the join (union)
∨

i∈I fi of an

arbitrary family {fi}i∈I of fuzzy subsets of A are
mappings from A into L defined by
(

∧

i∈I

fi

)

(x) =
∧

i∈I

fi(x),

(

∨

i∈I

fi

)

(x) =
∨

i∈I

fi(x),

for all x ∈ A.
A fuzzy relation between sets A and B (in this

order) is any fuzzy subset of A × B, and the equal-
ity, inclusion (ordering), joins and meets of fuzzy
relations are defined as for fuzzy sets. The set of all
fuzzy relations between A and B will be denoted by
LA×B. In particular, a fuzzy relation on a set A is
any fuzzy subset of A × A, and the set of all fuzzy
relations on A is denoted by LA×A. The reverse or
inverse of a fuzzy relation α ∈ LA×B is a fuzzy re-
lation α−1 ∈ LB×A defined by α−1(b, a) = α(a, b),
for all a ∈ A and b ∈ B. A crisp relation is a fuzzy
relation taking values only in the set {0, 1}, and if
α is a crisp relation between A and B, then the ex-
pressions ”α(a, b) = 1” and ”(a, b) ∈ α” will have
the same meaning. For a fuzzy relation α ∈ LA×B,
the crisp relation αc given by

αc(a, b) =

{

1 if α(a, b) = 1,

0 otherwise
,

is called the crisp part of α (it is also known as the
1-cut of α). According to the above mentioned con-
vention, we also write

αc = {(a, b) ∈ A × B | α(a, c) = 1}.

For non-empty sets A, B and C, and fuzzy rela-
tions α ∈ LA×B and β ∈ LB×C , their composition is
a fuzzy relation α ◦ β ∈ LA×C defined by

(α ◦ β)(a, c) =
∨

b∈B

α(a, b) ⊗ β(b, c), (3)

for all a ∈ A and c ∈ C. When the underlying
sets are finite, fuzzy relations can be interpreted as
matrices with entries in L and the composition of
fuzzy relations can be interpreted as a kind of ma-
trix product. It is easy to verify that the composi-
tion of fuzzy relations is associative and distributive
over unions (joins) of fuzzy relations.

Let A, B and C be non-empty sets, λ ∈ LA×B,
µ ∈ LB×C and η ∈ LA×C . The right residual of η by
λ is a fuzzy relation λ\η ∈ LB×C defined by

(λ\η)(b, c) =
∧

a∈A

λ(a, b) → η(a, c), (4)

for all (b, c) ∈ B × C, and the left residual of η by µ
is a fuzzy relation η/µ ∈ LA×B defined by

(η/µ)(a, b) =
∧

c∈C

µ(b, c) → η(a, c), (5)

for all (a, b) ∈ A × B. It is not hard to verify that
the following residuation property (in some sources
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called the adjunction property) holds for arbitrary
λ ∈ LA×B, µ ∈ LB×C and η ∈ LA×C :

λ ◦ µ 6 η ⇔ µ 6 λ\η ⇔ λ 6 η/µ. (6)

A fuzzy relation α ∈ LA×A is reflexive if ∆A 6 α
(where ∆A is the crisp equality on A), symmetric if
α−1 6 α, and transitive if α ◦ α 6 α. A reflexive,
symmetric and transitive fuzzy relation is called a
fuzzy equivalence, whereas a reflexive and transitive
fuzzy relation is called a fuzzy quasi-order .

Hereinafter, N denotes the set of natural numbers
(without zero), N0 = N∪{0}, and [1, n] denotes the
set of first n natural numbers, for each n ∈ N. For
a given family of fuzzy relations R, by L(R) we
denote the subalgebra of L generated by all mem-
bership values taken by fuzzy relations from R.

Let n ∈ N and let A1, . . . , An be a collection of
non-empty sets. The set LA1×A1 × · · · × LAn×An of
all n-tuples of fuzzy relations on A1, . . . , An, respec-
tively, is ordered pointwise, in the following way:
(α1, . . . , αn) 6 (β1, . . . , βn) if and only if αl 6 βl,
for each l ∈ [1, n]. Following the terminology that
is used for fuzzy sets and relations, we will say that
(α1, . . . , αn) is contained in (β1, . . . , βn).

A partially ordered set P is said to satisfy the de-
scending chain condition, shortly DCC , if each de-
scending sequence of elements of P stabilizes, i.e.,
if {ak}k∈N is a sequence of elements of P such that
ak+1 6 ak, for each k ∈ N, then there exists n ∈ N

such that an = an+m, for each m ∈ N.
For more information on fuzzy sets and fuzzy re-

lations we refer to [2, 3].

