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Abstract

Feature selection is an important preprocessing step in pattern classification and machine learning, and
mutual information is widely used to measure relevance between features and decision. However, it is
difficult to directly calculate relevance between continuous or fuzzy features using mutual information.
In this paper we introduce the fuzzy information entropy and fuzzy mutual information for computing
relevance between numerical or fuzzy features and decision. The relationship between fuzzy information
entropy and differential entropy is also discussed. Moreover, we combine fuzzy mutual information
with ”min-Redundancy-Max-Relevance”, ”Max-Dependency” and ”min-Redundancy-Max-Dependency”
algorithms. The performance and stability of the proposed algorithms are tested on benchmark data sets.
Experimental results show the proposed algorithms are effective and stable.
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1. Introduction

As the capability of acquiring and storing informa-
tion increases, more and more candidate features are
gathered in pattern recognition and machine learn-
ing. Unfortunately, most of these features are usu-
ally irrelevant or redundant for a given learning task.
These irrelevant or redundant features may confuse
learning algorithms and deteriorate learning perfor-
mance. So it is useful to select a subset of rele-
vant and indispensable features for designing effec-
tive classification systems.

A great number of feature selection algorithms
based on mutual information have been developed in
recent years 1,7,11,18,19,20,24,37,40,42. In constructing a
feature selection algorithm, there are two key issues:
evaluation measure and search strategy. An evalua-
tion measure is used to measure the significance of

features. A number of measures have been devel-
oped so far, such as dependency 28,41,46, consistency
6,32, fuzzy dependency 12 and mutual information 1.
Mutual information was firstly introduced to mea-
sure relevance between discrete variables. Subse-
quently, it was widely used to measure feature qual-
ity in feature selection 11,24,47. As to search strat-
egy, it can be divided into two categories. One cate-
gory could guarantee to find the optimal feature sub-
set, such as the exhaustive search method 23 and the
branch-and-bound algorithm 26,39, and the other one
is to find the suboptimal feature subset. The sec-
ond category covers a wide range of heuristic search
strategies, such as sequential forward selection 16,45,
sequential backward elimination 23, floating search
31,38, hill-climbing 10,30, best-first or beam search 34

and min-Redundancy-Max-Relevance (mRMR) 29.
Especially, mRMR is considered as an effective one.
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It just requires estimating binary probability density
for computing mutual information between a fea-
ture and decision instead of multivariable probabil-
ity density. Moreover, mRMR method removes re-
dundant features by considering the mutual informa-
tion between features.

As we know, in Shannon’s mutual information,
probabilities are unknown in practice and should be
estimated with a finite set of samples. As to sym-
bol variables, we can use the frequency of samples
to estimate the probabilities. As to continuous vari-
ables, there are two methods for obtaining proba-
bilities. One is to discretize real variables 2, and
the other one is to estimate probability density with
Parzen window 18. It is observed that discretization
may lead to information loss 36 and it is time con-
suming to estimate probability density with Parzen
window. Furthermore, we can not get accurate esti-
mate in high-dimensional spaces with sparse sam-
ples. By considering the above problems, Hu et
al. proposed fuzzy information entropy to directly
compute mutual information between numerical or
fuzzy variables based on relation matrixes 13. As to
discrete variables, a crisp equivalence relation ma-
trix can be generated from data. In this case, the
fuzzy information entropy is identical to Shannon’s
one. And for continuous variables, fuzzy binary re-
lations are used to compute relation matrix. By this
way, fuzzy information entropy is directly calculated
from discrete and continuous variables without dis-
cretization. Consequently, the fuzzy mutual infor-
mation derived from fuzzy information entropy can
directly compute relevance between numerical fea-
tures. Hu et al. combined this measure with a greedy
forward search strategy 12. As we know greedy al-
gorithms are suboptimal and may not produce good
performance in applications 5, we integrate fuzzy
mutual information with some other search strate-
gies to construct better algorithms.

In this work, we first discuss the relation-
ship between fuzzy information entropy and dif-
ferential entropy and find they are identical in
some cases. Secondly, we integrate fuzzy mu-
tual information with mRMR algorithm denoted by
FMI mRMR and maximal dependency algorithm
denoted by FMI MD. Considering the redundancy

between features for FMI MD algorithm, we com-
bine minimal redundancy with FMI MD denoted
by FMI mRMD. Then we test the three algorithms
with experiments on 14 data sets and do some com-
parison analysis between them in terms of classi-
fication accuracies of feature subsets. Moreover,
we compare the three algorithms with MI mRMR
(mRMR algorithm based on Shannon’s mutual in-
formation), CFS, FCBF and RELIEF. Finally, we
analyze the stability of FMI mRMR, FMI MD and
FMI mRMD algorithms.

The paper is organized as follows. Section 2 in-
troduces fuzzy information entropy and fuzzy mu-
tual information. Section 3 discusses the relation-
ship between fuzzy information entropy and differ-
ential entropy. Next, we introduce three feature se-
lection algorithms with fuzzy mutual information in
Section 4 and give several evaluation measures of
stability for algorithms in Section 5. Finally, exper-
imental analysis and conclusions are given in Sec-
tions 6 and 7, respectively.

