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Abstract 

In this work we predict time series of air pollution data taken in Mexico City and the Valley of Mexico, by using 
the Gamma Classifier which is a novel intelligent associative mathematical model, coupled with an emergent 
coding technique. Historical and current data about the concentration of specific pollutants, in the form of time 
series, were used. The pollutants of interest are: carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and 
nitrogen oxides (NOx, including both nitrogen monoxide, NO, and nitrogen dioxide, NO2). 

Keywords: Gamma classifier, Time series prediction, Environmental data prediction, Pattern classifier, Associative 
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1. Introduction 

Air pollution is a current problem that has been strongly 
associated to technological advances. Time Series 
analysis1–3 is a tool which allows the prediction of 
particularly bad conditions events, thus enabling better 
decision making.4–6 

Atmospheric pollution is of great interest to many 
Latin American urban centers, since it has become a 
major problem for megacities such as Mexico City, São 
Paulo, Santiago, and Buenos Aires.7 Particularly, the air 
quality of Mexico City is monitored by sampling and 
measuring the concentration of several pollutants of 
interest, through out the Metropolitan Zone of the 
Valley of Mexico. This is done automatically by several 
monitoring stations, as well as manually in several fixed 
and mobile stations, which belong to the Mexico City 
Atmospheric Monitoring System (SIMAT in Spanish). 

This data is measured and recorded periodically, as well 
as processed and published by SIMAT, which is also 
responsible for keeping the authorities and population 
informed by means of the Air Quality Metropolitan 
Index.8 It is thanks to this periodicity that this data can 
be analyzed as a time series. 

Several methods for analysis and forecasting of air 
quality data have been proposed around the globe. Some 
of the most successful among these are: multivariate 
linear regression (MLR),9 Bayesian networks and 
decision trees,10 artificial neural networks (ANN),10–13 
support vector machines (SVM),14 and pollution models 
such as Caline and IITLS.15 In this paper, air pollution 
data from Mexico City was used, employing the 
Gamma classifier (previously introduced as a general, 
empirical classifier algorithm in Ref. 16, and 
preliminarily applied to related problems in Refs. 17 
and 18). 
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The problem studied in the present work is the 
prediction of time series of air pollution data taken in 
Mexico City and the Valley of Mexico, through the 
application of the Gamma classifier, obtaining 
competitive experimental results. For this, historical and 
current data about the concentration of specific 
pollutants, in the form of time series, were used. These 
data were measured hourly by several monitoring 
stations. Some pollutants are of particular interest, given 
their consideration by Mexican (and international) 
governing bodies as criteria pollutants: carbon 
monoxide (CO), ozone (O3), sulfur dioxide (SO2), and 
nitrogen oxides (NOx, including both nitrogen 
monoxide, NO, and nitrogen dioxide, NO2). 

The rest of the paper is organized as follows. Sec. 2 
is dedicated to presenting the Mexico City Atmospheric 
Monitoring System, thus giving some background on 
the kind of data used and the purpose for which it is 
intended, as well as how such data is represented as 
time series and the corresponding analysis done on 
them, enabling their prediction. Sec. 3 includes the 
discussion of the Gamma classifier version 1, while Sec. 
4 is dedicated to the experimental design, with Sec. 5 
presenting the experiments of the first generation (1G), 
which uses the Gamma classifier version 1. Based on 
the analysis of these experiments, the method was 
improved, giving rise to the Gamma classifier version 2, 
which is introduced in Sec. 6. The next Sec., the 
seventh, presents the second generation of experiments 
(2G), which use the novel Gamma classifier version 2. 
Later, an analysis and comparison of the methods 
applied to this problem is presented in Sec. 8, with 
conclusions and lines of future work drawn in Sec. 9. 
Finally, the references are included. 

2. Time Series of Air Pollution Data in Mexico 
City 

The Mexico City Atmospheric Monitoring System 
(Sistema de Monitoreo Atmosférico de la Ciudad de 
México, SIMAT in Spanish) is the government body 
responsible for the surveillance and monitoring of the 
atmospheric quality in the Metropolitan Zone of the 
Valley of Mexico. The information presented in this 
Sec. regarding SIMAT is strongly based on Ref. 8. 

SIMAT is committed to operating and maintaining a 
trustworthy system for the monitoring of air quality in 
Mexico City, as well as analyzing and publishing this 
information in order to fulfil current requirements and 

legislation. The objective of SIMAT is to watch and 
evaluate the air quality in Mexico City, as a pre-emptive 
measure for health protection of its inhabitants, in order 
to promptly inform the populace as well as enable 
decision making in prevention and air quality 
improvement programs. Given the risks posed to the 
population, this is considered a relevant problem by 
authorities and citizens alike.19 Thus, SIMAT is made 
up by four specialized subsystems, one Atmospheric 
Monitoring Mobile Unit, and a Calibration Standards 
Transfer Lab. 

The subsystem of interest for this work is the 
Automatic Atmospheric Monitoring Network (RAMA, 
Red Automática de Monitoreo Atmosférico in Spanish), 
which takes continuous and permanent measurements of 
several pollutants: O3, SO2, NOx, CO, particulate matter 
less than 10 microns in diameter (PM10), and particulate 
matter less than 2.5 microns in diameter (PM2.5); each 
measurement is taken automatically every hour. 

The Air Quality Metropolitan Index (Índice 
Metropolitano de la Calidad del Aire, IMECA in 
Spanish) is a reference value for people to be aware of 
the pollution levels prevalent in any zone, in a precise 
and timely manner, in order to take appropriate 
protection measures. When the IMECA of any pollutant 
is greater than 100 points, its concentration is dangerous 
for health and, as the value of IMECA grows, the 
symptoms worsen, as can be seen in table 1. For 
simplification purposes (in particular regarding 
communicating air quality status to the population at 
large), only one IMECA value is published: that of the 
pollutant presenting the highest IMECA value. Ref. 20 
states the specifications for computing the IMECA for 
the criteria pollutants: O3, NO2, SO2, and CO. 

Given that air quality data recorded by the RAMA 
subsystem of SIMAT is measured periodically (i.e. one 
sample each hour), this data can de represented as a 
time series. It is clear, however, that the phenomena 
represented by these time series are complex.2 

With respect to trend, each pollutant of interest 
shows a small decrease over the years; an example on 
ozone can be seen in Fig. 1.8 While this long-term trend 
is relevant for the air quality itself, it is of no 
consequence to the proposed method, given that it does 
not take into account such long-term effects. 

On the other hand, the four pollutants exhibit 
seasonality over 24 hours, presenting higher 
concentrations at similar hours of each day. In order to 
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Fig. 1.  Ozone long-term trend in Mexico City. 

avoid the potential problems imposed by 
nonstationarity, the differences between consecutive 
samples were used.1–3 

Table 1.   IMECA and its implications for health. 

IMECA Condition Effects on Health 
0–50:  
green 

Good Suitable for conducting outdoor activities 

51–100: 
yellow 

Regular Possible discomfort in children, the elderly 
and people with illnesses 

101–150: 
orange 

Bad Cause of adverse health effects on the 
population, particularly on children and 
older adults with cardiovascular and / or 
respiratory illnesses such as asthma 

151–200: 
red 

Very Bad Cause of greater adverse health effects on 
the population, particularly on children and 
older adults with cardiovascular and / or 
respiratory illnesses such as asthma 

>200:  
purple 

Extremely 
Bad 

Cause of adverse health effects in the 
general population. Serious complications 
may present in children and older adults 
with cardiovascular and / or respiratory 
illnesses such as asthma 

 
The linearity or lack of it by the time series was not 

explicitly addressed, since the method used does not 
distinguish either way. 

3. Gamma Classifier version 1 

This pattern classifier, of recent proposal, has shown 
some very promising results.16–18 The algorithm in its 

initial form was introduced in Ref. 16, as an empirical, 
general classifier algorithm. Later, it was applied to air 
quality data prediction, obtaining preliminary results 
which were presented at an international conference 
(CIARP 2008).17 The experiments done in the latter 
work included only one pollutant (SO2), whose 
performance was compared to that of other methods, on 
other pollutants (mainly O3). Derived from that work, a 
book chapter was published,18 including new 
experiments on other pollutants. The analysis of all 
those experimental results enabled the improvement of 
the method proposed for applying the Gamma classifier 
to air quality data prediction. 

