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Abstract

In a group decision making setting, we consider the po-
tential impact an expert can have on the overall ranking
by providing a biased assessment of the alternatives that
differs substantially from the majority opinion. In the
framework of similarity based averaging functions, we
show that some alternative approaches to weighting the
experts’ inputs during the aggregation process can min-
imize the influence the biased expert is able to exert.

Keywords: aggregation functions, non-monotonic aver-
aging, consensus, pairwise preferences, group decision
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1. Introduction

Fundamental to the group decision making problem is
the aggregation of expert preferences into an overall
preference relation that can be used as a basis for rank-
ing the alternatives. While the arithmetic mean rep-
resents the standard operator of choice, the focus on
consensus guided aggregation in recently proposed sys-
tems has called for the consistency, expertise and agree-
ment between experts to be incorporated into the deci-
sion making process. In the field of soft, or fuzzy com-
puting, the term consensual processes usually refers to
multi-stage models where expert preferences are itera-
tively revised based on proximity to the overall opinion
until a final decision can be reached (see, for example
[1,2,3,4,5].

Underlying the use of the arithmetic mean (or its
weighted versions) in consensual processes are a num-
ber of assumptions, including those regarding the inde-
pendence of input sources, the distribution and accuracy
of assessments, and so on. A particularly significant as-
sumption is that all assessments are provided in good
faith. We need only look to community-based ratings
online or news reports of corruption to note that this will
not always be the case (see [6] for an example of some
recent research in this area). If a decision system has the
potential to be exploited, then chances are that at some
time it will be.

We use the following example to illustrate this and
motivate the investigations of this paper.

Example 1 A government department evaluates ten-
ders from 4 software companies {A,B,C,D} to imple-
ment an automated fare system on a public transporta-
tion network. There are 4 experts in the government de-
partment who are each to express their preferences over
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the set of tender applications. Three of the experts are
unanimous in their rankings, believing the order should
be A = B = C > D. Expert 4, however has been bribed
to give preference to company B. Knowing the reason-
able ranking for the companies, expert 4 attempts to ex-
ploit the aggregation procedure by providing a ranking
of B> C > D > A, hoping to bring down the ranking of
company A enough so that B wins the tender.

In a group decision making context, one method to
try to prevent situations where expert 4 can influence
the final result is to allocate importance to each of the
experts based on how similar they are to the rest of the
group. The rationale here is that experts with extreme
scores (wWhether deliberate or due to lack of knowledge,
input error etc.) should not have their votes counted as
significantly as those with opinions closer to the major-
ity. In the study of aggregation functions, this problem
can be considered in the framework of outlier detection
and noise reduction, with a number of functions avail-
able (such as the density-based averages in [7, 8]) which
can limit how much an extreme value (or set of extreme
values) can influence the overall evaluation.

In this contribution we pay attention to consensus
guided approaches to weights allocation and investigate
how susceptible some existing approaches are to biased
manipulation such as the situation in Example 1. We fo-
cus on additively consistent pairwise preferences (which
can be obtained from an underlying vector of scores) and
the combined preference relation that would be used as
a basis for making recommendations to the experts in
the first consensus round. We find that if weights are de-
termined from the entire preference relation, biased ex-
perts may be able to manipulate the consensus process.
We therefore make mention of some alternative weight
allocation methods and investigate whether altering the
structure of the aggregation process could be useful in
limiting the effect of outliers.

The paper will be set out as follows. In Section 2 we
give an overview of the group decision making problem
with fuzzy preference relations and the basic definitions
of aggregation functions that will be necessary for the
rest of the paper. In Section 3 we provide an example of
how some existing consensus systems can be influenced
by a corrupt expert and for specific assumptions provide
theoretical bounds on the extent to which he or she can
alter the results. In Section 4, we consider the problem
of how to weight the experts in a way that discourages
extreme preferences but still takes into account any ‘rea-
sonable’ preferences provided by the experts. In Section
5 we explore whether aggregating the preference pairs



individually can alleviate the problems associated with
allocating importance based on an overall measure of
similarity. We note the ramifications that this may have
on the consistency of the combined preference relation.
Finally, in Section 6 we conclude and discuss further di-
rections for research.