2. Fuzzy information entropy and fuzzy
mutual information

Information entropy was originally introduced for
measuring the uncertainty of random variables 35.
As to discrete variables, the probability densities
of variables in information entropy are computed
with frequency. But for high-dimensional continu-
ous variables, it is very difficult to estimate p(·) in
practice. There are usually two ways to address this
problem. One is to discretize the variables, and the
other one is to estimate p(·) of the variables with
Parzen window.

Considering the above problem, fuzzy informa-
tion entropy was introduced to measure the uncer-
tainty of random variables 12,13. Now we first intro-
duce this definition.

A fuzzy binary relation R, used to measure re-
lationship between two variables, is a fuzzy equiva-
lence relation if it satisfies

(1)Reflectivity : R(x,y) = 1,∀x ∈ X ;
(2)Symmetry : R(x,y) = R(y,x),∀x,y ∈ X ;
(3)Transitivity : R(x,z) > miny{R(x,y),R(y,z)}.

(1)
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Given a finite set U = {x1,x2, ...,xn}, F is a fuzzy
or real-valued attribute set, which generates a fuzzy
equivalence relation RF on U , denoted by a relation
matrix M(RF)

M(RF) =




r11 r12 · · · r1n

r21 r22 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · rnn


 . (2)

Fuzzy equivalence class associated with xi and
RF is a fuzzy set which can be written as

[xi]RF =
ri1

x1
+

ri2

x2
+ · · ·+ rin

xn
, (3)

where ri j = RF(xi,x j) ∈ [0,1]( j = 1,2, ...,n) is the
fuzzy equivalence relation between xi and x j.

For a crisp equivalence relation Rc, the equiva-
lence class of xi also can be described as

[xi]RF =
ri1

x1
+

ri2

x2
+ · · ·+ rin

xn
, (4)

where ri j = Rc(xi,x j) ∈ {0,1}( j = 1,2, ...,n) is the
relation between xi and x j. This is because Rc(xi,x j)
satisfies

Rc(xi,x j) =
{

1, if xi = x j,
0, if xi 6= x j.

(5)

Example X = {x1,x2,x3,x4}, f ∈ F , X f =
{0.1,0.1,0.3,0.3}. If we take

R f (x,y) = exp(
− ‖ x− y ‖

2
),

as fuzzy equivalence relation, then
[x1]R f = 1

x1
+ 1

x2
+ 0.90

x3
+ 0.90

x4
;

[x2]R f = 1
x1

+ 1
x2

+ 0.90
x3

+ 0.90
x4

;
[x3]R f = 0.90

x1
+ 0.90

x2
+ 1

x3
+ 1

x4
;

[x4]R f = 0.90
x1

+ 0.90
x2

+ 1
x3

+ 1
x4

.
If R f is a crisp equivalence relation,
[x1]R f = {x1,x2}= 1

x1
+ 1

x2
+ 0

x3
+ 0

x4
;

[x2]R f = {x1,x2}= 1
x1

+ 1
x2

+ 0
x3

+ 0
x4

;
[x3]R f = {x3,x4}= 0

x1
+ 0

x2
+ 1

x3
+ 1

x4
;

[x4]R f = {x3,x4}= 0
x1

+ 0
x2

+ 1
x3

+ 1
x4

.

Based on fuzzy equivalence relation, fuzzy infor-
mation entropy is defined as

FH(RF) =−1
n

n

∑
i=1

log
|[xi]RF

|
n

, (6)

where |[xi]RF |=
n
∑
j=1

ri j.

If relation RF is a crisp equivalence relation,
namely ri j ∈ {0,1}, the fuzzy information entropy
can be educed from Shannon’s information entropy.
This is proven as follows.
Proof: If relation RF is a crisp equivalence relation,
ri j = 0 means xi 6= x j, and ri j = 1 means xi = x j. The
equivalence class of xi can be written as

[xi]F = [xi]RF =
ri1

x1
+

ri2

x2
+ · · ·+ rin

xn
. (7)

Then we compute the probability of equivalence
class using P(Xi) = |Xi|/n, where Xi is an equiva-
lence class. Let probability distribution of equiva-
lence classes be

[
X1 X2 · · · Xm

p(X1) p(X2) · · · p(Xm)

]
, (8)

where k j = |X j| ( j = 1,2, ...,m). Shannon’s informa-
tion entropy equals

H (F) =−
m

∑
j=1

p(X j) log p(X j)

=−
m

∑
j=1

k j

n
log

k j

n

=−k1

n
log

k1

n
− k2

n
log

k2

n
−·· ·− km

n
log

km

n

=−1
n

k1

∑
i=1

log
k1

n
− 1

n

k2

∑
i=1

log
k2

n
−·· ·− 1

n

km

∑
i=1

log
km

n

= (−1
n
)

k1

∑
i=1

log
|[xi]RF

|
n

+(−1
n
)

k1+k2

∑
i=k1+1

log
|[xi]RF

|
n

+ · · ·+(−1
n
)

n

∑
i=n−km+1

log
|[xi]RF

|
n

= (−1
n
)

n

∑
i=1

log
|[xi]RF

|
n

= FH (RF) ,

(9)

where
m
∑
j=1

k j = n. |[xi]RF | is the size of equivalence

class [xi]RF (i = 1,2, ...,n).
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We can see that fuzzy information entropy is
identical to Shannon’s one from (9) for crisp equiva-
lence relation. Therefore, fuzzy information entropy
also can be used to address discrete variables.

