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Abstract 

Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it 

can be used for executing large scale applications. Utility Management Systems execute very large numbers of 

workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism 

that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two 

Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the 

Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, 

Serbia. Performance tests show that significant improvement of overall execution time can be achieved by 

Hierarchical Artificial Neural Networks. 

Keywords: Utility Management Systems, Hierarchical Neural Network, Grid Computing. 

                                                
 

1. Introduction 

Thanks to advances in wide-area network technologies 

and the low cost of computing resources, computational 

grids, emerging as attractive computing platforms, 

enable the sharing, selection, and aggregation of 

geographically distributed resources for solving large-

scale problems in science, engineering, and commerce. 

One primary issue associated with the efficient and 

effective utilization of heterogeneous resources in a grid 

is job scheduling. Unlike scheduling problems in 

conventional distributed systems, this problem is much 

more complex because of the high degree of 

heterogeneity of resources, their connection with 

heterogeneous network, the high degree of dynamics, 

etc. [1] 

With the rapid development of manufacturing 

technology associated with central processing elements 

and the ever-popular Internet, applying computational 

grids in various fields has garnered considerable 

attention. Computational grids employ network devices 

to connect an enormous amount of different 

computational resources on the Internet, thereby 

constituting a low-cost, high-performance computing 

platform capable of parallel processing. [2] 
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Supervisory Control and Data Acquisition (SCADA) 

systems are becoming more and more resource 

demanding because their scope is becoming wider. This 

trend is especially visible in distribution systems for 

utilities - Utility Management Systems (UMS), like 

power distribution systems or gas and water 

distribution. Processing and storage of measured data 

becomes a problem, since more and more measured 

values are introduced in the controlled system. This 

problem could be solved by using the computer Grid.  

UMS have some special requirements, mainly because 

they have to communicate with end devices (sensors 

and actuators) and have to store very large volumes of 

time-series data about variable values. This makes 

workflow schedule control for UMS a special problem.  

The development of the proposed workflow scheduling 

system was driven by requirement to develop a 

scheduling system for a commercial Meter Data 

Management (MDM) system. An MDM system has to 

manipulate a large number of workflows in a distributed 

environment, so the proposed architecture could be used 

to reduce hardware requirements by optimizing recourse 

usage. 

A workflow is loosely defined as the automation of a 

process to co-ordinate people, data and tasks. Business 

workflows had been researched and utilized over many 

years; more recently science recognized the need for 

workflows, and several specialized workflow engines 

have been developed. [3] 

Scheduling is the decision process that assigns 

application components to available resources to 

optimize various performance metrics. Grid workload 

management and scheduling subsystems enable the 

efficient distribution of tasks in Grid systems and allow 

their transparent execution by hiding the complexity of 

the Grid infrastructure.  

A novel hierarchical neural network model is proposed 

in this paper. It will solve the problem of workflow 

scheduling in large scale Utility Management Systems 

(UMS). The neural model is made up of two feed 

forward neural networks – one on top of the other. 

In general, the considered scenario has several phases. 

UMS clients initiate a request for data processing by 

calling appropriate server functions. The workflow 

manager running at the server decomposes these 

functions into tasks and makes an execution schedule 

(see Figure 1). As system resources are limited an 

efficient task mapping (i.e. execution scheduling) 

becomes a fundamental concern. The aim of this work is 

to provide novel system architecture and combine it 

with enhanced algorithms in order to boost the 

efficiency of the solution. 

 

Fig. 1. Overall system architecture 

The rest of the article is organized as follows. In Section 

2, we overview related work; Section 3 describes 

specific characteristics of the UMS system. In Section 4 

we describe the architecture of the proposed system; 

Section 5 shows ANN basics and describes the 

architecture of the network used in this paper. Section 6 

describes test results and future works, and Section 7 

concludes the article. 

2. Related work 

Grid computing is a new approach in scientific 

applications. Recent advances in grid infrastructure and 

middleware development have enabled various types of 

applications in science and engineering to be deployed 

on the Grid. The applications include those for climate 

modeling, computational chemistry, bioinformatics and 

computational genomics, remote control of instruments, 

and distributed databases [4]. Computational grids have 

recently attracted considerable attention as cost-

effective platforms for parallel processing. [2] 

Some researchers argue that Grid computing is the 

future computing paradigm for enterprise applications. 