3. Regular fuzzy equivalences

In this section we first define a multi-mode multi-
relational fuzzy network and the concept of a regu-
lar fuzzy equivalence on such a network.

Given n ∈ N, a collection A1, . . . , An of non-
empty sets and a non-empty set J ⊆ [1, n] ×
[1, n], and let {Ij,k}(j,k)∈J be also a collection of
non-empty sets. We require that for each j ∈ [1, n]
there is k ∈ [1, n] such that (j, k) ∈ J or (k, j) ∈ J .
For any (j, k) ∈ J let {Rj,k

i }i∈Ij,k
be a family of non-

empty fuzzy relations between Aj and Ak, and set

R = {Rj,k
i | (j, k) ∈ J, i ∈ Ij,k}.

The system N = (A1, . . . , An, R) is called a multi-
mode multi-relational fuzzy network, or more specifi-
cally, an n-mode multi-relational fuzzy network. We
usually omit the adjective “multi-relational”. The
sets A1, . . . , An are called the components or modes
of the network N . Note that the above families of
fuzzy relations are specified for some pairs of compo-
nents, but not necessarily for all pairs. It is evident
that J is the set of all pairs (j, k) ∈ [1, n] × [1, n] for
which a non-empty family of non-empty fuzzy rela-
tions between Aj and Ak is specified, and this family
is indexed by the set Ij,k. If for some j ∈ [1, n] there

is no any k ∈ [1, n] such that a non-empty family
of non-empty fuzzy relations between Aj and Ak or
between Ak and Aj is specified, then Aj is isolated
and there is no sense to consider it. For this reason
we have introduced the above requirement for the
set J .

Observe that the multi-mode network N is a com-
plex system which consists of one-mode fuzzy net-
works Nj = (Aj , {Rj,j

i }i∈Ij,j
), for those j ∈ [1, n]

for which (j, j) ∈ J , and two-mode fuzzy networks
Nj,k = (Aj , Ak, {Rj,k

i }i∈Ij,k
), for those (j, k) ∈ J for

which j 6= k. Therefore, for n = 1 this definition
gives a one-mode fuzzy network, and for n = 2 and
J = {(1, 2)} it gives a two-mode fuzzy network.

For any l ∈ [1, n] let αl be a fuzzy equivalence on
Al such that for all (j, k) ∈ J , i ∈ Ij,k the following
is true:

αj ◦ Rj,k
i = Rj,k

i ◦ αk. (7)

Then the n-tuple (α1, . . . , αn) is said to be a regular
fuzzy equivalence on the network N . In addition, if
α1, . . . , αn are crisp equivalences, then we say that
(α1, . . . , αn) is a regular crisp equivalence on N . It is
clear that (α1, . . . , αn) is a regular fuzzy equivalence
on N if and only if αj is a regular fuzzy equivalence
on the one-mode network Nj , for each j ∈ [1, n]
such that (j, j) ∈ J , and the pair (αj , αk) is a regu-
lar fuzzy equivalence on the two-mode network Nj,k

for each (j, k) ∈ J for which j 6= k. The role of the
regular fuzzy equivalence (α1, . . . , αn) can be under-
stood as follows: for any j ∈ [1, n] the fuzzy equiv-
alence αj identifies and classifies similar entities in
the component Aj , entities that occupy the same
position or play the same role in the network N .

By the first theorem we prove the existence of the
greatest regular fuzzy equivalence contained in a
given n-tuple of fuzzy equivalences on the compo-
nents of a multi-mode fuzzy network. We also show
that it is the greatest solution, contained the same
n-tuple of fuzzy equivalences, to a particular system
of fuzzy relation equations.

Theorem 3.1 Let N = (A1, . . . , An, R) be a multi-
mode fuzzy network, for each l ∈ [1, n] let ξl de-
note an unknown taking values in LAl×Al , and let
(α0

1, . . . , α0
n) be a given n-tuple of fuzzy equivalen-

ces on A1, . . . , An, respectively. Then the system of
fuzzy relation equations

ξj ◦ Rj,k
i = Rj,k

i ◦ ξk, (j, k) ∈ J, i ∈ Ij,k, (8)

ξ−1
j ◦ Rj,k

i = Rj,k
i ◦ ξ−1

k , (j, k) ∈ J, i ∈ Ij,k, (9)

has the greatest solution contained in (α0
1, . . . , α0

n),
which is the greatest regular fuzzy equivalence on N
contained in (α0

1, . . . , α0
n).