Let F1 and F2 be two subsets of F, fuzzy joint
information entropy is defined as

FH(F1,F2) = FH(RF1 ,RF2)

= −1
n

n

∑
i=1

log
|[xi]F1

∩ [xi]F2
|

n
,(10)

and fuzzy information entropy of F =
{F1,F2, ...,Fm} is

FH(F) = FH(F1, ...,Fm) = FH(RF1 , ...,RFm)

= −1
n

n

∑
i=1

log
|[xi]F1 ∩ ...∩ [xi]Fm |

n
. (11)

Given F1, the fuzzy conditional information entropy
of F2 is defined as

FH(F2|F1) = FH(RF2 |RF1)

= −1
n

n

∑
i=1

log
|[xi]F1

∩ [xi]F2
|∣∣∣[xi]F1

∣∣∣
.(12)

It is proven that following properties hold 13.

Proposition 1 Given a fuzzy information system <
U,F,V, f >, F is the fuzzy attribute set, and F1,F2 ⊆
F. [xi]F1 and [xi]F2 are fuzzy equivalence classes of
xi generated by fuzzy equivalence relations R and S
induced from F1 and F2, respectively. Then the fol-
lowing statements hold.

(1)∀F1 ⊆ F : FH(F1) > 0;
(2)FH(F1,F2) > max{FH(F1),FH(F2)};
(3)F1 ⊆ F2 or RF1 ⊆ RF2 : FH(F1,F2) = FH(F1);
(4)F1 ⊆ F2 or RF1 ⊆ RF2 : FH(F2|F1) = 0;
(5)FH(F2|F1) = FH(F1|F2)−FH(F1);
(6)FH(F1|F2) = FH(F2|F1)−FH(F2);

(13)

As the above properties of fuzzy information en-
tropy and fuzzy mutual information are summarized
and discussed by Hu et al. 13, we here do not present
detailed analysis and discussion.

Once given the definition of fuzzy information
entropy, we calculate mutual information using the

following equations

FMI(F1;F2) = FH(F1)−FH(F1|F2), (14)

FMI(F2;F1) = FH(F2)−FH(F2|F1), (15)

FMI(F1;F2) = FH(F1)+FH(F2)−FH(F1,F2).

(16)

It is easy to know

FMI(F1;F2) = FMI(F2;F1). (17)

By introducing (6) into (16), the fuzzy mutual
information between F1 and F2 equals

FMI(F1;F2) = −1
n

n

∑
i=1

log
|[xi]F1

|
n

− 1
n

n

∑
i=1

log
|[xi]F2

|
n

+
1
n

n

∑
i=1

log
|[xi]F1

∩ [xi]F2
|

n

= −1
n

n

∑
i=1

log
|[xi]F1

| · |[xi]F2
|

n · |[xi]F1
∩ [xi]F2

| . (18)

From above formula we can see fuzzy mutual in-
formation could be computed for both discrete and
continuous variables. It overcomes the limitation of
Shannon’s mutual information.

Now, we use an example to illustrate the compu-
tation of fuzzy mutual information.

Given two continuous variables X1 =
{0.1,0.3,0.5,0.6} and X2 = {0.2,0.4,0.7,0.9}, we
use

S(x,y) = exp(− ‖ x− y ‖) (19)

to measure similarity. Relation matrices M(RX1) and
M(RX2) are

M (RX1) =




1 0.82 0.67 0.61
0.82 1 0.82 0.74
0.67 0.82 1 0.90
0.61 0.74 0.90 1




and

M (RX2) =




1 0.82 0.61 0.50
0.82 1 0.74 0.61
0.61 0.74 1 0.82
0.50 0.61 0.82 1


 .
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The fuzzy information entropy of X1 and X2 are

FH(X1) = −1
4
(log

3.10
4

+ log
3.38

4
+ log

3.39
4

+ log
3.25

4
)

= 0.29

and

FH(X2) = −1
4
(log

2.93
4

+ log
3.17

4
+ log

3.17
4

+ log
2.93

4
)

= 0.39.

For the fuzzy joint information entropy
FH(X1,X2), we first compute the intersection of
M(RX1) and M(RX2) i.e.

M (RX1)∩M(RX2) =




1 0.82 0.61 0.50
0.82 1 0.74 0.61
0.61 0.74 1 0.82
0.50 0.61 0.82 1


 .

And then

FH(X1,X2) = −1
4
(log

2.93
4

+ log
3.17

4
+ log

3.17
4

+ log
2.93

4
)

= 0.39.

In this way,

FMI(X1;X2) = FH(X1)+FH(X2)−FH(X1,X2)
= 0.29+0.39−0.39 = 0.29.

3. Relationship between fuzzy information
entropy and differential entropy

Shannon’s information entropy of continuous vari-
ables can not be directly computed, so some al-
gorithms were proposed to estimate the probability
density function with a set of samples18,29. Here, we
discuss the relationship between fuzzy information
entropy and differential entropy in which probabil-
ity density is estimated with Parzen window.