2. Preliminaries

In this section we will present the concepts, definitions
and notation relevant to the rest of the paper.

2.1. Group decision making

We consider a group of m experts V = vy,vy,..., v, ex-
pressing their preferences over a set of n alternatives
U =uy,uy,...,u,. An expert expresses his or her pref-
erence for alternative i over j with the value p;; € [0,1]
with p;; > 0.5 indicating that u; is preferred to u;. A
value of 0.5 is interpreted as the two alternatives being
considered equal by the expert, while a value less than
0.5 indicates that u; is preferred to u;.

Although in practice an expert’s thinking can some-
times be contradictory or inconsistent, we can impose
a number of constraints on the set of preferences that
ensure logical behavior. Since a preference relation is
assumed to infer an ordering over the set of alternatives,
these constraints correspond with the properties of re-
flexivity, i.e. that p; = 0.5; asymmetry, that if p;; > 0.5
then p;; < 0.5 and vice-versa; and transivitity, i.e. that
if p;; > 0.5 and pjx > 0.5 then py > 0.5. More strictly,
we have the notion of additively consistent preference
relations, which require pjyx = p;; + pjx —0.5. There are
a number of existing methods for converting an expert’s
supplied preferences into an additively consistent pref-
erence relation and we also note that there exists the no-
tion of multiplicative transitivity or multiplicative con-
sistency [9]. However herein we will assume preference
relations that are additively consistent.

Given a set of raw scores xj,x2,...,X, € [0,1] pro-
vided by each expert over the set of alternatives, we can
obtain an additively consistent preference relation using

xi—xj+1

> ey

Dbij =

2.2. Aggregation functions

The usual approach in group decision making is to com-
bine the preference relations of multiple experts into an
overall preference relation. For this, we use aggregation
functions [10, 11, 12].

Definition 1 An aggregation function A : [0,1]" — [0, 1]
is a function non-decreasing in each argument and sat-
isfying A(0,...,0) =0and A(1,...,1)=1.

In particular, we are usually interested in averaging
functions, i.e. those bounded by their inputs such that
for a set of inputs x € [0, 1], min(x) < A(x) < max(x).

The standard averaging aggregation function adopted
in most practical contexts is the weighted arithmetic
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mean (WAM), which is defined with respect to a weight-
ing vector, w.

Definition 2 A vector w = (wy,...,w,) is called a
weighting vector if w; € [0,1] and ¥, w; = 1.
i=1

Definition 3 Given a weighting vector w, the weighted
arithmetic mean is given by

n
WAMw (x1,...,%,) = Zw,-xl-. 2)
i=1

The weight w; is indicative of the importance of the i-th
contributing input. In the case of group decision making,
this could be the importance or reliability of an expert,
or the proportional representation of a particular profile.
For example, if we have 37% of shareholders support-
ing a particular opinion, then a weight of 0.37 can be
allocated to that opinion.

On the other hand, another important class of
weighted averaging functions used in soft-computing
and decision making are the ordered weighted averaging
(OWA) operators [13]. The OWA weights are assigned
based on the magnitude of the inputs.

Definition 4 Given a weighting vector w, the Ordered
Weighted Averaging (OWA) function is

OWAy(x1,...,X,) = Zw,-xa(,-), 3)
i=1

where the 6 (.) notation denotes the components of X be-
ing arranged in non-increasing order xg(1) > Xg(2) =
N 2 )CG(n).

The OWA is capable of expressing a number of or-
der statistics such as the maximum function, with w =
(1,0,...,0), and the minimum with w = (0, ...,0,1). Itis
also convenient for expressing the median, w; = 1, for
n=2k+1 (nis odd) or wy =wy, =0.5forn =2k (n
is even) and w; = 0 otherwise.

A further development of the OWA operator consid-
ered re-ordering weights based on an auxiliary variable
[14, 15]. The definition of the induced OWA (IOWA) is
presented here as given by Yager and Filev in [14], in
particular, their convention for ties is used.