This Sec. is dedicated to discussing the initial 
Gamma classifier (version 1), as introduced in Ref. 16. 
The method introduced in Ref. 17 to apply this classifier 
to predict future concentrations of air pollutants is 
explained in greater detail in subsections 5.1 and 6.1, 
while the results obtained with said method (during the 
1G of experiments) and their comparison against other 
methods are discussed in Sec. 6. 

On the other hand, the original improvements and 
modifications to both the classifier and the method of 
applying it to the current problem (used on the 2G of 
experiments), which give rise to the Gamma classifier 
version 2 (presented in this paper) are introduced in Sec. 
7 and its performance further discussed in Sec. 8. 
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The basis of the Gamma classifier in its initial 
version is the gamma operator, hence its name. In turn, 
the gamma operator is based on the alpha (), beta (), 
and u  operators and their properties, in particular 
when dealing with binary patterns coded with the 
modified Johnson-Möbius code. Thus, the focus of 
subsection 3.1 will be on discussing these components 
of the Gamma classifier: the alpha and beta operators, 
the u  operator, the modified Johnson-Möbius code, 
and the gamma operator; while the algorithm of the 
classifier (version 1) is discussed in subsection 3.2. 

Notice that here we are not working with the 
classical Johnson-Möbius code, which was previously 
introduced,21 but rather with a modification recently 
proposed by the authors research group and further 
explained below. 

It is worthy of mention that the Gamma classifier 
was initially designed to work with patterns, represented 
by vectors composed of real numbers. The RAMA 
database, however, is not made up by vectors: it 
contains a series of numeric data points representing the 
concentration values of a given pollutant, for each 
station during each hour of a particular year. Then, a 
relevant contribution of this work is the development of 
a coding technique which converts those series of values 
into a set of patterns, which can then be used by the 
Gamma classifier to forecast the next value. The rest of 
this Sec. is strongly based on Refs. 16–18. 

3.1. Preliminaries 

The alpha and beta operators were introduced in Refs. 
22 and 23 and are the basis of the Alpha-Beta 
associative memories. The operators are defined in a 
tabular manner, as shown in table 2, considering that the 
sets A and B are defined as A = {0, 1} and B = {0, 1, 2}. 

Table 2.  Definition of the alpha and beta operators. 

: A A B     AAB :
x y (x, y)  x y (x, y) 
0 0 1  0 0 0 
0 1 0  0 1 0 
1 0 2  1 0 0 
1 1 1  1 1 1 
    2 0 1 
    2 1 1 

 
These operators have set the foundation for the 

development of several mathematical models employed 
in Pattern Recognition, from the original Alpha-Beta 

associative memories, to the Gamma classifier, passing 
trough models such as the Alpha-Beta bidirectional 
associative memories23 or the Alpha-Beta associative 
support vector machines.24 As current research 
indicates, much of the strength, robustness, and efficacy 
exhibited by the aforementioned associative models are 
due to the alpha and beta operators. This particular fact 
is quite a surprise, since the operators seem to be almost 
trivially simple. The results obtained with the Alpha-
Beta associative models indicate exactly the contrary. 

The unary u  operator receives as input an n-
dimensional binary vector x, outputs a non-negative 
integer number, and is calculated as shown below: 

  (1) 
1

,
n

i i
i

u x 


  x

Thus, if x = [ 1 0 1 0 1 0 ] then: 

 

       
     
1,1 0,0 1,1

0,0 1,1 0,0

1 0 1 0 1 0 3

u   

  

  

  

      

x 

 (2) 

On the other hand, the modified Johnson-Möbius 
code —proposed by the authors research group, which 
is a variation on the classical Johnson-Möbius code— 
allows us to convert a set of real numbers into binary 
representations by following these steps: 

 
(i) Subtract the minimum (of the set of numbers) from 

each number, leaving only non-negative real 
numbers. 

(ii) Scale up the numbers (truncating the remaining 
decimals if necessary) by multiplying all numbers 
by an appropriate power of 10, in order to leave 
only non-negative integer numbers. 

(iii) Concatenate m je e  zeros with je  ones, where 

me  is the greatest non-negative integer number to 
be coded, and je  is the current non-negative 
integer number to be coded. 

 
For instance, let  be defined as D  
 1.7,1.9,0.2,0.6, 0.1D   ; now, lets use the modified 

Johnson-Möbius code (as explained above) to convert 
the elements of D into binary vectors. 

 
(i) Subtract the minimum: 

  (3) 
 

,

1.8,2.0,0.3,0.7,0.0

D T

T

 




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Since –0.1 is the minimum number in the set, the 
members of the transformed set T are obtained by 
subtracting –0.1 to each member of D (which is the 
same as adding 0.1): . 
Notice that this step is particularly useful for 
handling negative numbers, since now there will be 
only non-negative numbers, with the minimum 
being 0. 

 0.1 0.1i i it d d    

(ii) Scale up the numbers: 

  (4) 
 

,

18,20,3,7,0

T E

E

 





Since there is only one decimal digit, it is enough to 
multiply each number by 10 to obtain integers, thus 
the members of the integers set E are calculated as: 

. 10i ie t 
(iii) Concatenate m je e  zeros with je  ones, where 

me  is the maximum non-negative integer number 
to be coded, and je  is the current non-negative 
integer number to be coded: 

 

 20 ,

[00111111111111111111]

[11111111111111111111]

[00000000000000000111]

[00000000000001111111]

[00000000000000000000]

i iE C c c A

C

  




 
 
 
 
  







 (5) 

Given that the maximum number in the set E of 
non-negative integers is 20, all binary vectors have 
20 components, i.e. they all are 20 bits long. In 
other words, each member of the C set is a binary 
vector which belongs to the set resulting from 
applying 20 times the cross product of the set 
A = {0, 1} to itself. 
For example, e3 = 18 is converted into its binary 
representation c3 by appending em – e3 =20 – 18 = 2 
zeroes “00”, followed by e3 = 18  ones 
“111111111111111111”, which gives the final 
vector: “00111111111111111111”. 
This is because the maximum number in set E is 20, 
thus em  =20 ; and the number to be converted is 
e3 =18. 

 
Finally, the generalized gamma operator g , which 

takes as input two binary patterns nAx  and mAy  
—with — and a non-negative integer 

number ; and gives a binary number as output; can be 
computed as follows: 

, ,n m n m 

  
 1 if , mod 2

, ,
0 otherwise

g

m u  
 

      


x y
x y  (6) 

where mod2 indicates the usual modulo 2 operator. 
In order to better illustrate how the generalized 

gamma operator works, let us work through some 
examples of its application. 

Then, if = [ 1 1 0 0 0 ], = [ 1 0 1 0 0 ], and x y
 = 2, what is the result of  , ,g 


x y


? 

First, we have that , x y = [ 1 2 0 1 1 ]; then 
 [ 1 2 0 1 1 ] mod2 = [ 1 0 0 1 1 ]; now 

  
     
   
1,1 , 0,0 , 0,0 ,

1  0 01 1  
1,1 , 1,1

1 0 0 1 1 3

u

  

 

 
  

  
     

  (7) 

and since m = 5, 5 – 3 = 2; given that 2  = 2, the 
result is 1. 

Meanwhile, if  = 3, the result would be 1. 
However, if  = 1, it is clear that the result would be 0, 
since 2 > 1, thus it is false that 2  . 

On the other hand, if = [ 1 0 0 ], = [ 1 0 0 ], and x y
 = 2, we have: 

    , 1 1 1   x y  (8) 

    1 1 1  mod 2 1 1 1    (9) 

        1 1 1  1,1 , 1,1 , 1,1

1 1 1 3

u      
   
  (10) 

 
 

 
1 1 1  3 3 0

0 2 , ,g

m u

  

   

1   x y
 (11) 

So far, all examples have been for cases in which 
m = n, but what happens if n < m? For instance, 

= [ 1 0 0 ], = [ 1 0 0 1 ], and x y  = 0. 
First, the m – n most significant bits of y are 

truncated, leaving = [ 1 0 0 ], and = [ 0 0 1 ], which 
can be operated through  in the usual manner: 

x y

    ,  21  0 x y  (12) 

    21  0 mod 2  01  0  (13) 

Published by Atlantis Press 
      Copyright: the authors 
                    684



I. López-Yáñez et al. 
 

         01 0 0,0 , 1,1 , 0,0

0 1 0 1

u     
   
   (14) 

But, since it is m which is considered in the 
difference and not n, the extra bits which were truncated 
from y are taken into account here: 

 

 
 

 

 010 4 1 3

3 0  01 0 

, , 0g

m u

m u



  

 

   

    

 x y

 (15) 

The main idea of the generalized gamma operator is 
to indicate (result equal to 1) that two binary vectors are 
similar, allowing up to  bits to be different and still 
consider those vectors similar. If more than  bits are 
different, the vectors are said to be not similar (result 
equal to 0). Thus, if  = 0 both vectors must be equal for 

g  to output a 1. 