Large scale grids are complex systems, composed of 

thousands of components belonging to distributed 

domains [5]. With the development of large-scale high-
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speed networks, the Grid has become an attractive 

computational platform for high-performance parallel 

and distributed applications [6]. 

The Grid infrastructure is used both to share expensive 

and centralized resources among many scientists, as 

well as to integrate experimental data sources with the 

simulation codes necessary to analyze them [7]. 

The Grid connects computers, databases, instruments, 

and people in a seamless web, supporting computation-

rich application concepts such as distributed 

supercomputing, smart instruments, and data-mining. 

However, its use has been limited to specialists, 

principally due to the lack of usability [8]. 

At present, in many modern Grid infrastructures, 

scheduling relies only on static properties and pre-

determined states of resources. Therefore we argue that 

resource utilization can be enhanced by the addition of 

run time information and of forecasting capabilities. For 

this reason, we propose an approach to Workflow 

Management and scheduling that extends the existing 

solutions with a reasoning activity on Grid properties 

and states. The proposed approach relies on the 

availability of monitoring information, offering a 

snapshot of the system. This information, analyzed by 

the Workflow Scheduler, allows the prediction of future 

system states. 

Criteria can pursue different goals: the minimization of 

a single task’s execution time, the minimization of 

workflow execution time, the fairness of load 

distribution, maximum time of execution per workflow 

type, etc. Optimization rules are based on quantifiable 

metrics like: the workflow reliability and distribution 

fairness, workflow average execution time, etc. [6] 

SCADA systems have come a long way from the simple 

visualization of the process. Distributed SCADA 

systems are very well described in scientific papers [9]. 

Process data found their way to the Internet [10] or even 

mobile phones [11].  

The upcoming need for a Grid approach could be 

envisioned by observing the volumes of data that have 

to be stored and processed. This is especially visible in 

Utility Management Systems like power distribution 

systems, where in Distribution Management Systems 

(DMS) the number of process variables exceed tens of 

thousands [12]. Even more control variables are used in 

Meter Data Management (MDM) systems, which are 

responsible for controlling smart meters for individual 

power consumers. The latest customer requirements 

shows that a few millions of these smart meters will be 

implemented inside complex MDM systems, so this 

number will have to be multiplied by dozens of 

controlling variables per meter [13]. This kind of 

requirements calls for a new breed of UMS systems 

with a new approach to the architecture, and the Grid 

approach seems like the right approach that promises 

good performance. 

The hierarchical neural network approach was 

successfully used for a wide range of real word 

problems from load forecasting to speech recognition 

and image processing [14]. In this paper we propose the 

Hierarchical Artificial Neural Network for workflow 

scheduling in Utility Management Systems. 

3. UMS Architecture 

In most general scientific workflow scheduling 

approaches only two parameters are considered for the 

workflow schedule: the computing power of the node 

and the network bandwidth between nodes. In a large 

UMS workflow there is an extended set of Grid 

parameters that should be considered. We have analyzed 

the architecture and requirements for large scale 

distributed UMS systems (electric energy distribution 

systems, gas and water distribution systems etc.) We 

have found that grid nodes in this type of UMS systems 

could be one of the following types: 

Processing node – used for business calculation and 

data preprocessing, mainly for reporting and offline 

analysis of the system. 

Objects database node – This node is used for storing 

static data from the distributed UMS system. Most 

commonly it hosts some kind of a relational database 

for better search performances. 

Time-series node – This node hosts data about process 

variables. Since the value of the process variable could 

change very often the number of variables could be very 

large. 

Communication node – This computer node is 

responsible for communication with end devices. In 

many cases this node communicates by a wireless 

network, which means that the current status of 

communication media could significantly impact the 

performance of the whole Grid.  

This means that for developing an optimal strategy for a 

workflow scheduling system feedback signals will have 

to be used for all four kinds of performance indicators. 

In this way the Workflow Scheduler will be able to 
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create an optimal strategy of the dynamic state of the 

system. 

Some other variables that could be used for developing 

an optimal strategy are: an average execution time for 

previous instances of the same workflow, the priority of 

the workflow (for alarms purposes), and cancellation 

workflows – if some new event in the system could 

cancel the execution of a previously stated workflow. 