Definition 5 Given a weighting vector w and an induc-
ing variable z the Induced Ordered Weighted Averaging
(IOWA) function is

TOWA ((x1,21), -, (¥ 20)) = Y wixnpy,  (4)
i=1

where the mM(.) notation denotes the inputs (x;,z;)
reordered such that (1) > Z(2) > > Zn(n) and the
convention that if q of the zy ;) are tied,

Le Zn(i) = In(i+1) = oo = InGitg-1),
1 n(i+q—1)
i =, PIES 5)
Jj=n(i)



An inducing variable can be based on any notion that
associates a variable with each input x;. Where x; pro-
vides information to be aggregated, z; provides some in-
formation about x;, e.g. the importance, distance from
the source, time displacement of the reading etc. The
input pairs (x;,z;) may be two independent features of
the same input, or can be related by some function, i.e.
zi = fi(xi).

As many authors have shown, the IOWA provides a
useful framework for modeling an aggregation based on
consensus or agreement between the inputs. Examples
include the consensus-based operator of Pasi and Yager
[16]. Approaches to defining and characterizing weights
associated with OWA operators have recently been dis-
cussed in [17].

3. Assigning weights by similarity in consensual
processes

A typical framework for a consensual process is to first
obtain a set of pairwise preference relations over a set of
options or alternatives from each expert (which may in-
volve pre-processing or some iterative process to ensure
consistency). Following this, the preference matrices are
aggregated into a combined preference relation (CPR)
and the level of consensus amongst the experts is estab-
lished. From this information, suggestions are made to
the experts to revise their preferences so that they are
closer, overall, to the CPR and their new preferences are
then used to construct an updated CPR and so on until
a satisfactory level of consensus is achieved. Recom-
mendations could be in the form of suggested preference
values, e.g. “consensus will increase if you assign the
preference p34 = 0.577; or statements identifying large
disparities with the rest of the group, e.g. “you gave the
least preference to alternative A, however this was the
most preferred alternative by the majority of experts”.

Given the strong dependence of revised individual
preference relations on the initial CPR, herein we focus
on the impact an expert may have during the first itera-
tion, from which the first round of suggestions are made
and an initial level of consensus is determined.

3.1. Summary of consensual process

A typical consensus process using the similarity be-
tween experts to guide the weights allocation is de-
scribed in [18]. Similarity is calculated in three stages:
the similarity on a pair of alternatives, the similarity on
an alternative, and the similarity of the preference rela-
tion of an expert to the rest of the group. For the k-th
expert, these are given respectively by!,

. 1 il
simj; = P Y 1-1pl =P, (6)
M= 1y Thtk
k 1 - k
sim; = sim; 7
P j:;#i i ™

'We note that the method in [18] is based on preferences expressed
as triangular fuzzy numbers. We adapt the equations here for the case
that each preference p;; € [0, 1].
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n
simt = 1 Z sim{»‘. (8)
i3
Overall, the similarity is essentially the average dif-
ference between each of expert k’s preferences pé‘j and
those supplied by the rest of the group. It can be calcu-
lated succinctly using the triple sum,

-k kK h
sim 1—\Pij—l7ij|-
€))
These similarity degrees are used to calculate the rel-
ative weight wy, of an expert using,

:n(n—l)(m—l)z )y

1 n n m
i=1 j=1,j#ih=1 h#k

-k
sim (10)

Wi = m .
Y simh
h=1

These weights are incorporated into the aggregation
of the individual fuzzy preference relations P* resulting
in a collective fuzzy preference relation given by,

m
CPR=Y wy-P*,
=1

(1)

where ‘-” denotes the standard multiplication of a matrix
by a scalar.

The final stages of this first iteration are to calculate
the proximity degree of each expert to the CPR by tak-
ing the average of 1 — | pf-‘j — ng R| for all entries in the
preference matrix, and then to merge together the prox-
imity degrees and similarity degrees to give an overall
consensus between each expert and the group. If an ex-
pert has a consensus level lower than the threshold value
(often around 0.8), recommendations will be given to
update the preferences that are most different from the
collective fuzzy preference relation.