3.2. The Gamma classifier algorithm version 1 

Let ; , , ,k m n p   1,2, , p  x  

p

j

 be the learning 
(fundamental) pattern set with cardinality p, where 

, and let  be an n-dimensional real-
valued pattern to be classified. It is assumed that the 
fundamental set is partitioned into m different, mutually 
exclusive classes, each class having a cardinality ki, 

, and thus . In order to classify y, 
these steps are followed: 

n x 

1,2, ,i m





ny 

ik 

 
(i) Code the fundamental set with the modified 

Johnson-Möbius code, obtaining a value em for each 
component. This em value is calculated as defined 
in the following equation: 

  (16)  
1

p
i

m
i

e j x


 

where  represents the usual maximum operator. 
That is, em(j) is the maximum value across all 
fundamental patterns, considering only their j-th 
component. 

(ii) Compute the stop parameter, as expressed below: 

  (17)  
1

n

m
j

e j


 

where  represents the usual minimum operator. 
(iii) Code y with the modified Johnson-Möbius code, 

using the same parameters used with the 
fundamental set (step i). If any yj is greater than the 

corresponding em(j), the g operator will use such yj 
instead of m (according to Eq. 6). 

(iv) Transform the index of all fundamental patterns 
into two indices, one for the class they belong to, 
and another for their position in the class (i.e. x  
which belongs to class i becomes ix ). 

(v) Initialize   to 0. 
(vi) Do  , ,i

g j j
 x y  for each component of the 

fundamental patterns in each class, following Eq. 6. 
(vii) Compute a weighted sum ci for each class, 

according to this equation: 

 
 

1 1

, ,
ik n

i
g j j

j
i

i

c
k





 
 
 x y

 (18) 

(viii) If there is more than one maximum among the 
different ci, increment   by 1 and repeat steps vi 
and vii until there is a unique maximum, or the stop 
condition    is fulfilled. 

(ix) If there is a unique maximum, assign y to the class 
corresponding to such maximum: 

 
1

 such that 
m

y j i
i

C C c c


j   (19) 

(x) Otherwise, assign y  to the class of the first 
maximum. 

 
The first five steps in the former algorithm can be 

seen as the learning phase of the classifier, while steps 
vi to x (including any iteration if present) can be 
considered the recalling or classification phase. 

Thus, the learning phase consists of coding all 
patterns (from both the fundamental and test sets) with 
the modified Johnson-Möbius code, using the same 
parameters. Also, the index of the fundamental patterns 
is converted into two indices, in order to identify the 
class to which each fundamental pattern belongs with 
the first of these indices. Finally, the stop parameter  is 
computed and  is initialized to 0. 

Meanwhile, the classification phase consists of 
computing  , ,i

g j j
 x y  between each fundamental 

pattern and the test pattern, for each component. Then, a 
weighted addition is performed in order to sum all 
results corresponding to the same class. The weight part 
corresponds to the division of the sum by the cardinality 
of the class, thus normalizing unbalanced classes. 

If there is a unique maximum among the weighted 
additions for all classes, that class is assigned to the test 
pattern. In case of non-unique maximums,  is 
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incremented and the algorithm is repeated from step vi, 
as long as  is less than the stop parameter . If the stop 
condition    is true, the class assigned to the test 
pattern is any of those corresponding to the non-unique 
maximums (e.g. the first class which has a maximum 
weighted addition). 

As an example, let us consider the following 
fundamental patterns: 

  1 2 3 4
2 1 6

, , ,
8 9 3

       
          
       
       

x x x x
7

4






grouped in two classes: C1 = {x1, x2} and C2 = {x3, x4}. 
Then, the patterns to be classified are: 

  1 2
6 3

,
2 9

   
    
   
   

y y

As can be seen, the dimensions of all patterns is 
n = 2, and there are 2 classes, both with the same 
cardinality k1 = 2 and k2 = 2. Now the steps in the 
algorithm are followed. 
 
(i) Code the fundamental set with the modified 

Johnson-Möbius code, obtaining a value em for each 
component: 

  (20) 

1 2

3 4

0000011 0000001
, ,

011111111 111111111

0111111 1111111
,

000000111 000001111

  
   
  
  
   
    
   
   

x x

x x

Since the maximum value among the first 
components of all fundamental patterns is 7, then 
em(1) = 7, and the maximum value among the 
second components is em(2) = 9. Thus, the binary 
vectors representing the first components are 7 bits 
long, while those representing the second 
component are 9 bits long. 

(ii) Compute the stop parameter according to Eq. 17: 

 
     

 

2

1 1

1 , 2

7,9 7

n

m m m
j j

e j e e
 

    

 

 


 (21) 

(iii) Code y with the modified Johnson-Möbius code, 
using the same parameters used with the 
fundamental set (step i). 

  (22) 1 2
0111111 0000111

,
000000011 111111111

  
   
  
  

y y





2

,

Again, the binary vectors representing the first 
components are 7 bits long, while those 
representing the second component are 9 bits long. 

(iv) Transform the index of all fundamental patterns 
into two indices, one for the class they belong to, 
and another for their position in the class. 

  (23) 
1 11 2 12

3 21 4 2

,

,

 

 

x x x x

x x x x

Given that C1 = {x1, x2} and C2 = {x3, x4}, we know 
that both x1 and x2 belong to class C1, so the first 
index for both patterns becomes 1; the second index 
is used to differentiate between patterns assigned to 
the same class, thus x1 becomes x11, and x2 is now 
x12. Something similar happens to x3 and x4, but 
with the first index being 2 since they belong to 
class C2: x

3 becomes x21, and x4 is now x22. 
(v) Initialize   to 0. 

 0   (24) 

(vi) Do  , ,i
g j j

 x y  for each component of the 
fundamental patterns in each class, following Eq. 6. 
Thus, for y1 we have: 

 

   
   
   
   

11 1 11 1
1 1 2 2

12 1 12 1
1 1 2 2

21 1 21 1
1 1 2 2

22 1 22 1
1 1 2 2

, ,0 0, , ,0 0

, ,0 0, , ,0 0

, ,0 1, , ,0 0

, ,0 0, , ,0 0

g g

g g

g g

g g

 

 

 

 

 

 

 

 

x y x y

x y x y

x y x y

x y x y

 (25) 

Since   = 0, for the g to give a result of 1 it is 
necessary that both vectors xj

i and yj
1 are equal. 

But only one fundamental pattern has its first 
component equal to that of y1: 
x1

21 = [0111111] = y1
1, while no fundamental 

pattern has a second component equal to that of the 
test pattern. Given that this is the only case for 
which a component of a fundamental pattern is 
equal to the same component of the test pattern, it is 
also the only instance in which g outputs 1. 
Now, for y2 we have: 

 

   
   
   
   

11 2 11 2
1 1 2 2

12 2 12 2
1 1 2 2

21 2 21 2
1 1 2 2

22 2 22 2
1 1 2 2

, ,0 0, , ,0 0

, ,0 0, , ,0 1

, ,0 0, , ,0 0

, ,0 0, , ,0 0

g g

g g

g g

g g

 

 

 

 

 

 

 

 

x y x y

x y x y

x y x y

x y x y

 (26) 
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Again   = 0, thus forcing both vectors xj
i and yj

2 
to be equal in order to obtain a 1. Similarly to what 
happened in the case of y1, there is but one instance 
of such occurrence: x2

12 = [111111111] = y2
2. 