Given a set of samples U = {x1,x2, ...,xn}, the
probability density estimated with Parzen window is

p̂Pw(x) =
1
n

n

∑
i=1

ϕ(x− xi,h), (20)

where ϕ(·) is window function and h is the window
width.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

Fig. 1. 1-D Gaussian window

−2
−1

0
1

2

−2

−1

0

1

2
0

1

2

3

4

5

x 10
7

Fig. 2. 2-D Gaussian window

The Gaussian window function is defined as

ϕ(z,h) =
1

(2π)d/2hd |∑ |1/2
exp

(
−zT ∑−1z

2h2

)
, (21)

where z = x− xi, ∑ is covariance matrices of z.
For example, Fig.1 and Fig.2 show one dimen-
sional Gaussian window (d = 1) and two dimen-
sional Gaussian window (d = 2), respectively.

Probability density estimated with one dimen-
sional Gaussian window is

p̂Pw(x) =
1
n

n

∑
i=1

ϕ (x− xi,1)

=
1
n

n

∑
i=1

(
1√
2π

exp

(
− (x− xi)

2

2

))
. (22)
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This is the average value of n Gaussian function val-
ues with each sample as center. Next, we use an ex-
ample to illustrate how to estimate probability den-
sity.
Example: Given a set X with five samples x1 = 2,
x2 = 2.5, x3 = 3, x4 = 1 and x5 = 6, we take the for-
mula (22) with h = 1 as window function to estimate
probability density of x = 3.

p1 = 1√
2π exp(− (x1−x)2

2 ) = 0.242

p2 = 1√
2π exp(− (x2−x)2

2 ) = 0.352

p3 = 1√
2π exp(− (x3−x)2

2 ) = 0.399

p4 = 1√
2π exp(− (x4−x)2

2 ) = 0.054

p5 = 1√
2π exp(− (x5−x)2

2 ) = 0.004
p(x = 3) = (p1 + p2 + p3 + p4 + p5)/5 = 0.210

From (9) we can see

|[xi]RF
|

n
=

1
n

n

∑
j=1

ri j (23)

is identical to the probability density of Shannon’s
information entropy. If we use one dimensional
Gaussian membership function ψ(·) to compute
similarity ri j between xi and x j, the above formula
is

|[xi]RF
|

n
=

1
n

n

∑
j=1

ri j =
1
n

n

∑
j=1

ψ (xi− x j), (24)

denoted by p̂RF (x). p̂RF (x) is similar to p̂Pw(x).
If we compute differential entropy

H(F) =−
∫

f∈F

p( f ) log p( f )d f (25)

with

H(F) =− ∑
f∈F

p( f ) log p( f ), (26)

the computation cost of Shannon’s entropy is the
same as that of fuzzy information entropy. But if
we use (25) to compute entropy, we should esti-
mate a probability density function. That is to say,

Parzen window method not only estimates proba-
bility density of given samples, but also uses sam-
ples to estimate the probability density of unknown
points. While as for fuzzy information entropy we
only compute the membership degree of a sample
belonging to others. Moreover, in computing fuzzy
joint entropy of multiple variables, we use the inter-
section of fuzzy sets [xi]F1 ∩ [xi]F2 , instead of joint
probability density. Obviously, the estimation us-
ing Parzen window is more complex than comput-
ing membership degree. And in the case of high-
dimensional space, it is very difficult to precisely es-
timate probability density functions with finite sam-
ples.

4. Fuzzy mutual information based feature
selection algorithms

Feature selection is to select a set of features which
has the maximal relevance with decision. The usual
way of feature selection is to select a feature singly
which has the maximal relevance with decision,
which is called Max-Relevance 1. That is to say the
feature is the most important for decision. Let S be a
feature subset selected and c be decision. The Max-
Relevance is defined as

maxD(S,c),D =
1
|S| ∑

fi∈S
I( fi;c). (27)

However, feature selection according to Max-
Relevance may produce redundancies i.e. the
new feature selected fi is strongly relevant to
some features selected previously. Therefore, min-
Redundancy

minR(S),R =
1

|S|2 ∑
fi, f j∈S

I( fi, f j) (28)

was combined with Max-Relevance 8. That equals

maxΦ(D,R),Φ = D−R, (29)

called min-Redundancy-Max-Relevance denoted by
mRMR.

Given the set Sk−1 with k− 1 features selected,
the k’th feature can be determined by

max
f j∈F−Sk−1

[I( f j;c)− 1
k−1 ∑

fi∈Sk−1

I( f j; fi)]. (30)
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Here, we replace mutual information with fuzzy mu-
tual information. The above formula equals

max
f j∈F−Sk−1

(FMI( f j;c)− 1
k−1 ∑

fi∈Sk−1

FMI( f j; fi)). (31)

Fuzzy mutual information based mRMR, denoted by
FMI mRMR, is able to directly address continuous
features.

The purpose of feature selection is to find a fea-
ture subset Sk, which has the maximal relevance to
decision c. This is called Max-Dependency (MD)
defined as

maxD′(Sk,c),D′ = I(Sk;c). (32)

That means the k’th feature can be determined as the
one that makes I(Sk;c) largest, where I(Sk;c) takes
the form

I(Sk;c)
=

∫∫
p(Sk,c) log p(Sk ,c)

p(Sk)p(c) dSkdc

=
∫∫

p(Sk−1, fk,c) log p(Sk−1, fk ,c)
p(Sk−1, fk ,)p(c) dSk−1d fkdc

=
∫

...
∫

p( f1, ..., fk,c) log p( f1,..., fk ,c)
p( f1,..., fk)p(c) d f1...d fkdc.