Proof. It is easy to see that the system (8)–(9) has
at least one solution contained in (α0

1, . . . , α0
n), the

n-tuple (∆A1
, . . . , ∆An

) consiting of equality rela-
tions on A1, . . . , An.
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Let {(αt
1, . . . , αt

n)}t∈T be the family of all solu-
tions to (8)–(9) contained in (α0

1, . . . , α0
n), and for

any l ∈ [1, n] let

αl =
∨

t∈T

αt
l .

Then for all (j, k) ∈ J and i ∈ Ij,k we have that,

αj ◦ Rj,k
i =

(

∨

t∈T

αt
j

)

◦ Rj,k
i =

∨

t∈T

(αt
j ◦ Rj,k

i )

=
∨

t∈T

(Rj,k
i ◦ αt

k) = Rj,k
i ◦

(

∨

t∈T

αt
k

)

= Rj,k
i ◦ αk,

and similarly we prove that α−1
j ◦Rj,k

i = Rj,k
i ◦α−1

k ,
for all (j, k) ∈ J and i ∈ Ij,k. Thus, (α1, . . . , αn) is
a solution to the system (8)–(9), and evidently, it
is the greatest solution to this system contained in
(α0

1, . . . , α0
n).

Further, it is easy to verify that (∆A1
, . . . , ∆An

),
(α−1

1 , . . . , α−1
n ) and (α1 ◦α1, . . . , αn ◦αn) are also so-

lutions to (8)–(9). Since (α1, . . . , αn) is the greatest
solution to this system contained in (α0

1, . . . , α0
n), we

conclude that ∆Al
6 αl, α−1

l 6 αl and αl ◦ αl 6 αl,
which means that αl is a fuzzy equivalence, for every
l ∈ [1, n], and therefore, the n-tuple (α1, . . . , αn) is
a regular fuzzy equivalence on the network N .

Finally, every regular fuzzy equivalence on N is a
solution to (8)–(9), so we conclude that (α1, . . . , αn)
is the greatest regular fuzzy equivalence on N con-
tained in (α0

1, . . . , α0
n).

Note that regular fuzzy equivalences are n-tuples
of fuzzy equivalences that are solutions to system
(8). However, the greatest solution to this system,
contained in a given n-tuple of fuzzy equivalences, is
an n-tuple of fuzzy quasi-orders, but it is not neces-
sarily an n-tuple of fuzzy equivalences. To ensure
that this greatest solution is an n-tuple of fuzzy
equivalences, the system (8) must be combined with
the system (9), as was done in the previous theorem.

Next, for each j ∈ [1, n] we set

Λj = {k ∈ [1, n] | (j, k) ∈ J},

Pj = {k ∈ [1, n] | (k, j) ∈ J}.

Moreover, for a given family F of fuzzy relations,
L(F) denotes the subalgebra of L generated by all
membership values taken by fuzzy relations from F .

The following theorem gives a procedure for com-
puting the greatest regular fuzzy equivalence con-
tained in a given tuple of fuzzy equivalences.

Theorem 3.2 Let N = (A1, . . . , An, R) be a multi-
mode fuzzy network, and let (α0

1, . . . , α0
n) be a given

n-tuple of fuzzy equivalences on A1, . . . , An, respec-
tively, and let {(αr

1, . . . , αr
n)}r∈N be a descending se-

quence of n-tuples of fuzzy relations on A1, . . . , An,

respectively, defined inductively as follows:

(α1
1, . . . , α1

n) = (α0
1, . . . , α0

n), (10)

αr+1
j = αr

j ∧
∧

k∈Λj

∧

i∈Ij,k

(

[(Rj,k
i ◦ αr

k)/Rj,k
i ] ∧ (11)

∧ [(Rj,k
i ◦ (αr

k)−1)/Rj,k
i ]

−1
)

∧

∧
∧

k∈Pj

∧

i∈Ik,j

(

[Rk,j
i \(αr

k ◦ Rk,j
i )] ∧

∧ [Rk,j
i \((αr

k)−1) ◦ Rk,j
i )]

−1
)

,

for all j ∈ [1, n], r ∈ N. Then the following is true:

(a) if there exists s ∈ N such that

(αs
1, . . . , αs

n) = (αs+1
1 , . . . , αs+1

n ),

then the n-tuple (αs
1, . . . , αs

n) is the greatest reg-
ular fuzzy equivalence on the fuzzy network N
contained in (α0

1, . . . , α0
n);

(b) if A1, . . . , An are finite sets and the subalgebra
L(R∪{α0

1, . . . , α0
n}) satisfies DCC, then the se-

quence {(αr
1, . . . , αr

n)}r∈N is finite and there is
s ∈ N so that (αs

1, . . . , αs
n) = (αs+1

1 , . . . , αs+1
n ).