These new optimization constraints could be easily 

introduced in the proposed architecture. 

UMS workflows could include various processing of 

data, storing and querying data about devices and about 

process variable values, communication with end 

devices in order to get current values or send a 

command. Workflows chosen for this paper are defined 

on the basis of real UMS use cases. The following 

conditions are implied: 

• All workflows are independent of each other. 

• All workflows have the same priority. 

• Every node processes only one workflow at a time. 

• Every workflow is processed on one node at a time. 

• Workflow of the same type has the same execution 

time on each node. 

For this paper we have implemented five workflows 

which use different types of Grid nodes: 

1.  Direct Command - this workflow is responsible for 

sending commands to actuators. When executing it will 

send commands to actuators through a Communication 

node, and after that write command results to the time 

series database in a Time-series node. 

2. Command with preprocessing - this type of 

command requires data preprocessing before issuing 

commands. These commands could be used when 

business logic has to be applied before an actuator is 

used. In this workflow, first a Processing node is called 

in order to prepare data, and after that a Communication 

node is used to send commands to actuators. 

3.  Read Variable values – in this scenario, variables 

are read from cache (previously read from devices). 

Workflows execution of this type starts in an Objects 

database node in order to filter end devices that should 

be read, and after that execution is transferred to a 

Time-series node to read selected variables values.  

4.  Read Variable values From Device – contrary to 

the workflow of type 3, workflows of this type have to 

read values from sensors on demand. This use case is 

used when the user needs the latest values. When 

executing this, workflow is migrated to an Objects 

database node in order to filter end devices that should 

be read, and after that a Communication node is used to 

send reading to sensors on demand. 

5.  Reporting Inquiry – this workflow covers various 

types of data processing, from reporting to device usage 

statistics. When executed, this workflow is migrated to 

an Objects database node in order to retrieve data 

needed for the calculation and after that it is migrated to 

a Processing node which is responsible for the 

calculation. 

Figure 2 presents the execution plan of workflow 

migration for a set of previously defined UMS 

workflows. In order to make the optimization goal more 

obvious different Grid nodes are colored differently. 

The optimization goal in this paper is to rearrange 

incoming workflows in order to get maximum coverage 

of all colors; this means that all Grid nodes should be 

evenly loaded in time. This workflow scheduling plan 

will result in minimum overall execution time of all 

workflows. 

Fig. 2. Workflow execution migration between nodes 

All workflows in the described systems have two 

migration stages. In more complex systems some 

workflows could have more migration steps. In some 

cases one workflow could be migrated back to the same 

node (if, for example, processing is done prior and post 

to communication with end devices). We anticipate that 

in these cases the usage of soft computing methods will 

generate even more performance improvement. 
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4. Proposed architecture 

The proposed architecture takes into account the 

dynamic nature of a real-world UMS and it uses the 

Grid environment approach for detecting and 

responding to the changing environment in UMS. The 

developed framework is shown in Figure 3 and it 

provides the required support for feedback from the 

scheduling process. 

As the figure shows, the framework consists of three 

major components: the Grid Manager, the Workflow 

Scheduler, and the Application Manager. 

The Workflow Scheduler is responsible for deciding 

which queued workflow will be executed next. This 

decision is based on control variables from the 

monitored Grid. This component is of the most interest 

in our research, since decision making is done there. We 

anticipate that significant performance improvements 

could be achieved by using soft computing optimization 

methods in this component. 

The Grid Manager is responsible for monitoring the 

state of the Grid and controlling the execution of 

workflows in it. It collects values of control variables 

that are used inside the Workflow Scheduler. 

 

 

Fig. 3. Proposed architecture of the system 

Application Manager is responsible for receiving 

workflows in execution time. It then queues and works 

with the Workflow Scheduler to determine the right 

time to send workflow to execution in the Grid. After 

receiving instructions from the Workflow Schedule it 

sends workflow to the Grid Manager, and at the end the 

results of the workflow execution are written into a 

database and sent to a client that initialized the 

workflow execution. The Application Manager is the 

only component visible from outside of the proposed 

system – thereby it hosts service interfaces for the 

initialization of the workflow execution by the client. 