(vii) Compute a weighted sum ci for each class, 
according to Eq. 18. So, for y1: 

 

 

 

   

 
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1 1
1
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j
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k
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


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
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

 

 







   



  







x y

x y

 (27) 

Here we add together the results obtained on all 
components of all fundamental patterns belonging 
to class C1. Since all gave 0 (i.e. none of these were 
similar to the corresponding component of the test 
pattern given the value of  in effect), the result of 
the weighted addition for class C1 is c1 = 0. 
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x y
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 (28) 

In this case, there was one instance similar to the 
corresponding component of the test pattern (equal, 
since  = 0 during this run). Thus the weighted 
addition for class C2 is c2 = 0.5, given that the sum 
of results is divided by the cardinality of the class, 
k2 = 2. 
And for y2: 
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
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

x y

 (29) 

There was one result of g equal to 1, which 
coupled with the cardinality of class C2 being 2 
makes c1 = 0.5. 

 

 

   

 

2 2
2 2

1 1
2

2

1

, ,0

2

0 0 , 0 0

2
0 0 0

0
2 2

g j j
jc








 





   



  





x y

 (30) 

No similarities were found between the 
fundamental patterns of class C2 and the test pattern 
y2 (for  = 0), thus c2 = 0. 

(viii) If there is more than one maximum among the 
different ci, increment   by 1 and repeat steps vi 
and vii until there is a unique maximum, or the stop 
condition    is fulfilled. 
There is a unique maximum (for each test pattern), 
so we go directly to step ix. 

(ix) If there is a unique maximum, assign y to the class 
corresponding to such maximum. For y1: 

  1

2

2 2
1

 since 0,0.5 0.5iy
i

C C c c


      (31) 

while for y2: 

  2

2

1 1
1

 since 0.5,0 0.5iy
i

C C c c


      (32) 

(x) Otherwise, assign y  to the class of the first 
maximum. 
This is unnecessary since both test patterns have 
already been assigned a class. 

 
We have seen that both patterns were assigned a 

class by following the algorithm of the Gamma 
classifier, but does this classification make sense? On 
one hand, y1 was assigned to class C2, but notice that 
both x3 and x4 have relatively large values for the first 
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components and smaller values for the second 
component; y1 behaves like this, and even has a value of 
6 in the first component, equal to that of x3. Thus, it 
makes sense to assign y1 to class C2. 

On the other hand, x1 and x2 have comparatively 
lower values for the first components and larger ones 
for their second components. In that sense, y2 also has a 
smaller value for the first component and a larger one 
for the second component, being even equal to the 
second component of x2. Then, the fact that this test 
pattern is assigned the same class of x1 and x2, which is 
C1, makes a lot of sense. 

 
The Gamma classifier is inspired on the Alpha-Beta 

associative memories, taking the alpha and beta 
operators as basis for the gamma operator. As such, the 
Gamma classifier is a member of the Associative 
Approach to Pattern Recognition, in which the 
algorithms and models use concepts and techniques 
derived from associative memories in order to recognize 
and classify patterns. As can be seen, this classifier is 
relatively simple, requiring simple operations: its 
complexity is polynomial. Also, notice that while being 
iterative, the classifier will reach a solution in finite 
time: at best in one iteration, at worst in the same 
amount of iterations as the stop parameter indicates (see 
Eq. 17). 

Although the initial Gamma classifier is not old, it 
has already been applied to several different problems: 
classification of the Iris Plant database, localization of 
mobile stations, software development effort estimation 
of small programs, and environmental data prediction, 
obtaining some promising preliminary results. In these 
problems, some quite different from each other —and 
even some for which the basic premises of the classifier 
do not hold— the Gamma classifier version 1 has 
shown competitive experimental results. 

In this sense, the current work presents a relevant 
contribution, since a pattern classifier (in this case the 
Gamma classifier) was successfully applied to the task 
of predicting a future value, which is not the kind of 
task envisioned while designing and developing the 
Gamma model. Thus, the problem of pollutant 
forecasting has been tackled by using this classifier. 

4. Experimental Design 

In this Sec., the structure of the experiments is presented 
and discussed. The main goal of these experiments is 

the prediction of air pollution levels time series, built 
from data included in the RAMA database of SIMAT. 
The pollutant concentration forecasting implied by the 
former goal is done by applying the Gamma classifier, 
coupled with a coding technique originally introduced 
by the authors, which is presented later. 

Some relevant considerations are taken into account: 
for simplicity, only a single time series will be 
considered. Also, the experimentation is done off-line: 
data are taken from a known time series, but using only 
some non-contiguous segments. If results are 
auspicious, the method will be extended in the future to 
include more data, and/or to allow for its application to 
live data, as it is being sampled. 

In order to test the proposed method, several 
experimental runs were made, in two generations. For 
each experiment of both generations, a set of patterns 
was built from an already known time series and 
presented to the corresponding version of the Gamma 
classifier in order to train it. Then, a different set of 
patterns was constructed with a time series taken from 
future dates to those of the set mentioned above, 
simulating the situation where the first (fundamental) 
set is built from historical data while the second (test) 
set is made up by current data. Thus, the Gamma 
classifier was required to predict the next value, given a 
small amount of current data. 

The 1G of experiments (1 to 12), which is further 
discussed in Sec. 5, made use of the Gamma classifier 
version 1. These experiments and their results were 
analyzed in order to refine that method, which in its 
improved state (along with the Gamma classifier 
version 2) was used for the 2G of experiments (13 to 
28), which are presented in Sec. 7. 

In all instances, the samples measured at a specific 
station of the RAMA subsystem of SIMAT were used. 
The fundamental set was made up by building patterns 
from the time series of a whole year, while the test set 
was built with patterns made up by the time series of 
one month of a subsequent year. Then, the Gamma 
classifier —version 1 on the 1G, version 2 on the 2G— 
was trained on the fundamental set, and later operated 
with the test set. For each item of one experimental run, 
a pattern from the test set was presented to the classifier, 
asking it what the next sample value would be. 

The coding technique which allows the building of 
patterns from a time series is proposed in the following 
subsection. Then, the measures of performance are 
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presented. Table 3 (in the following Sec.) presents the 
experiments done for both generations. 

It is noteworthy that, in order to reproduce these 
experiments with data taken from different periods 
(whether what changes is the fundamental set, the test 
set, or both), it is necessary to build new pattern sets 
according to the pattern coding technique presented 
before, and to train and operate the model with this new 
sets. 

4.1. Pattern coding 

Each pattern is made up by n successive samples, 
concatenated each after the other. As the class for such 
pattern, the n+1-th sample is used (see Fig. 2). Thus, 
patterns are built from the samples as mentioned above, 
and then these patterns are grouped together into the 
fundamental and the testing sets for each experiment. In 
this manner, this problem of data prediction is presented 
as a classification problem, a task for which the Gamma 
classifier has shown to be quite apt, since its inception 
with version 1. 

Fig. 2.  How patterns are built from the samples, when n = 10. 

However, in order to avoid potential problems 
regarding nonstationarity, the differences between 
consecutive samples were used.1–3 Also, these 
differences are taken into account once all samples have 
been scaled appropriately, following steps 1 and 2 of the 
modified Johnson-Möbius code. This process is 
illustrated in Fig. 2. 

For the experiments presented in this work, n was 
chosen to be equal to 10 (n = 10) since this 
configuration has given good results in preliminary 
tests. 

As can be seen in Fig. 2, the i-th pattern is built by 
making each value of the series into one component of 
vector xi, in order, from the i-th value to the i + (n – 1)-
th value. The class corresponding to xi, which is Ci, is 
the value following the last component of xi: Ci is equal 
to the i + n-th value. The i + 1-th pattern is built by 
shifting the former arrangement, one value ahead. Thus, 
xi + 1 has as initial component the i + 1-th value and as 
final component the i + n-th value, while its class Ci + 1 
is equal to the i + n + 1-th value. 

4.2. Performance measures 

Three quantitative measures of the performances shown 
by the Gamma classifier on this application are used. On 
one side we have the Rooted Mean Square Error 
(RMSE), which is a widely used measure of 
performance in data forecasting4,9,11–15 and is calculated 
as shown in Eq. 33. On the other side there is the bias, 
which can be computed by following Eq. 34 and is used 
to describe how much the system is underestimating or 
overestimating the results. Finally, we use normalized 
fit (NFit, see Eq. 35) in order to compare the results 
shown by different pollutants. For all three equations, Pi 
represents the i-th predicted (future or unknown) value, 
while Oi is the i-th original (observed, actual, or known) 
value, and mean(Oi) indicates the mean of all original 
values. 