(33)

Similarly, we integrate MD with fuzzy mutual in-
formation, denoted by FMI MD. That equals

FMI (Sk;c) = FH(Sk)+FH (c)−FH (Sk,c)

=−1
n

n
∑

i=1
log

|[xi] f1
∩[xi] f2

∩···∩[xi] fk
|·|[xi]c|

n·|[xi] f1
∩[xi] f2

∩···∩[xi] f
k
∩[xi]c| .

(34)

Similarly, when we are selecting features with
MD, redundancy might have been produced because
the new selected feature may have some relevance
to the features that have been selected in advance.
In this sense we combine Max-Dependency with
min-Redundancy, which is called min-Redundancy-
Max-Dependency (mRMD) expressed as

maxΦ(D′,R),Φ = D′−R, (35)

which equals

max
f j∈F−Sk−1

(I(Sk−1∪ f j;c)− 1
k−1 ∑

fi∈Sk−1

I( f j; fi)). (36)

Combined with fuzzy mutual information the above
formula equals

max
f j∈F−Sk−1

(FMI(Sk−1∪ f j;c)− 1
k−1 ∑

fi∈Sk−1

FMI( f j; fi)). (37)

We denote this method FMI mRMD.
The pseudocode for the three feature selection al-

gorithms, FMI mRMR, FMI MD and FMI mRMD,
are as follows.

Input: X,F,c X is a sample set,
F is a feature set and c is decision.

Output: S S is a feature ranking.
begin

initialize S = φ
while F 6= φ

find f ∈ F satisfying (1),(2) or (3)
S = S

⋃{ f}
F = F−{ f}

end
return S

end
Remarks: (1) f = argmax

f∈F−Sk−1

(FMI( f ;c)− 1
k−1 ∑

fi∈Sk−1

FMI( f ; fi));

(2) f = argmax
f∈F−Sk−1

FMI(Sk−1∪{ f},c);

(3) f = argmax
f∈F−Sk−1

(FMI(Sk−1∪{ f};c)− 1
k−1 ∑

fi∈Sk−1

FMI( f ; fi)).

If f satisfies (1), this is FMI mRMR feature selection algorithm;

if f satisfies (2), this is FMI MD feature selection algorithm;

and if f satisfies (3), this is FMI mRMD feature selection algo-

rithm.

Output of each algorithm is a feature ranking.
Take FMI mRMR algorithm as an example.

Step 1: we compute the fuzzy mutual informa-
tion between each feature and decision, and select
the feature f ′1 with the maximum value as the first
member of feature ranking S. Then S = { f ′1}, and
F = F−{ f ′1}.

Step 2: ∀ f ∈ F , we compute FMI( f ;c) −
1
|S| ∑ f ′k∈S FMI( f ; f ′k) = FMI( f ;c)−FMI( f ; f ′1). By
this way, we get |F | values. And the feature f ′2 with
the maximum value is selected. Then S = { f ′1, f ′2},
and F = F−{ f ′2}.

Step 3: ∀ f ∈ F , we compute FMI( f ;c) −
1
|S| ∑ f ′k∈S FMI( f ; f ′k) = FMI( f ;c)− 1

2(FMI( f ; f ′1)+
FMI( f ; f ′2)). By this way, we get |F | values, and the
feature f ′3 with the maximum value is selected. Then
S = { f ′1, f ′2, f ′3}, and F = F−{ f ′3}.

Step 4: repeat Step 3 until F = /0.
By this way, we can get a feature ranking with

FMI mRMR algorithm. The computational com-
plexity of this incremental search method is O(|S| ·
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|F |, where |S| is the number of features selected,
and |F | is the number of features being not selected.
Similarly, we can get two feature rankings with
FMI mRMD and FMI MD algorithms. The compu-
tational complexity of the incremental search meth-
ods for FMI mRMD and FMI MD are O(|S| · |F |)
and O(|F |), respectively.

5. Evaluation measures of stability

We can evaluate the performance of feature selec-
tion algorithms with the size and classification per-
formance of selected features 22,32,33. Moreover, sta-
bility is also an aspect for evaluating feature selec-
tion algorithms 15. This section we give evaluation
measures of stability for the algorithms.

In this work, we evaluate stability of feature
selection algorithms with the similarity of feature
rankings and that of feature subsets. A technique
like cross-validation is introduced. We divide the
samples into k subsets and use k-1 subsets to rank
features using feature selection algorithms. We get
k feature rankings after k rounds using a certain al-
gorithm. Accordingly, we get k feature subsets. The
larger the similarity of k feature rankings or feature
subsets is, the more stable the algorithm is.

To measure the similarity between two feature
rankings R = {r1,r2, ...,rN} and R′ = {r′1,r

′
2, ...,r

′
N},

we use Spearman’s rank correlation coefficient 25

SR(R,R′) = 1−6
N

∑
i=1

(ri− r′i)
2

N(N2−1)
. (38)

Here, SR ∈ [−1,1]. SR = 1 means that the two rank-
ings are identical; SR = 0 means that there is no cor-
relation between the two ranks; SR =−1 means that
they have exactly inverse orders.