The rationale for using similarity to guide the weight
process is clear: we want to downgrade the weights of
any expert who differs from the majority, while those
who have supplied preferences similar to the rest of the
group should be given a higher weight. This weighting
is similar to that used in nearest-neighbor type aggrega-
tion.

3.2. Numerical example

A potential problem, however is that since similarity
is calculated across the entire preference matrix, the
weight allocated to an ‘extreme’ expert may not be suf-
ficiently low to minimize the impact on the CPR that is
obtained in the first iteration, and furthermore identify
when an expert is providing ‘unreasonable’ scores and
should be required to think more carefully when updat-
ing their preferences. We can illustrate this idea with the
following example.

Example 2 (continued from Example 1) The experts
each provide a set of evaluations from which an ad-
ditive pairwise preference relation is constructed us-
ing Equation (1). For experts 1-3, the scores are



given as (1,0.8,0.5,0.2) corresponding to companies
A to D respectively. Expert 4 allocates the scores
(0,0.8,0.5,0.2), ensuring a reasonably high similar-
ity value due to companies B to D receiving the same
scores. The two corresponding preference relations are
as follows

05 06 075 09
04 05 065 08
025 035 05 065 |’
0.1 02 035 05

pl=p2—p3—

05 0.1 025
09 05 0.65
0.75 035 05
06 02 035

0.4

0.8
0.65

0.5

and P* =

Using Equations (9) and (10), the weight allocated to
experts 1-3 would be 0.2619 while the weight for expert
4 would be 0.2143. This results in the following aggre-
gated matrix.

0.5 0.4929 0.6429 0.7929
0.5071 0.5 0.65 0.8
CPR= 0.3571 0.35 0.5 0.65 ’
0.2071 0.2 0.35 0.5

which corresponds with an overall ranking of B >~ A >
C > D for the alternatives.

Furthermore, the resulting proximity level for the ex-
pert would be 0.8036.

In other words, by providing a biased opinion for one
alternative, expert 4 has been able to change the ranking
(despite being outnumbered 3 to 1). If the experts are
asked to adjust their scores toward increasing the level
of consensus, each of the experts 1-3 will receive the
feedback that consensus can be increased if they allocate
less preference to company A.

We note that a single example does not negate the use-
fulness of the consensus method. Indeed, expert 4 still
has the lowest overall consensus to the group. How-
ever this example highlights two stages of this process
at which the monotonic behavior of the arithmetic mean
can be exploited. The first is that one extreme preference
has an equivalent influence on the similarity degree cal-
culation as would be exerted by a number of small dif-
ferences in preferences. The biased expert can provide
reasonable preferences for companies B,C, D in order to
hide the effect of providing an extremely low value for
company A. Conversely, when the number of experts is
small, the extreme preference will have a significant im-
pact on the score, in this case bringing down the ranking
of alternative 1 to second place?.

To gain a further insight into this characteristic of the
proposed consensus process, we ran experiments where

20n the other hand, we have an equivalent problem for larger pools
of experts if there is a coalition comprising 25% of the total population
that wishes to unfairly manipulate the aggregation process.
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we randomly generated 4 sets of additively consistent
pairwise preference relations’. We calculated the rela-
tive weight that would be assigned to each expert, and
recorded the maximum and minimum weight each time.
We ran this experiment 1000 times using the R software
package [19]. With four experts and four alternatives,
the minimum weighting given to an expert over these
trials was 0.1926 while the maximum weighting was
0.2818. It is clear that in general, the influence of any
expert is very likely to remain quite significant when
generating the initial CPR. We note that this also has
an impact on the resulting proximity allocated to this
expert, since their preference relation made a relatively
large contribution to generating the CPR from which it
is measured.

3.3. Analysis of similarity calculations in a 4 expert,
4 option model

Here we investigate the conditions under which a biased
expert could affect the overall ranking in the scenario
provided in Examples 1-2. Clearly if experts 1-3 all ex-
pressed their preference for company A over company B
as p;j = 1, which is equivalent to providing raw scores
x1 = 1 and xp = 0, then expert 4 will not be influential
enough to change the ranking between these two alter-
natives. We consider potential strategies that could be
used by expert 4:

1. provide the same raw scores to each of the compa-
nies B,C and D to maximize similarity to the rest
of the group and a score of 0 to company A in order
to downgrade its overall preference;

2. provide the same raw scores to companies C and D,
then allocate 0 to company A and 1 to company B
in order to maximize the preference for B over A.