  2

1

1 n

i i
i

RMSE P O
n 

   (33) 

 
1
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i i
i
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n 

    (34) 
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2

2

i i
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O mean O





 (35) 

Generally speaking, small values of RMSE are 
desirable since they indicate a good prediction. On the 
other hand, bias is a secondary indicator of performance 
and gives more information about potential lines of 
improvement for the method, or potential exceptions in 
the data treated. Usually, small values of bias are also 
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preferred over larger values. Regarding NFit, a lower 
value also indicates a better performance. 

Another difference between these measures of 
comparison between forecasting methods is that RMSE 
and NFit give only positive values, while bias can give 
both positive and negative results (overestimation and 
underestimation, respectively). If the bias for a method 
is consistently positive or consistently negative, this can 
be an indicator of a lower or upper bound to the 
expected results. 

On one hand, the magnitude of results shown on 
RMSE and bias by different time series will depend on 
the magnitude of variation among the values on 
individual data points for each time series. For example, 
if one time series has values with meaningful decimals 
up to millimeters (e.g. 2.3, 2.6, 3.1… in cm) while 
another has values which vary by meters (say 56, 84, 
79… in m), then both RMSE and bias will have greater 
values for the latter time series than for the former one. 
Thus, these performance measures are not particularly 
good to compare results on time series used for different 
variables. 

On the other hand, NFit considers the squared error 
(similarly to RMSE), but normalizes it with respect to 
the squared difference between the actual value and the 
mean of the actual values. This has the effect of 
penalizing errors on data points close to the mean of the 
original values, assuming that such values should be 
easier to predict since they are more similar to what can 
be achieved by simply using the average of the original 
values as the predictor. Since the focus of this measure 
of performance is on how different the value to be 
predicted is regarding the mean of the actual values, the 
different magnitudes of data points from different time 
series has a lesser contribution to the difference in the 
measure. Thus, the NFit is a better mean of performance 
comparison between results of different variables. 

5. First Generation of Experiments 

For the 1G of experiments, the structure and 
assumptions mentioned in the former Sec. are used 
(including the coding technique), coupled with the 
Gamma classifier version 1. 

First, the experiments run are described. Then, the 
results obtained are presented and discussed, and later 
the performance shown by the proposed method on 
those experiments is compared with that exhibited by 
other methods, as seen in current literature. 

5.1. First generation: Experiments done 

Table 3 summarizes the experiments done, in particular 
regarding the pollutant involved, the monitoring station 
from which data were taken, as well as the time periods 
from whose data the fundamental and test patterns were 
built. 

Table 3.  Configurations of experiments; Gen. means 
“Generation” and Fund. means “Fundamental”. 

    Data Set Period 
Gen. Experiment Pollutant Station Fund. Test 

1 CO IMP 2000 March 2001 
2 CO IMP 2006 February 2007
3 CO IMP 2006 May 2007 
4 O3 CES 2006 February 2007
5 O3 CES 2006 May 2007 
6 SO2 TLI 2006 February 2007
7 SO2 TLI 2006 May 2007 
8 SO2 TAC 2001 February 2002
9 NOx TAC 2002 June 2003 

10 NO TLI 2009 May 2010 
11 NO2 TLI 2009 May 2010 

1 

12 NOx TLI 2009 May 2010 
13 CO EAC 2010 January 2011 
14 CO EAC 2010 February 2011
15 CO XAL 2010 January 2011 
16 CO XAL 2010 February 2011
17 O3 EAC 2010 January 2011 
18 O3 EAC 2010 February 2011
19 O3 COY 2010 January 2011 
20 O3 COY 2010 February 2011
21 SO2 EAC 2010 January 2011 
22 SO2 EAC 2010 February 2011
23 SO2 TLI 2010 January 2011 
24 SO2 TLI 2010 February 2011
25 NOx EAC 2010 January 2011 
26 NOx EAC 2010 February 2011
27 NOx IZT 2010 January 2011 

2 

28 NOx IZT 2010 February 2011

 
Thus, experiment 1 (for instance) took data from the 

Instituto Mexicano del Petróleo (IMP) station, building 
the patterns which make up the fundamental set from 
the samples taken during the whole 2000 year, and 
using the samples taken during March 2001 to build the 
patterns which constitute the test set. Then, for 
experiment 1, the fundamental set is formed by 8750 
patterns associated to their corresponding classes, while 
the test set includes 734 associations. 

Throughout all the experiments (both generations), 
patterns were built using data taken from eight different 
stations: Instituto Mexicano del Petróleo (IMP) for 
experiments 1–3; Cerro de la Estrella (CES) for 
experiments 4 and 5; Tultitlán (TLI) for experiments 6, 
7, 10–12, 23, and 24; Tacuba (TAC) for experiments 8 
and 9, ENEP Acatlán (EAC) for experiments 13, 14, 17, 
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18, 21, 22, 25, and 26; Xalostoc (XAL) for experiments 
15 and 16; Coyoacán (COY) for experiments 19 and 20; 
and Iztacalco (IZT) for experiments 27 and 28. 

In the experiments of the 1G, the fundamental and 
test sets were chosen to be taken from non-consecutive 
segments of the same time series. This was done mainly 
to test the robustness of the method, making sure it does 
not require data corresponding to the last samples taken 
in order to give a good prediction of the next sample. Of 
course, the underlying premise of this choice is that the 
conditions associated to the data from which the 
classifier learns, are still in effect on the data which is to 
be used for prediction. If this is not the case, it should be 
expected that the prediction error would increase. 

5.2. First generation: Results and discussion 

Table 4 presents the performance exhibited by the 
Gamma classifier version 1 during the 12 experiments 
run during the first generation, while Figs. 3 and 4 show 
the results of experiments 3 (CO) and 12 (NOx), 
respectively. 

As can be seen, the experiments done with data of 
the same criteria pollutant show similar values for 
RMSE, while such results are in different ranges for 
different pollutants. For instance: the mean RMSE for 
the three experiments done on CO (experiments 1, 2, 
and 3) is 0.705645 ppm, while the mean RMSE for the 
SO2 experiments (7 and 8) is 0.010600 ppm. 

Table 4.  Experimental results of the first generation (ppm). 

Experiment Pollutant Bias RMSE NFit 
1 CO -0.028513 0.779154 32.809140 
2 CO 0.012042 0.726013 777.523037 
3 CO 0.062183 0.611769 78.601059 
4 O3 0.000918 0.012302 80.927758 
5 O3 0.000417 0.014443 5.895891 
6 SO2 0.000676 0.012096 54.221637 
7 SO2 0.000795 0.010487 17.041456 
8 SO2 0.000408 0.009218 61.145162 
9 NOx 0.001543 0.026103 75.953068 

10 NO 0.000001 0.000037 0.000014 
11 NO2 0 0 0.000000 
12 NOx 0 0 0.000000 

 
This behavior is due to the concentration values 

commonly shown by each pollutant: CO usually shows 
larger concentration values than SO2, which in turn 
reflect on larger values for errors. Thus, an RMSE of 
0.611769 ppm may be too large for a good prediction of 
NO, while it may indicate a good prediction of CO, for 
instance. 

More specifically, the best performances in RMSE 
for each pollutant are the following: 0.611769 ppm in 
CO at experiment 3, 0.012302 ppm of O3 in experiment 
4, 0.009218 ppm for SO2 by experiment 8, 0.000037 
ppm in NO at experiment 10, while both experiments 11 
and 12 show the best results for their respective 
pollutants, NO2 and NOx, both with 0.0 ppm. 

Regarding NFit, we can see that half the 
experiments show results between 32 ppm and 81 ppm, 
which may be considered to be relatively good results. 

Carbon Monoxide - Experiment 3
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Fig. 3.  Experiment 3 results: predicted vs observed time series
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Yet, the best performance is shown by experiments 7 
(17.041456 ppm), 5 (5.895891 ppm), 10 (0.000014 
ppm), 11, and 12 (both 0 ppm). However, experiment 2 
presents a quite large value for NFit, even though its 
RMSE value is quite similar to those of experiments 1 
and 3. 