We measure the similarity between two feature
subsets F1 and F2 with Tanimoto distance 9

SF(F1,F2) = 1− |F1|+ |F2|−2|F1∩F2|
|F1|+ |F2|− |F1∩F2|

=
|F1∩F2|

|F1|+ |F2|− |F1∩F2| . (39)

After calculating the similarity of feature rank-
ings and subsets, we can get a similarity matrix

S =




s11 s12 · · · s1k
s21 s22 · · · s2k
...

...
. . .

...
sk1 sk2 · · · skk


 . (40)

In order to measure the similarity of all the rank-
ings or subsets, the Kalousis et al. 15 used

T S1 =
k

∑
i=1

k

∑
j=1

si j (41)

to measure the similarity matrix. Wang et al. 43,44

introduced another way

T S2 =−
k

∑
i=1

λi

k
logk

λi

k
(42)

to measure similarity matrix, where T S2 ∈ [0,1]. λi

(i = 1,2, ...,k) are eigenvalues of similarity matrix.
As the similarity matrix is real symmetry, 0 6 λi 6 k
(i = 1,2, ...,k). If k results are the same, we get
λ1 = k, λi = 0 (i > 1), T S2 = 0. Then we consider
the feature selection algorithm is the most stable.
When ∀ i 6= j, si j = 0, S is identity matrix and λi = 1
(i = 1,2, ...,k), T S2 = 1. Then we consider feature
selection algorithm is the least stable. The smaller
T S2 is, the stronger the stability is. So we can use
T S2 to measure the stability of feature selection al-
gorithms.

Moreover, Hu et al. 14 used another entropy

T S3 =−1
k

k

∑
j=1

log
k

∑
i=1

si j

k
(43)

to measure the similarity matrix, where T S3 ∈
[0, logk]. If ∀i, j, si j = 1, which means the k results
are the same, T S3 = 0. In this case, the feature selec-
tion algorithm is the most stable. If ∀i 6= j, si j = 0,
S is an identity matrix, then T S3 = logk. We con-
sider the feature selection algorithm is the least sta-
ble. The smaller T S3 is, the stronger the stability is.
In this work we use T S3 to measure the stability of
feature selection algorithms.
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6. Experiments

In this section, FMI mRMR, FMI MD and
FMI mRMD are tested on 14 benchmark tasks from
UCI 3. The summary of data sets is shown in Table
1, where ”Size” is the number of samples, ”Feature”
is the number of all the features, ”N” stands for the
number of numerical features, ”C” for the number
of nominal features and ”Class” for the number of
the classes.

Table 1: Summary of data sets

Data Size Feature N C Class
heart 270 13 7 6 2

hepatitis 155 19 6 13 2
horse 368 22 7 15 2
iono 351 34 34 0 2
sonar 208 60 60 0 2

WDBC 569 30 31 0 2
wine 178 13 13 0 3
zoo 101 16 0 16 7

segmentation 2310 19 3 16 7
yeast 1484 7 6 1 10
breast 84 9216 9216 0 5

DLBCL 88 4026 4026 0 6
lung 96 7129 7129 0 3

SRBCT 88 2308 2308 0 5

First, we rank features with FMI mRMR,
FMI MD and FMI mRMD algorithms, respectively.
Feature ranking leads to n sequential feature sub-
sets S1 ⊂ S2 ⊂ ·· · ⊂ Sn−1 ⊂ Sn, where n is the
number of features, S1 = { f1}, S2 = { f1, f2},...,
Sn = { f1, f2, ..., fn}. Then we use 10-fold cross-
validation to calculate the classification accuracies
of S1,S2, ...,Sn with LSVM 4, RBFSVM 4, CART 21

and KNN 27 classifiers, respectively. We select the
subset Si (i = 1,2, ...,n) with the highest classifica-
tion accuracy as the final feature subset.

6.1. Accuracy comparison

We first test the effectiveness of feature selection al-
gorithms. We take linear SVM (LSVM) as classi-
fiers to illustrate the effectiveness of feature selec-
tion algorithms. The results are shown in Table 2,
where ’All features’ means classification accuracies

obtained without feature selection, ’n’ is features
selected, and ’Acc’ is classification accuracy using
LSVM with selected features.

Table 2 shows LSVM produces a good perfor-
mance for classification without feature selection.
From the results we can see that features selected by
FMI mRMR algorithm can produce higher classifi-
cation accuracy than that produced with all features,
which can adequately show efficiency of feature se-
lection algorithm. It also shows, taking LSVM as
classifier, features selected by FMI mRMR are bet-
ter than that selected by FMI MD and FMI mRMD.

Now, we conduct experiments to test
FMI mRMR, FMI MD and FMI mRMD, and com-
pare their performance with some state-of-the-art
techniques, such as MI mRMR 29, CFS 11, FCBF 47

and RELIEF 17 algorithms.

MI mRMR is min-Redundancy-Max-Relevancy
based on Shannon’s mutual information, where con-
tinuous data should be discretized in preprocess-
ing. CFS, ”correlation based feature selection”, is
a simple filter algorithm that selects feature subset
in terms of a correlation-based heuristic evaluation
function. FCBF, ”Fast Correlation-Based Filter”, is
a fast filter method which can identify relevant fea-
tures as well as redundant ones among relevant fea-
tures without pairwise correlation analysis. RELIEF
is considered as one of the most successful tech-
nique due to its simplicity and effectiveness. It is
to iteratively estimate weights of features according
to their ability to discriminate neighboring patterns.