5. Neural network architecture 

The classical methods for forecasting include regression 

and state space methods. The more modern methods 

include expert systems, fuzzy systems, evolutionary 

programming, Artificial Neural Networks (ANN) and 

various combinations of these tools. Among the many 

existing tools, the ANN has received much attention 

because of its clear model, easy implementation and 

good performance [15]. ANN have become popular in 

various real world applications including prediction and 

forecasting, function approximation, clustering, speech 

recognition and synthesis, pattern recognition and 

classification, and many others. [16] 

The multi-layer feed forward network will learn to 

associate the given output vectors with input vectors by 

adjusting their weights, which are based on the error at 

the output. The weight modification algorithm is the 

steepest descent algorithm (often called the delta rule) to 

minimize a nonlinear function [17]. The algorithm is 

called back error propagation or back propagation 

because errors are propagated back through the hidden 

layers. 

The weights can be learned by training the network 

using a training set of target states 
T

px  for the output for 

a given set of inputs where p is the training pattern. The 

steepest descent algorithm essentially seeks to choose 

the weights during training. The mean square error E 

between the target output 
T

x and the actual output x of 

the network over all training data is minimized. Thus, 

the weights are chosen for n output neurons so that the 

back propagation algorithm minimizes the mean square 

error E for N training samples. The mean square errors 

can be calculated by (1) 
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The delta rule is then used to find the minimum of E by 

differentiating it with the weight ijT . The weight ijT is 

changed by (2) 
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where η  is called the learning rate. After calculating 

ijT∆ , the new weight is given by 

 

ijoldijnewij TTT ∆+= ,,  (3) 

In Workflow Scheduling applications, the main function 

of the ANN is to predict the duration of the execution of 

a specified type of workflow based on the current state 

of the Grid.  

Figure 4 represents two types of ANN that are used for 

workflow scheduling in UMS. The simple ANN 

predicts the execution time of the specified workflow 

type based on the current state of the Grid nodes. The 

hierarchical ANN has two networks, one on top of 

another. The bottom ANN forecasts the next state of the 

Grid and the Top ANN predicts the execution time of 

workflow based on the current and predicted state of the 

Grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Hierarchical ANN architecture 

5.1. Simple Neural Network  

Five inputs for Artificial Neural Network are selected 

for the Simple ANN that proved to be the most 

important for optimal scheduling. The Output of ANN 

is chosen in a way that will uniquely identify the type of 

workflow that should be started in the current Grid state. 

From the experiments conducted on experiment data we 

concluded that the optimal ANN has one hidden layer 

with ten neurons. Standard Windows Performance 

Counters are used for monitoring appropriate features of 

the Grid node.  

The selected ANN inputs are: 

• Current CPU Usage from Processing node [%] 

• Current query execution time for Objects database 

node [%] 

• Current read/write duration for Time-series node [%] 

• Network bandwidth – Communication node [%] 

• Workflow type - provided by an application [one of 

the five provided] 

The selected ANN output is: 

• Forecasted execution time [s] 

5.2. Hierarchical Neural Network  

Hierarchical ANN consists of two separate networks 

one on top of the other. The Bottom ANN has eight 

inputs: the first four represent the current state of the 

Grid nodes (the same as the first four inputs for the 

Simple ANN), and other four inputs are the types of 

workflows that are currently executing on Grid nodes. 

Four outputs of the Bottom ANN are the forecasted 

state of the Grid nodes in the next step.  

The Top ANN has three groups of inputs: the first four 

inputs are forecasted performances of the Grid nodes 

(outputs of the Bottom ANN), the next four inputs are 

the current status of the Grid nodes (the same as the first 

four inputs for the Simple ANN), and the last input is 

the type of workflow. The output of the Top ANN is the 

forecasted execution time of the specified workflow 

type.  

Both ANN have one hidden layer with ten neurons. The 

activation function for all layers was the Logarithmic 

sigmoid transfer function (4). 

)1(

1
logsig(x)

x
e

−+
=  (4) 

6. Results and discussion 

The test environment was developed based on the 

proposed architecture. One computer node was 

dedicated for each type of nodes specific for UMS 

systems. To achieve full experiment credibility we have 

pre-defined the set of applications (i.e. workflows) that 

has been provided as an input to the considered system 

under the test. 