What could cause such a large value of NFit for 
experiment 2? Recalling that NFit penalizes errors on 
data points whose values are close to the mean of the 
original data, it is not surprising that even a small error 
gets magnified when done on such a data point. For 
instance, on February 2, 2007 at 2:00 hours, the actual 
concentration of CO was 1.36 ppm, while the predicted 
value was 3.23 ppm. While this is a relatively large 
error (1.87 ppm), it is by no means the largest in the 
month (the maximum error is 3.44 ppm). However, the 
mean of the original values is 1.357201 ppm, which 
makes the denominator on the NFit formula equal to 
0.000007833 ppm; this in turn gives an NFit value for 
that prediction of 446419.005 ppm. 

This large errors on data points whose values are 

close to the mean of the original data are probably due 
to the characteristics of the Gamma classifier version 1, 
which is more sensitive to the presence of local 
extremes (minima or maxima) instead of the difference 
to the mean of actual values.17–18 

Since the data to be predicted on experiment 2 
presents more changes in trend than the test time series 
of experiment 3, it is to be expected that more data 
points with errors will be present than at experiment 3. 
Given that some of this erroneous data points are close 
to the mean of original values, they are greatly 
penalized by NFit. 

 
It is also noteworthy that in experiments 10 to 12 the 

Gamma classifier exhibits a remarkably good 
performance. In experiment 10 (NO), there is only one 
pattern predicted incorrectly: the Gamma classifier 
forecasts a concentration of nitrogen monoxide of 0.006 
ppm, while the registered sample was 0.005 ppm. Given 
that there were 733 associations in the test set, this 
amount of error out of a whole month is almost 

Nitrous Oxides - Experiment 12
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Fig. 4.  Experiment 12 results: predicted vs observed time series 
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negligible, if not altogether insignificant. The results for 
experiments 11 (NO2) and 12 (NOx) are even better: 
there was not even one mistake in the whole month for 
the prediction of both nitrogen dioxide and nitrogen 
oxides. This is quite evident in Fig. 4, where the 
predicted time series is hidden behind that of the 
observed data. 

These results are, of course, rather surprising. The 
ultimate goal of pattern recognition in general,25 and its 
application on time series prediction in particular, is to 
correctly recognize unknown patterns, thus predicting 
future data points with as little error as possible. The 
ideal scenario is, then, to predict the new data points 
with an error of 0. However, considering that the 
proposed method uses only one variable when there are 
more available, and that the phenomenon under study is 
considered to be a rather complex one,11,14 it is quite 
unexpected to obtain a perfect prediction. 

The fact that two experiments exhibit a perfect 
performance (i.e. no error) and that another almost 
reaches this pinnacle, showing only one data point in 
error out of 733 considered in the experiment, is far 
beyond the initial expectations of the authors. Although 
we intend our method to perform competitively, we did 
not expected it to do this well. 

Then, what causes such a good performance? One 
possible explanation is that, at least for those three 
experiments (11, 12, and 10), there is overfitting25 
between the fundamental and test sets. However, since 
the data points in the corresponding time series used to 
make up the patterns belonging to the fundamental and 
test set are taken from different segments of said time 
series, it can be assumed that those data are different. If 
there is actually a problem of overfitting, it is most 
likely due to high similarity between data from both 
segments. 

In the field of Pattern Recognition, such situations 
where the classification model is overfitted to the 
learning data are commonly dealt with using cross 
validation techniques to test different combinations of 
partitioning the available data between the fundamental 
and test sets, in order to obtain a performance with data 
free of this problem.25 However, such recourse is not 
adequate to the present situation, since the actual goal is 
to predict current and future (unknown) data by using 
historical (known) data, thus making the mixing of these 
disjoint sets unnecessary and most likely not advisable. 

Actually, this situation is strongly related to a couple 
of considerations mentioned before. One is that the 
segment of the time series used for learning is non-
contiguous to the segment used for testing, in order to 
avoid as much as possible the problem of overfitting. 
Also, the fact that data learned from 2009 may be used 
to perfectly (or almost perfectly) predict the 
concentration of NO, NO2 and NOx during May 2010, 
indicates that the conditions prevalent during 2009 are 
still in effect during May 2010, at least for these 
contaminants at the Tultitlán station (see tables 3 and 4). 

More importantly, this particular application 
requires that overfitting is not excluded from the 
learning and operation data sets, at least when used with 
live data. The latter is a consequence of the fact that in 
order to predict, we need to use known data, along with 
the latest new data, whether these data sets are highly 
coupled or not. Of course, the results obtained should be 
compared against other experimental results with great 
care. 

Yet, the fundamental reason for this shockingly 
good behavior remains to be fully explored, beyond the 
posed proposition that high similarity between the 
conditions reflected by the data points used for learning 
and testing is the cause. If such fundamental cause or 
conditions are identified, they could be used to greatly 
improve the performance of prediction methods such as 
the one proposed in the current paper. 

However, if an event should arise in the testing data 
set which is particularly different to what has been 
learned, then the prediction results would most likely 
present large errors. An example of such situation could 
be a volcanic explosion whose residues drift into the 
geographic area of interest (which has happened several 
times in recent decades26–27). If such an irregular event 
happens, the predicted results should be considered to 
have little trustworthiness. 

Both kinds of situation have arisen in other 
applications of the Gamma classifier version 1. On one 
hand, when that algorithm was used to classify the 
position of wireless sensors, the experimental results 
showed 3 errors out of 36 associations in one 
experiment, and 4 out of 36 in another, (91.67% and 
88.89% of correct classification, respectively). 
Meanwhile, the well-known k Nearest Neighbor (k-NN) 
classifier25 (with k = 1) offered 14 mistakes, for a 
correct classification of 65%. These results are still in 
the process of being published. 
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On the other hand, the discussion of experiment 7 in 
Ref. 18 analyses the behavior of SO2 during May 2007, 
which presents an exceptionally high concentration on 
May 19 (0.174 ppm when the mean for that month was 
0.007 ppm). This kind of events causes the Gamma 
classifier to offer a prediction with large errors, since 
these exceptional situations are not properly covered in 
the data from which the method learns. 

5.3. First generation: Comparison with other 
methods 

Still, one important question remains: just how good are 
these results when compared to other models? Here 
arises an important problem of this field, given that 
there are no common, public, and standardized 
databases being used by the scientific community 
working on this application. Thus, most researchers use 
the database which is closest or more easily available to 
them, leading to many publications on this field, but 
with no directly comparable results. This problem 
remains open. 

For the database used in this work (the RAMA 
subsystem of SIMAT), there are very few published 
experimental results available (table 5). As can be seen, 
they are greatly surpassed; in particular for the case of 
O3, where the Gamma classifier exhibits a much smaller 
error: it is several orders of magnitude smaller. 

Although no direct comparisons are readily 
available, some indirect comparisons can be made. 
These are presented in table 6, where several recent 
papers are included. 

Notice that the target contaminant is quite variable: 
besides the more common CO, NO2, SO2, and O3, there 
is also benzo(a)pyrene (BaP), which is one particular 
component of PM10.9 Regarding the unit in which each 
contaminant is measured, there are five alternatives 
present: parts per million (ppm), parts per billion (ppb), 
milligrams per cubic meter (g/m3), nanograms per 
cubic meter (ng/m3), and ERPI, which is an acronym for 
“European Regional Pollution Index”.9 On the other 
hand, the methodologies followed by each group of 
researchers are quite different too. 

Table 5.  Comparison of related results (SIMAT 
database, O3) in absolute mean error given for 
pollutant concentration in ppm; exp. means 
“experiment”. 

Algorithm Used Performance 
(Abs. Mean Error) 

Bayesian network10 0.221000 
C4.510 0.176400 

Neural network10 0.160000 
Gamma classifier exp. 4  
(current work & Ref. 18) 

0.000918 

Gamma classifier exp. 5  
(current work & Ref. 18) 

0.000417 

 
Even though the results cannot be directly 

compared, the performance exhibited by the Gamma 
classifier is also competitive, as shown by its RMSE 
values —column titled “Performance RMSE (original 
unit)”— which are quite smaller than those of the other 
methods. 