Proof. (a) Suppose that there exists s ∈ N such that
(αs

1, . . . , αs
n) = (αs+1

1 , . . . , αs+1
n ). Then we have that

αs
j 6 (Rj,k

i ◦ αs
k)/Rj,k

i

and
(αs

j)−1
6 (Rj,k

i ◦ (αs
k)−1)/Rj,k

i ,

for all j ∈ [1, n], k ∈ Λj and i ∈ Ij,k, and also,

αs
j 6 Rk,j

i \(αs
k ◦ Rk,j

i )

and
(αs

j)−1
6 Rk,j

i \((αs
k)−1 ◦ Rk,j

i ),

for all j ∈ [1, n], k ∈ Pj and i ∈ Ik,j . According to
the residuation property, this is equivalent to

αs
j ◦ Rj,k

i 6 Rj,k
i ◦ αs

k

and
(αs

j)−1 ◦ Rj,k
i 6 Rj,k

i ◦ (αs
k)−1,

for all j ∈ [1, n], k ∈ Λj and i ∈ Ij,k, and also,

Rk,j
i ◦ αs

j 6 αs
k ◦ Rk,j

i

and
Rk,j

i ◦ (αs
j)−1

6 (αs
k)−1 ◦ Rk,j

i ,

for all j ∈ [1, n], k ∈ Pj and i ∈ Ik,j . It is not hard
to verify that the system consisting of the previous
four types of fuzzy relation inequalities is equivalent
to the system (8)–(9), and consequently, the n-tuple
(αs

1, . . . , αs
n) is a solution to the system (8)–(9). Evi-

dently, it is contained in (α0
1, . . . , α0

n).
Let (α1, . . . , αn) be an arbitrary solution to the

system (8)–(9) contained in (α0
1, . . . , α0

n). Suppose
that (α1, . . . , αn) 6 (αr

1, . . . , αr
n), for some r ∈ N

0.
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Then for each j ∈ [1, n], k ∈ Λj and i ∈ Ij,k we have
that

αj ◦ Rj,k
i 6 Rj,k

i ◦ αk 6 Rj,k
i ◦ αr

k,

whence
αj 6 (Rj,k

i ◦ αr
k)/Rj,k

i ,

and similarly,

(αj)−1
6 (Rj,k

i ◦ (αr
k)−1)/Rj,k

i ,

which implies that

αj 6 αr
j ∧

∧

k∈Λj

∧

i∈Ij,k

(

[(Rj,k
i ◦ αr

k)/Rj,k
i ] ∧

∧ [(Rj,k
i ◦ (αr

k)−1)/Rj,k
i ]

−1
)

.

In the same way we show that

αj 6 αr
j ∧

∧

k∈Pj

∧

i∈Ik,j

(

[Rk,j
i \(αr

k ◦ Rk,j
i )] ∧

∧ [Rk,j
i \((αr

k)−1) ◦ Rk,j
i )]

−1
)

.

Now, according to (11) we have that αj 6 αr+1
j , for

each j ∈ [1, n], and by induction we conclude that
αj 6 αr

j , for all j ∈ [1, n] and r ∈ N
0.

Consequently, αj 6 αs
j , for each j ∈ [1, n], which

means that the n-tuple (αs
1, . . . , αs

n) is the greatest
solution to the system (8)–(9) contained in the n-
tuple (α0

1, . . . , α0
n). Now, according to Theorem 3.1,

we conclude that (αs
1, . . . , αs

n) is the greatest regular
fuzzy equivalence on N contained in (α0

1, . . . , α0
n).

(b) Suppose that A1, . . . , An are finite sets and
the subalgebra L(R ∪ {α0

1, . . . , α0
n}) satisfies DCC.