In the following we will use the indices 1 — 4 corre-
sponding to options A — D accordingly, so the preference
p12 indicates the allocated preference for option A over
option B.

3.3.1. All experts have the same preferences over
B,C,D

In this case, the preferences involving i, j € {2, 3,4} will
all be equal and we need only focus on differences in
the preferences pi2, p13, p14 and their symmetric cases.
Furthermore, for sim* when k = 1,2,3, we need only
take account of differences to expert 4. We will use k
to denote the three experts in the consensus group and
[ to refer to the biased expert. Using Equation (9) we
have n(n—1)(m— 1) = 36 and hence the similarity level
simplifies to,

1
ok k / & / & /
sim :1—ﬁ (\Plz—P12|+|P13—P13|+|P14—P14|)-

3We first created vectors of raw scores and then converted these to
fuzzy pairwise preference relations using Equation (1).



For the final expert, we will need to multiply the differ-
ences by 3, so we have

1
g & | k ! k /
sim' =1— 5 (|P12 = P2l + P13 — Pzl + Pia —P14\) .

We can assume that in each case pf-‘j > pﬁ j since expert
[ is trying to bring down the ranking of option 1. We can
represent these absolute differences in terms of the raw
scores using Equation (1), giving

1Ph2 = Phol +1PYs — Plsl + 1PNy — plal

k / / k k 1 l k k / / k
xl—x1+x2—x2 X]—X|+x3—x3 xl—x1—|—x4—x4

2 2 2

_ 3ok — 3 b — b =kl — o
5 .
Since we assume that the raw scores (and resulting de-

grees of preference) for x,,x3,x4 are the same, we there-
fore simply have

3xlf—3xl1
—
So
simk =1 — 3(x’1‘—xll) _ l_x]f_)ﬁ
36 12
and
siml =1 — 9(x’f—xll) _ l_x]f_xﬁ
36 4

Focusing on the preference for option 1 over option 2,

we have
CPR _ A k k 11
P2 =3wph+wph
3. sim* k sim!

- 3~simk+sim’p12+ 3. simk + si

/
mlp12

koo P
_ 3 -sim" pi, + sim' pi,

3. simk 4 sim!
which in terms of x’f ,xl1 will be
Hxy ok A2y
— TP+ (- )P,

k1 o
3(1_)6'12)6')"’(1_ 14XI)

3(1
L -

The biased expert can exert the largest influence on
the overall degree of preference using xll = 0. To find
the threshold at which preference can be given to option
2, we set xX = 1 and p§FR = 0.5 then solve for x5. We
omit the steps for brevity, noting that the solution yields
xk =1 ~0.7858.

Experts 1-3 would hence have to provide a raw score
for company B of 0.7858 or lower to ensure that the bi-
ased expert could not affect the overall ranking. This is
equivalent to a preference* of 0.6071 or higher for op-
tion 1 over option 2.

4We note that a translation of the raw scores, i.e. x’l‘ = 0.8,x’§ =
0.5858 would lead to the same preferences and the same overall result.
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3.3.2. The biased expert also increases the score given
to option 2 (as well as decreasing option 1)

In this case, we will have differences in
P12, P13, P14, P23, P24 and the symmetric cases. We
further assume that péS < p123 and p§4 < p124. Taking
this into account, similar to the previous case, Equation
(9) will reduce to

k ! ! k
X]— X +x5,— x5

1—
12

This leads to an overall preference expressed as

b oxd —xK aK—xt xd —xk
1~ M1 7% 7%k I B R |
pCPR 3(1 2 )1+ (1 1 )P
12 — k_ ok k1 1k :
X7 —X7 X5 —X X7 —X7 +X5—X
3(1 — %) (1 1 |4 2 2)

To test the threshold at which the fourth expert can
affect the decision, we assume x’f = Lxll =0, and lastly
that x4 = 1.