Again, this comparison cannot be made directly, 
since different data sets, describing different local 

Table 6.  Comparison of related results (diverse databases) in RMSE;  
exp. means “experiment”, N/A means “not available”. 

Algorithm Used Pollutant Considered
(measurement unit) 

Performance 
RMSE (original unit) 

Performance 
RMSE ( g/m3) 

IITLS15 NOx (g/m3) 19.99 19.99 
Neural network13 O3 (g/m3) 15 15 
Neural network12 O3 (ppb) 13.79, 9.43 27.028, 18.483 

Online SVM14 SO2 (g/m3) 12.96, 10.90 12.96, 10.90 
Neural network11 CO, NO2, SO2, and O3 (ERPI) 5.852, 1.365 N/A 

Gamma classifier exp. 3  
(current work & Ref. 18) 

CO (ppm) 0.611769 700.476 

Multivariate linear regression9 BaP (ng/m3) 0.449 0.000449 
Gamma classifier exp. 4  
(current work & Ref. 18) 

O3 (ppm) 0.012302 24.112 

Gamma classifier exp. 8  
(current work & Ref. 18) 

SO2 (ppm) 0.009218 24.151 

Gamma classifier exp. 10  
(current work) 

NO (ppm) 0.000037 0.069560 

Gamma classifier exp. 11  
(current work) 

NO2 (ppm) 0.000000 0.000000 

Gamma classifier exp. 12  NOx (ppm) 0.000000 0.000000 
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phenomena, using different measure units, are 
employed. In particular, a conversion could be tried 
among the different measure units, in order to use a 
unique measure unit. This is done in the column titled 
“Performance RMSE (g/m3)”, in which all but one 
result is converted from its original unit into g/m3, 
according to the definitions published in Refs. 28–32. 
The performance of the ANN model described in Ref. 
11 was not converted, since ERPI presents the value 
corresponding to the pollutant with the highest 
concentration, thus it is not known how to properly 
convert from that unit into g/m3. 

Using the latter values of RMSE to compare results, 
it can be seen that experiments 4 and 8 exhibit good 
performance (considering that only one time series is 
being used), while experiment 3 presents a very large 
error. This is clearly a good starting point to look for 
improvements to the method. The best results are shown 
by experiments 10, 11, and 12. 

6. Gamma Classifier version 2 

The experiments of the 1G were analyzed and used as 
the basis to improve both the classifier and the method 
of applying it to air quality data prediction, as well as to 
develop the necessary theoretical foundation. The 
emergent Gamma classifier version 2 was then tested 
with the 2G of experiments, comprised of experiments 
13 to 28. 

There were two clear observations done on the 
analysis of the experiments of the 1G. The first one is 
that, sometimes, the predicted value for a pollutant 
concentration is a negative number. Given that this 
numerical result represents the concentration of a given 
substance in atmospheric air, such negative value makes 
no sense. The second observation is that the Gamma 
classifier version 1, as presented in Sec. 4, is not 
guaranteed to correctly classify the whole fundamental 
set. This means that for some instances, if a test pattern 
is equal to a fundamental pattern, the classifier will not 
necessarily yield the correct class: for a percentage of 
the fundamental patterns larger than 0, the classifier 
forgets their correct class. 

In the case of the first issue, the answer is quite 
easy: if the predicted value for the pollutant 
concentration is negative, it is obviously erroneous, so it 
needs correcting. The simplest manner in which this 
correction may be done is to assign a value of 0, which 
is the minimum possible value which is still valid. This 

is the first improvement to the method, and is included 
as a post-processing step, once the classifier has given 
its output and it is being converted back into a 
concentration value in ppm (see the steps illustrated in 
Fig. 2, in reverse order). 

The second issue is not so simple to address. On one 
hand, this aspect of Pattern Classification is considered 
to be of little relevance by most classifiers, since they 
are willing to exhibit errors on the fundamental set in 
order to achieve a better generalization, and thus a better 
performance on the test set. In this sense, there is only 
one widely known and commonly used classifier which 
does not misclassify a pattern it has already learnt: the 
k-NN when k = 1. On the other hand, it has been an 
ongoing effort in the community of researchers which 
have developed the Associative Approach to Pattern 
Recognition to ensure that the models and algorithm 
belonging to this approach recognize and classify 
correctly the whole fundamental set. In this regard, the 
Gamma classifier version 1, as originally introduced, 
was the only Associative model unable to correctly 
classify the whole fundamental set in a guaranteed 
manner. 

Operatively, this issue means that some test patterns 
were incorrectly classified, despite the fact that the 
method already knew them, since these test patterns are 
equal to some fundamental pattern. The only way to 
solve this problem is to modify the Gamma classifier, 
improving its theoretical foundation along the way. 

Therefore, a new version of the classifier algorithm 
is developed: version 2. However, before said algorithm 
is presented, some theoretical developments are needed. 

6.1. Preliminaries 

First, let us define more specifically the fundamental 
pattern set to be dealt with by the Gamma classifier, as 
well as its properties. 

Let the fundamental set of the Gamma classifier 
(version 2) be the set of patterns associated to a class, of 
the form   , 1, 2, , p   x y   where x  is a pattern 
and y  is its corresponding class. For such a 
fundamental set, the following three properties hold: 

  , 1, 2, ,  such that i j i j p i j   x x   (36) 

meaning there are no repeated patterns, 

  (37) , 1, 2, ,i j i j i j p  x = x y = y  
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which makes sure no pattern may have associated more 
than one class, and 

  (38) , 1, 2, ,i j i j i j p    y y x x  

that is, different classes have different patterns 
associated to each other. 

Combined, these three properties imply that the 
fundamental set must induce a relation from the set of 
patterns to the set of classes, such that said relation is a 
function. 

Now, we need three lemmas which will later be used 
to prove a theorem related to the classification of 
fundamental patterns. 

 
Lemma 1. When two binary vectors , nAx y  are 
presented to the generalized Gamma operator g , with 
  = 0; if the results is 1, then x is equal to y: 

  (39)  0, , , 1g    x y x y

 
Proof. By the definition of the generalized Gamma 
operator g , 

 
 

 
, , 1

, mod 2

g

m u

 

 

 

    

x y

x y
 (40) 

However, given that   = 0 and m = n since nAy : 

  (41) 
 

 
, , 1

, mod 2 0

g

n u

 



 

    

x y

x y

since : ,m n 

 
 

 
0 , mo

, mod 2

n u

n u









    
    

x y

x y

d 2
 (42) 

this in turn means that: 

  (43)    1, mod 2 11 1
n




 x y 

but since : A A B   , there are three possible 
outcomes for : 

  (44) 

 
 
 

, 0, 0 mod 2

, 1, 1mod 2 1

, 2, 2 mod 2







 



 

x y

x y

x y

0

0



thus: 

 

   
   
  

1

1

, mod 2 11 1

, 11 1

, 1 1,2, ,

n

n

i i i n











 

 

   

x y

x y

x y





 
 (45) 

and given the definition of , only two possible inputs 
give the necessary outcome: 

 
 
 
0,0 1

1,1 1








 (46) 

thus: 

 

   
 

, 1 1,2, ,

1,2, ,

i i

i i

i n

i n

    

   

 

x y

x y

x y



  (47) 

therefore: 

  , ,0 1g   x y x y  (48) 

□ 
 

Lemma 2. When the test pattern presented to the 
Gamma classifier during the classification phase x  is 
equal to a fundamental pattern 


x , associated to class 

ay , this pattern will contribute n to the weighted 
addition of that class ca, for any value of 0  . 