For each l ∈ [1, n] and all pairs (al, a′

l) ∈ Al × Al,
we have that {αr

l (al, a′

l)}r∈N is a descending se-
quence in L(R ∪ {α0

1, . . . , α0
n}). By the hypothesis,

this sequence stabilizes, and since there are finitely
many such sequences, we conclude that there exists
s ∈ N such that all these sequences stabilize after s
steps. Therefore, the sequence {(αr

1, . . . , αr
n)}r∈N is

finite and (αs
1, . . . , αs

n) = (αs+1
1 , . . . , αs+1

n ) for s ∈ N

whose existence has been established above.
This completes the proof of the theorem.

By Theorem 3.2, the greatest regular fuzzy equiv-
alence contained in the given n-tuple (α0

1, . . . , α0
n) of

fuzzy equivalences can be computed as follows. We
start from this n-tuple and build a descending se-
quence of n-tuples of fuzzy equivalences by means
of the formula (11), and simultaneously we check
whether two subsequent members of the sequence
are equal. The procedure terminates as soon as we
find the first pair of equal consecutive members of
the sequence, and in this case, the last computed n-
tuple is the greatest regular fuzzy equivalence con-
tained in (α0

1, . . . , α0
n).

However, in general, the above described proce-
dure do not necessarily terminate in a finite number
of steps, and Theorem 3.2 provides a sufficient con-
dition under which it will terminate, when the sub-
algebra L(R∪{α0

1, . . . , α0
n}) satisfies the descending

chain condition. In particular, this condition is ful-
filled if L is a locally finite algebra, that is, if every
finitely generated subalgebra of L is finite. The most
widely used locally finite structures are the Boolean
structure and the Gödel structure. For more infor-
mation on local finiteness in t-norm based struc-
tures we refer to the recent paper [13].

In cases when the above procedure does not ter-
minate in a finite number of steps and can not
be used to efficiently compute the greatest regular
fuzzy equivalence on the network N contained in
(α0

1, . . . , α0
n), it is possible to modify this procedure

to compute the greatest regular crisp equivalence
contained in (α0

1, . . . , α0
n). This modified procedure

is provided by the following theorem.

Theorem 3.3 Let N = (A1, . . . , An, R) be a multi-
mode fuzzy network, and let (α0

1, . . . , α0
n) be a given

n-tuple of fuzzy equivalences on A1, . . . , An, respec-
tively, and let {(̺r

1, . . . , ̺r
n)}r∈N be a descending se-

quence of n-tuples of crisp relations on A1, . . . , An,
respectively, defined inductively as follows:

(̺1
1, . . . , ̺1

n) = ([α0
1]c, . . . , [α0

n]c), (12)

̺r+1
j = ̺r

j ∧ [Φ(̺r
j )]c, (13)

where

Φ(̺r
j) =

∧

k∈Λj

∧

i∈Ij,k

(

[(Rj,k
i ◦ αr

k)/Rj,k
i ] ∧

∧ [(Rj,k
i ◦ (αr

k)−1)/Rj,k
i ]

−1
)

∧

∧
∧

k∈Pj

∧

i∈Ik,j

(

[Rk,j
i \(αr

k ◦ Rk,j
i )] ∧

∧ [Rk,j
i \((αr

k)−1) ◦ Rk,j
i )]

−1
)

,

for all j ∈ [1, n], r ∈ N.
Then there exists s ∈ N such that

(̺s
1, . . . , ̺s

n) = (̺s+1
1 , . . . , ̺s+1

n ),

and the n-tuple (̺s
1, . . . , ̺s

n) is the greatest regular
crisp equivalence on the fuzzy network N contained
in (α0

1, . . . , α0
n).

The proof of this theorem is similar to the proof of
Theorem 3.2 and it will be omitted. The reader can
also take a look at Proposition 5.8 [15].

4. Concluding remarks

In this article we dealt with regular fuzzy equiva-
lences on multi-mode fuzzy networks because such
equivalences are generally recognized in the social
network analysis as a powerful mean for identify-
ing, describing and understanding the social posi-
tions. The subject of our further research will be cer-
tain more general types of fuzzy equivalences and
fuzzy quasi-orders, which will also be obtained as so-
lutions to particular systems of fuzzy relation equa-
tions and inequalities, and which we will also try to
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apply in the study of the social positions. As noted
in [5], which equivalence relation is interesting to
consider depends on the problem at hand, and it is
likely necessary to consider several different equiva-
lence relations for a given network, in order to un-
derstand it completely. For example, in the mention-
ed paper [5] the authors applied the so-called simu-
lation equivalences in the analysis of a network that
represents the communication between a group of
terrorists with different social positions, and they
have shown that this kind of equivalences may help
to identify some social positions that cannot be rec-
ognized using regular equivalences.
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