Solving for p$¥® = 0.5 and x4 in this case leads to the
quadratic,

0=—()2—105 + 12,

which has real solutions

10£+/132
_2

The obtained value is approximately 0.7446. This
means that if the three experts give a score of 1 to option
1 and option 2 has a score below 0.7446 (or equivalently
that the preference for option 1 over 2 is above 0.6277),
then the 4th expert will not be able to affect the order,
however if the results are closer than this, then it will be
possible to supply preferences that can affect the rank-
ing.

A question we might ask is whether three experts pro-
viding a preference of p;; = 0.6 should be significant
enough to result in an overall preference of pf/* > 0.5.
In the following two sections, we propose some alterna-
tive approaches to weighting the experts that attempt to
minimize the influence of an unreasonable and extreme
score provided by a single expert.

4. Alternative ways to weight the experts

In this section we investigate two approaches to weight-
ing the experts’ preferences in order to avoid situations
where unreasonable scores can upset the ranking, how-
ever which still utilize the similarity calculations. In the
first case, we consider predefining the weights to the ex-
perts according to their degree of similarity to the rest of
the group, while in the second case we consider trans-
formation functions of the similarity evaluations.

4.1. IOWA operator with predefined weights
We consider aggregation of the experts’ preference ma-

trices using the IOWA operator, i.e.

CPR=Y wi P, (12)
k=1



where 1 (k) denotes the expert with the k-th highest sim-
ilarity rating. In other words, we use the auxiliary vari-
able z; = sim* so that the expert with the highest overall
similarity to the group is associated with wy, the second
highest with w, and so on.

Assuming that expert 4 provides an evaluation of 0
for the preference pj, the aggregated value will hence

be

PS‘PR =(1- W4)Plf2~

So if wg = 0.1 then any preference above 0.5/0.9 ~
0.5556 given by experts 1 to 3 (or a difference of
x1 —xp = 0.1111 in the raw scores) would be enough to
ensure that the last expert had no influence. The weight-
ing vector w = (1/3,1/3,1/3,0) would mean that ex-
pert 4 in Example 1 would have no influence on the
initial CPR at all, while other alternatives that could
enforce this would be decreasing vectors such as w =
(0.6,0.3,0.1,0).

There is still the potential problem that two experts
could collude and exert an unfair influence on the CPR.
In fact, allocating too high a weight to any expert still
leaves the consensual process vulnerable to manipula-
tion. Consider the following example.

Example 3 A consensual process utilizes the preference
relation of the expert with the highest degree of consen-
sus as its initial combined preference relation. In eval-
uating the same 4 software companies from Example 1,
the following information is provided by experts 1-3,

1 2 3
A 1 1 1
B 06 09 0.7
c 05 03 06
D 0

02 04

Even though all experts provide a preference ordering
of A= B >~ C > D, expert 4 is still able to exploit the
differences in their pairwise preferences by providing a
median score for companies C and D then keeping A
and B close to the existing evaluations however with B
A. If the expert provides the vector (0.9,1,0.5,0.2), the
overall similarity will be 0.8833 while experts 1-3 will
have a similarity of 0.8722 and so expert 4’s preferences
will be used as the representative CPR and company B
will be leading the tender application in the first round.

While we wish to minimize the effect of outliers, it
may still be desirable that everyone contributes to the fi-
nal evaluation, i.e. we discount outliers in the average
rather then omit them from the data>. In the following
we consider using transformations of the sim* evalua-
tions.

4.2. Transforming the similarity functions rather
than using raw scores

Here our aim is to utilize the similarity calculations but
to ensure that the weights are more sensitive to large dif-
ferences amongst the experts. In this case, as an expert’s

SThis is a preferred approach since we may not easily know which
data are outliers and which are not.
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position becomes more extreme, their contribution be-
comes less significant at an increasing rate. We consider
the following three transformations:

v (sim*) = (simk)?, (13)
a (sim") = (sim*)>, (14)
v (sim") = %(simk —1/3). (15)

The rational behind y; and y» is to make the weight
disparity higher as the similarity levels decrease, while
Y3 scales the similarity calculations to the unit interval,
since the absolute minimum similarity between two con-
sistent experts is 1/3.