As different classifiers may produce different
accuracies with the same feature subset, we use
LSVM, RBFSVM, CART and KNN to classify data
sets in this work. The classification accuracy com-
parison of data sets described by feature subsets se-
lected using the four classifiers are shown in Fig.3.
Twelve sub figures are results for twelve data sets.
In each sub figure, there are four groups of bars, de-
noting four classifiers i.e. LSVM, RBFSVM, CART
and KNN. Each bar presents the classification accu-
racy of a data set described by features selected with
a classifier.
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Table 2: Classification accuracy (%) with LSVM for different algorithms
Data All features FMI mRMR FMI MD FMI mRMD

Acc n Acc n Acc n Acc n
heart 83.3 13 84.1 7 82.6 7 82.6 7
hepatitis 86.2 19 89.2 3 91.0 10 91.0 10
horse 92.4 22 91.6 3 90.2 2 90.2 2
iono 87.6 34 89.0 2 88.7 22 88.7 22
sonar 77.9 60 78.9 11 77.5 15 77.5 15
WDBC 97.7 30 98.1 20 97.2 12 97.2 12
wine 98.9 13 98.9 5 98.3 7 98.3 7
zoo 93.4 16 95.4 12 93.4 6 93.4 6
segmentation 92.9 19 92.1 10 91.5 15 92.0 15
yeast 56.4 7 56.4 7 55.6 7 56.8 7
breast 95.4 9216 100.0 20 82.5 16 76.2 17
DLBCL 97.3 4026 97.3 9 80.2 15 67.1 5
lung 82.6 7129 80.3 6 77.4 11 75.0 2
SRBCT 82.1 2308 81.3 10 61.7 20 33.4 5
Average 87.5 1636 88.0 8 83.3 11 80.0 11
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Fig. 3. Accuracy comparison of seven algorithms with four
classifiers. ’1’ denotes FMI mRMR, ’2’ denotes FMI MD,
’3’ denotes FMI mRMD, ’4’ denotes MI mRMR, ’5’ de-
notes CFS, ’6’ denotes FCBF and ’7’ denotes RELIEF.

In order to show the whole performance of dif-
ferent algorithms, for a data set we compute average
accuracy of four accuracies computed by four clas-
sifiers as well as average number of selected features
of four numbers computed by four classifiers. The
results are shown in Table 3. ”n” is the average num-
ber of features selected, and ”Acc” is average clas-
sification accuracy.
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From the whole average ”TotalAverage”, we can
get the following conclusions. Features selected by
FMI mRMR can produce the highest accuracy of
all. Numbers of features selected by FMI mRMR,
FMI MD and FMI mRMD are less than or equal
that by CFS, and the accuracies produced with the
three algorithms are higher than that with CFS.
The whole average ”TotalAverage” of accuracies
presents that FMI mRMR is the best of all the algo-

rithms. The total average accuracy got by FMI MD
is close to that by FCBF and RELIEF, and the num-
ber of features selected by FMI MD is less than or
equal that by FCBF and RELIEF. Although the ac-
curacy produced by FMI mRMD is lower than that
by FCBF and RELIEF, the number of features se-
lected with FMI mRMD is less than that with FCBF
and RELIEF.

6.2. Stability analysis of feature selection
algorithms

Stability is another view point to evaluate an al-
gorithm for feature selection. In this section we
discuss the stability of FMI mRMR, FMI MD and
FMI mRMD algorithms. In order to measure sta-
bility we use measures introduced in Section 5. We
use T S3 to calculate the stability of feature rankings
and subsets. Here, k = 3. Furthermore, we com-
pare the stability of the above three algorithms with
MI mRMR, CFS, FCBF and RELIEF. The results
are shown in Tables 4 and 5.

Remarks: breast, DLBCL, lung and SRBCT are
small data sets. If we use the method mentioned in
Section 5 to evaluate stability, data sets used to select
features are much smaller. This may make feature
rankings and feature subsets selected inaccurate. So
we do not consider these data sets in this work.

Table 4 shows evaluation results for the stabil-
ity of feature rankings for different feature selec-
tion algorithms. It shows that FMI mRMR has the
smallest stability evaluation value. Section 5 ana-
lyzes that the smaller the value is, the more stable
the algorithm is. So FMI mRMR is the most stable
of all the algorithms. FMI MD and FMI mRMD are
less stable than FMI mRMR. Besides, we can see
FMI mRMR, FMI MD and FMI mRMD are more
stable than other algorithms

Table 5 shows evaluation results for the stabil-
ity of feature subsets. It shows that FMI mRMR al-
gorithm has the smallest stability evaluation value,
which means FMI mRMR algorithm is still the
most stable. The evaluation values for FMI MD
and FMI mRMD are smaller than MI mRMR, CFS,

FCBF and RELIEF. FMI MD is more stable than
FMI mRMD for selecting features.