For testing purposes we have scheduled 5 types of 

UMS workflow schedules defined in Section 3.  The 

number of workflows was from ten to a thousand. We 
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have test total execution times of all workflows with the 

following scheduling logic: 

No optimization – workflows were scheduled in the 

order in which they arrived in the input queue. This 

scenario was used for comparison.   

Hard-coded optimization – in this scenario we 

have used simple logic that says that workflows will 

execute more efficiently if they are of different types. 

So when the time comes for the new workflow to be 

executed, the Workflow Scheduler examines which 

workflow types are currently executing. Then the 

Workflow Scheduler tries to find the workflow of the 

type which is least deployed and tries to start executing 

that workflow.  

Round robin selection of workflow type – this 

approach is proposed in [18]. It suggests that every 

time the workflow is about to be scheduled a different 

type of workflow should be scheduled in round robin 

manner. It is different than previous approach (hard-

coded optimization) because in this case it doesn’t 

matter which types of workflow are currently 

executing. This approach is easier to implement and it 

does not need information about currently executing 

workflows. However approach proposed in this paper 

shows better performances. 

Simple ANN optimization – in this scenario we 

used the output of the simple ANN to select which type 

of workflow should be scheduled in the next step. 

Hierarchical ANN optimization – the output of the 

Hierarchical ANN was used for selecting optimal 

workflow to be scheduled. 

The most important part of any Neural Network is 

the learning set. The training data for ANN consisted of 

1000 sets of values, 90% of which were used for 

training, and 10% were used for verification. The 

training of ANN was executed several times and in all 

cases the error on the training data was less than 0.1 

percent, and the error on the verification data was less 

than 2 percent.   

 

A case study is created for the Meter Data Management 

system with measurements from the Smart Metering 

system for the city of Novi Sad, Serbia. Workflows 

were executed on the Grid in the order in which they 

arrived in the system (without any optimization of the 

scheduling process). In this part the execution time of 

workflow was recorded as well as its type and the state 

of the Grid nodes in the moment of the workflow 

execution start. 

Fig. 5. Speed of workflow execution 

The test results are shown in Table 1, where the 

execution time is shown in seconds. Figure 5 shows the 

same results in the graphical form. The test results 

clearly show that introducing the Hierarchical ANN in 

the workflow scheduling process for large scale UMS 

systems could improve overall performances of the 

Utility Management System.  The percentage of 

performance improvement varies depending on the 

number of scheduled workflows. 

 

 

Table 1.  Test results for the speed of execution of workflows 

Number of 

workflows 

Time of 

execution – No 

optimization 

[s] 

Time of 

execution hard-

coded 

optimization [s]

Time of execution 

Round robin 

selection of 

workflow type [s] 

Time of 

execution – 

simple ANN 

optimization 

[s] 

Simple ANN 

improvement 

rate [%] 

Time of 

execution – 

Hierarchical 

ANN 

optimization [s]

Hierarchical 

ANN 

improvement 

rate [%] 

10 17 15 15 14 6.7 13 7.1 

50 99 90 82 77 14.4 72 6.5 

100 199 176 175 163 7.4 156 4.3 

250 501 422 412 412 2.3 391 5.1 

500 1007 868 863 827 4.7 809 2.2 

1000 2018 1762 1709 1671 5.1 1625 2.7 
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7. Conclusion 

In this paper we propose an architecture that allows 

optimal scheduling of Workflows in Utility 

Management Systems. The architecture is based on the 

feedback from the Grid based on the performance 

monitoring indicator. This way the Workflow Schedule 

can optimize the execution time of workflows. 

This paper also explains specific features of large scale 

Utility Management Systems that make the proposed 

architecture different from standard Grid scheduling 

systems. A set of control variables is also proposed, 

which is an additional contribution of this work.  

The workflow scheduling component, which is 

responsible for starting appropriate workflows, uses the 

Artificial Neural Network for choosing the optimal 

scheduling strategy. Performance analysis shows that 

this approach significantly boosts the performance of 

the whole system; the total execution time is reduced by 

approximately five percent. The introduction of the 

Hierarchical Artificial Neural Network could 

additionally reduce the overall execution time of 

workflows. This improvement is based on the fact that 

HANN can predict the future state of the Grid nodes and 

optimize scheduling based on that information. 

This scheduling mechanism can significantly reduce 

investments in hardware as the same results could be 

achieved with less Grid nodes. 
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