Table 1 gives an idea of how substituting these simi-
larity equations can affect the initial aggregation of the
consensus process. We focus on the aggregated prefer-
ence for company A over company B (i.e., plcf R) and the
weight that is allocated to the biased expert (w4).

Table 1: Aggregated values of p{3® and allocated

weight wy where 3 experts express their preferences as
in Example 2.

PE ws
rh 0.1 0 0.1 0
sim* 0.4929 0.4765 | 0.2143 0.2059
(sim*)? 0.5088 0.4993 | 0.1824 0.1678
(simk)> 0.5455 0.5480 | 0.1089 0.0867
3(simt—1/3) | 0.5038 0.4935 | 0.1923 0.1774

In all cases, if expert 4 provides preferences that cor-
respond with the raw scores x = (0,0.8,0.5,0.2), i.e.
trying to maximize the similarity score by providing
identical scores for companies B,C, D, the overall pref-
erence still has company A as preferred to B. However
for y; and s, the expert can still push the preference
higher by providing a higher score for B, even though
it decreases the overall similarity. On the other hand,
Y, has a desirable effect of decreasing the weight allo-
cated to expert 4 to the extent that the decrease to the
preference pf, actually results in a small increase to the

overall preference pg R,

5. Aggregating across individual cells

The calculation of similarity by using all pairwise pref-
erences across the entire preference relation may miss
the identification of a single or a few small extreme val-
ues. While using y» provided the desired behavior in
the given example, we note that an honest expert provid-
ing reasonable scores could be allocated a small weight
even though their scores are not extreme. For exam-
ple, suppose expert 4’s preferences correspond with the
raw scores x = (0.8,1,0.3,0.4). Admittedly, the expert’s
preferences differ to the rest of the group, however the
differences could be consistent with a natural difference
in opinion. The corresponding weight using y, would



be 0.1698 (compared with 0.2767 to the remaining ex-
perts), which could be considered unfairly low given that
no individual score is extremely different. Here we con-
sider the aggregated value of ng R to instead reflect the
consensus/majority opinion for that particular pair, ag-
gregating across each of the preference relations.

We note that there will be ramifications for consis-
tency, however if the purpose of this aggregated matrix
is only to guide experts toward a more reasonable eval-
uation, we can still use an overall aggregation that pre-
serves consistency in the final stages.

Some potential approaches to aggregating the prefer-
ences for each pair of alternatives are:

(a) Calculate similarity in an analogous way across the
individual cells of each of the preference matrices,

i.e.
P = Z wiiplj, (16)
where
n
Yy 1- |Pi’<j *Pilj|
X h=1,h#k
Wij = n ., . .
Yy Y 1- |P,’j _piji
I=1h=1,h#1
(b) Find a ‘majority’ cluster or central value and only

include pé‘]- within o of the central tendency of the
cluster®. For example with 4 experts we can use the
median of the closest 3 experts as our central value
and set o to 0.3,

CPR __
Pij

Zp,,,

kel(

17
Card (n

where K = {k: |pf»‘j —Medyy| < 0.3} and Medy =

p1¢j<2) if | p1¢j<l> _ plffj<2)| <| plf;(3) _ p3(4)| and plsfj<3>

otherwise. We remind that the o(-) notation refers
to the arguments being arranged in non-increasing
order.

Use the IOWA to aggregate the scores where the
auxiliary variable is equivalent to the calculated
similarity between the scores. As mentioned in
the previous section, typical choices of weights
that represent a majority type aggregation are w =
(1/3,1/3,1/3,0) or w = (0.6,0.3,0.1,0), however
in this case the experts cannot use their similarity
standing across the irrelevant preferences in order
to have an extreme preference included.