7. Conclusions

Mutual information is widely used to measure rel-
evance between discrete features and decision. It
plays an important role in feature selection algo-
rithms. Considering the limitation of Shannon’s mu-
tual information, we introduce fuzzy information
entropy and fuzzy mutual information to calculate
relevance between continuous or fuzzy features and
decision. Furthermore, we combine this measure
with mRMR, MD and mRMD algorithms to con-
struct feature selection algorithms. We test the al-
gorithms on UCI data sets in terms of classification
performance and stability. The following conclu-
sions are drawn from the analysis.

Firstly, fuzzy mutual information is a feasible
and effective measure for computing relevance be-
tween numerical features and decision. Fuzzy mu-
tual information computes the relevance of high-
dimensional features using intersection of fuzzy re-
lation induced with single features, instead of es-
timating probability density, so the computational
complexity decreases.

Secondly, the feature selection algorithm by
combining fuzzy mutual information with mRMR
search strategy is effective. The proposed algorithm
is comparable with the classical mRMR, fuzzy mu-
tual information based MD, fuzzy mutual informa-
tion based mRMD, CFS, FCBF and RELIEF algo-
rithms.

Finally, the experiments on stability show that
fuzzy mutual information based mRMR, MD and
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Table 3: Average classification accuracy (%) with four classifiers for different algorithms
Data FMI mRMR FMI MD FMI mRMD MI mRMR CFS FCBF RELIEF

n Acc n Acc n Acc n Acc n Acc n Acc n Acc
heart 5 84.8 5 84.8 5 84.8 6 84.8 7 80.0 6 81.3 3 85.1
hepatitis 3 91.3 5 90.8 5 90.8 5 90.7 7 91.4 7 91.3 8 88.9
horse 5 93.3 4 92.2 4 92.2 3 94.7 8 93.6 7 93.7 7 94.2
iono 10 92.1 11 91.7 11 91.7 13 91.7 11 89.5 7 88.2 8 90.8
sonar 7 96.6 6 96.7 6 96.7 7 96.9 11 94.5 9 94.8 8 94.6
WDBC 17 96.8 8 96.2 8 96.2 10 96.8 10 94.9 8 94.9 8 95.6
wine 23 81.9 16 83.6 16 83.6 23 84.5 17 43.3 12 76.8 17 81.0
zoo 6 92.3 5 91.7 5 91.7 4 91.8 8 92.6 6 93.1 10 92.6
segmentation 10 94.8 14 93.9 12 94.0 11 94.4 7 93.0 6 93.2 13 93.9
yeast 6 54.6 7 53.8 7 53.3 7 52.5 7 50.1 6 51.6 6 51.5
breast 17 94.2 12 84.9 6 82.1 7 92.8 7 61.6 11 87.8 13 80.9
DLBCL 7 96.2 7 81.7 4 76.7 10 95.2 17 84.6 13 91.8 18 88.3
lung 5 80.4 10 83.8 3 81.0 6 83.1 7 79.2 12 88.2 4 78.9
SRBCT 10 80.0 7 57.4 4 42.3 11 72.5 7 31.6 7 60.8 7 71.0
TotalAverage 11 87.8 10 84.6 8 82.7 11 87.3 11 77.2 10 84.8 11 84.8

Table 4: Stability of feature rankings
Data FMI mRMR FMI MD FMI mRMD MI mRMR CFS FCBF RELIEF
heart 0.76 0.91 1.07 0.84 0.86 0.86 1.56

hepatitis 0.66 0.37 0.67 0.66 0.80 0.80 0.83
horse 0.50 0.58 0.66 0.67 1.00 1.00 1.33

ionosphere 0.56 0.60 0.61 0.97 0.90 0.90 0.66
sonar 0.60 0.60 0.64 0.95 1.11 1.11 0.74

WDBC 0.94 1.17 1.23 1.00 1.11 1.11 0.88
wine 0.67 0.72 0.66 0.78 0.72 0.72 1.04
zoo 0.58 0.58 0.56 0.69 0.80 0.80 0.66

segmentation 0.63 0.65 0.63 0.65 0.70 0.69 0.81
yeast 0.56 0.62 0.61 0.60 0.65 0.71 0.66

Average 0.65 0.68 0.73 0.78 0.86 0.87 0.92
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Table 5: Stability of feature subsets
Data FMI mRMR FMI MD FMI mRMD MI mRMR CFS FCBF RELIEF
heart 0.54 0.55 0.54 0.70 0.56 0.60 0.41

hepatitis 0.44 0.46 0.51 0.63 0.59 0.62 0.49
horse 0.41 0.47 0.50 0.63 0.62 0.67 0.62

ionosphere 0.49 0.49 0.55 0.76 0.84 0.71 0.79
sonar 0.49 0.79 0.80 1.02 0.86 0.80 0.73

WDBC 0.42 0.53 0.53 0.56 0.52 0.60 0.47
wine 0.25 0.33 0.43 0.56 0.44 0.50 0.30
zoo 0.21 0.29 0.31 0.21 0.35 0.49 0.26

segmentation 0.38 0.36 0.42 0.39 0.54 0.49 0.67
yeast 0.32 0.29 0.37 0.34 0.71 0.55 0.63

Average 0.39 0.46 0.50 0.58 0.60 0.60 0.54

mRMD feature selection algorithms are more stable
than some state-of-the-art algorithms.
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