©

In approach (a), assuming expert 4 allocates pl12 =
0 the similarity between this and the pairs of the other
experts will simply be p’l‘2 and we have,

k
3(1-22)+1-pk,

This is similar to standard outlier removal, e.g. where a datum is
considered to be an outlier if it lies outside the interval [Q1 — IQR -
1.5,03 —IQR - 1.5], with Q1,03 being the upper and lower quartiles
and /QR the interquartile range.
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Again to find the threshold, we set p7; ™ = 0.5, lead-

ing to the quadratic equation,
0=—(pfr)* +4pj, -2
which has solutions

—4+/38
_2 :

This results in a score of 0.5858 or higher required by
experts 1-3 or a score of 0.8284 or lower required to be
allocated to company 2. The weight allocated to expert
4 in this case would be 0.1464.

We note that the form of this aggregation is similar
to the density-based averages [7], however whereas the
weights in this case are based on the relative similarities
to other experts in the group, szm =y, 1-|pk ; p?j|,
the density-based weights would be

m
Ke(-5 X 1p5—pll
. ("’ Vi 00

W

iy ’
m
): Kc < I Y |Pij _Pilji)
1= h=1,h#l

where K¢ is the Cauchy kernel given by K¢ (1) =
1)~ L

Use of the Cauchy kernel with the preference values
means that the aggregation will always allocate a reason-
ably high weight to expert 4. For example, if experts 1-3
have the preference pf.‘j = 0.6 and expert 4 has p:}j =0,
then we still have w4 = 0.2 and the expert exerts a rela-
tively high influence on the overall preference.

In approach (b), the threshold of @ = 0.3 means that
expert 4’s preference will only be counted if it dif-
fers by no more than 0.3 from the majority. At most
the expert can bring down the score by a maximum of
0.25 x 0.3 = 0.075, so that if the other experts provided
any preference of 0.575 or above to pf?j, then the prefer-
ence cannot be affected. This threshold can be adjusted
to strike a balance between including all scores provided
by the experts as long as they are not significantly dif-
ferent from the others. A similar aim is achieved by the
robust estimators of Huber [20]. Whereas the weighted
arithmetic mean can be considered as the value that min-
imizes the sum of squares, Huber estimators set a thresh-
old at which the penalty becomes linear, i.e. in our situ-
ation, as our overall value we choose y that minimizes

(1+

o k
ZH”b(|Pij =l),

1.2
312, t<a,

a(t—%5), otherwise.

This function has no closed-form solution, however it
can be solved numerically. When experts 1-3 provide
the preference pé‘i = 0.6 and expert 4 has a preference of

0, using & = 0.3 would lead to an aggregated value of

pSPR 0.5.

where Hub(t) =



Using an IOWA in approach (c) will have similar ram-
ifications as was the case in Section 4.2, however with
similarity only being measured across the preference
pairs at hand. The weight w4 then directly controls the
maximum effect that a single extreme score can have on
the aggregation.

6. Conclusion and future work

Although consensual processes usually involve many
rounds of mediation and the potential for experts to
change their scores, it seems important that these experts
are being asked that their scores converge toward an ag-
gregated value that reflects a majority viewpoint rather
than one which has been biased by a minority of the ex-
perts. In this paper, we have investigated the problem of
experts providing an unreasonable or biased evaluation
in providing their initial preferences. In a 4-expert set-
ting, we have shown the extent to which a single expert
can affect the ranking of alternatives, even when 3 out of
the 4 are unanimous in their evaluations. It is clear that
even with more decision makers, there will always be
cases when one or more biased experts can exert undue
influence on the initial combined preference relation.
We have suggested a number of approaches that could
be employed in consensual process to alleviate this po-
tential problem. Of course, the best method depends
on the structure of the consensus process and interpre-
tations surrounding it: how preference scores are inter-
preted, how the consensus threshold is used, whether the
strength of preference is more important than the rank-
ing of alternatives and so on. The problem of potential
manipulation or influential noise in aggregated scores,
however is not one that is unique to group decision mak-
ing, and so the study of similarity-guided aggregation
functions has been a growing area with many practical
applications. In future work, we will continue to look
at the usefulness of these approaches in other scenarios,
in particular towards a characterization of functions in
terms of the extent to which collusion attacks or extreme
values can influence the output.
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