 
Proof. Given the manner in which the weighted 
addition ci —corresponding to the i-th class— is 
computed (according to Eq. 18), the result is the sum of 
all values  , , 1i

g j j
  x x  divided by the cardinality 

of that class, ki. Then, by the definition of the 
generalized Gamma operator g  we have: 

 
 

 
, , 1

, mod 2

i
g j j

i
j jm u






 

 

 

    

x x

x x




 (49) 

On the other hand, it is clear that the most restrictive 
case is for   = 0, since the fact that a pattern fulfills the 
former condition when   = 0 guarantees that it will do 
so for any value   > 0. Also, according to lemma 1: 

  , ,0 1i i
g j j j

   x x x x j
   (50) 

Now, since x x  which in turn belongs to the a-th 
class by being associated to , the index 
transformation of step iv of the algorithm implies: 

ay

  (51) 
 

,

1, 2, ,

ab ab

ab
j j j n

    

   

x x x x x x

x x

 
 
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thus, when computing  for indices i = a 
and ω = b, we need to do , then: 

 , ,0i
g j j

 x x
 , ,0ab

g j j x x


  (52)    , ,0 1 1, 2, ,

ab

ab
g j j j n

 

   

x x

x x



 

Therefore,  contributes with n values of 1 to 
the weighted addition for the a-th class ca. 

abx x

□ 
 

Lemma 3. When the test pattern presented to the 
Gamma classifier during the classification phase  is 
equal to a fundamental pattern 

x
x , associated to class 

, all other fundamental patterns ay  x x  will 
contribute with an amount d < n to the weighted 
addition of their corresponding class c , for a value of 
  = 0. 

 
Proof. Given the manner in which the weighted 
addition ci —corresponding to the i-th class— is 
computed (according to Eq. 18), the result is the sum of 
all values  divided by the cardinality 
of that class, ki. Then, by the definition of the 
generalized Gamma operator 

 , , 1i
g j j

  x x

g  we have: 

 
 

 
, , 1

, mod 2

i
g j j

i
j jm u






 

 

 

    

x x

x x




 (53) 

Also, according to lemma 1: 

  , ,0 1i i
g j j j

   x x x x j
   (54) 

Now, since x x  which in turn belongs to the a-th 
class by being associated to , the index 
transformation of step iv of the algorithm implies: 

ay

  (55) , ab ab    x x x x x x 

On the other hand, since  x x : 

  1,2, , jj n j
     x x x x  


 (56) 

thus, when computing  for indices  , ,0i
g j j

 x x i a  
and b   (i.e. for any fundamental pattern  x x ), 
we have: 

  
 

1, 2, ,  such that

, ,0 0i
g j j

j n

  

  

   

  

  

x x x x

x x x x






 (57) 

Now, since the amount of components of the 
fundamental pattern j j

 x x  different to the test pattern 

is unknown (given that it depends on the actual 
fundamental pattern x ), what is known is that it may 
be as little as 1 and as large as n; then, the amount d that 

x
c

 contributes to its corresponding weighted addition 

  is: 

 

 
 

1, ,  such that

0 0

0

i
g j

j n
 

 



 

   

   

x x

x x

2,

, ,j

d n

x x



   (58) 

Therefore,  x x  contributes with d < n values of 
1 to the weighted addition for the -th class c . 

□ 
 
With the former definition of the fundamental set for 

the Gamma classifier version 2 and the latter three 
lemmas, we are ready to present and prove a theorem 
related to the classification of fundamental sets. 

 
Theorem 1. When the test pattern presented to the 
Gamma classifier during the classification phase x  is 
equal to a fundamental pattern 


x , if each fundamental 

pattern x  belongs to a class by itself (i.e. each class 
y  is associated to only one pattern, x ) then the 

whole fundamental set will be correctly classified. 
 

Proof. Let us consider a test pattern  equal to an 
arbitrarily chosen fundamental pattern 

x
x x . Now, 

according to lemma 2, x x  will contribute n to its 
corresponding weighted addition c , regardless of 
which value of 0   is being computed on. 

Also, according to lemma 3, all other fundamental 
patterns  x x  will contribute with d < n to their 
corresponding weighted addition c . 

On the other hand, since each class contains only 
one pattern, ki = 1 and the weighted addition for the i-th 
class is computed as: 

 

 

 

1 1

1

ik

j

n

j
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, ,

1

, ,

n
i
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i
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
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






 (59) 

Then, when computing the weighted additions 
during the first iteration of the algorithm (with 0  ) 
we have: 

  , ,g j jc 
  

1

n

j

 x x n  (60) 
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and 

  
1

, ,
n

g j j
j

c d n c c  


    x x   (61) 

thus, there will be a unique maximum of such weighted 
additions: 

  (62) ic c n 

Therefore, x x  will be assigned class c  on the 
first iteration of the algorithm: 

 ic c 
   y y  (63) 

Given that x x  was chosen arbitrarily, the latter 
result holds for all fundamental patterns. Therefore, the 
whole fundamental set is correctly classified. 

□ 
 
Taking into account these developments, the 

Gamma classifier algorithm version 2 is introduced 
below. 

 

6.2. The Gamma classifier algorithm version 2 

Let   , 1, 2, , p   x y    be the fundamental pattern 
set (according to the definition presented in the previous 
subsection) with cardinality p; when a test pattern  
(which is an n-dimensional real valued vector 

x
nx  , 

with ) is presented to the Gamma classifier 
version 2, these steps are followed: 

n 

 
(i) Code the fundamental set with the modified 

Johnson-Möbius code, obtaining a value em for each 
component. This em value is calculated as defined 
by Eq. 16. 

(ii) Compute the stop parameter, as expressed in Eq. 
17. 

(iii) Code x  with the modified Johnson-Möbius code, 
using the same parameters used with the 
fundamental set (step i). If any jx  is greater than 
the corresponding em(j), the g operator will use 
such jx  instead of m. 

(iv) Transform the index of all fundamental patterns 
into two indices, one for the class they belong to, 
and another for their position in the class (i.e. x  
which belongs to class i becomes ix ). 

(v) Initialize   to 0. 

(vi) If 0  , test whether x  is a fundamental pattern, 
by doing  , ,0g j j

  for  = 1,2,…,p; and then 
computing the initial weighted addition 0

ic  for each 
fundamental pattern, as follows: 

 x x

  (64)  0

1

, ,0  for 1, 2, ,
n

g j j
j

c p
  



  x x 

If there is a unique maximum, whose value equals n, 
assign the class associated to such maximum to the 
test pattern. 

 0 0

1

 such that 
p

i
i

c c n




  y y  (65) 

(vii) Do  , ,i
g j j

 x y  for each component of the 
fundamental patterns in each class, following Eq. 6. 

(viii) Compute a weighted sum ci for each class, 
according to Eq. 18. 

(ix) If there is more than one maximum among the 
different ci, increment   by 1 and repeat steps vii 
and viii until there is a unique maximum, or the 
stop condition    is fulfilled. 

(x) If there is a unique maximum, assign x  to the class 
corresponding to such maximum: 

  such that j
ic c j y y  (66) 

(xi) Otherwise, assign x  to the class of the first 
maximum. 

 
This new initial step for the classification phase 

ensures that  will be correctly classified at the first 
iteration, if it is equal to a fundamental pattern 

x
x x . 

In order to illustrate the operation of the Gamma 
classifier version 2, let us consider an example where 
the version 1 would fail (i.e. be unable to correctly 
classify the whole fundamental set), while the version 2 
exhibits a correct classification. 

Let the fundamental set be made up by the following 
patterns: 

  

1 2 3

4 5 6

12 15 16
, ,

3 6

6 3 8
, ,

6 6 6

     
       
     
     
     
       
     
     

x x x

x x x

,
4

grouped into two classes: x1, x2, and x3 are associated to 
ya (C1 for version 1), while x4, x5, and x6 are associated 
to yb (C2 for version 1). Now, in order to classify y = x2 
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according to the Gamma classifier version 1, we do the 
following: 
 
(i) Code the fundamental set with the modified 

Johnson-Möbius code, obtaining a value em for each 
component: 

1 2

3 4

5 6

0000111111111111 0111111111111111
, ,

000111 111111

1111111111111111 0000000000111111
,

001111 111111

0000000000000111 0000000011111111
,

111111 111111

   
    
   
   
  
   
  
  
  
   
  
  

x x

x x

x x 


,







The maximum values for each component are 16 
and 6, respectively, thus em(1) = 16 and em(2) = 6. 
Then, the binary vectors representing the first 
components are 16 bits long, while those of the 
second component are 6 bits long. 

(ii) Compute the stop parameter according to Eq. 17: 

  (67)    
2

1 1

16,6 6
n

m
j j

e j
 

   

3

,

(iii) Code the test pattern y with the modified Johnson-
Möbius code, using the same parameters used with 
the fundamental set. 
Since the test pattern is also a fundamental pattern, 
this has already been done: 

  (68) 2
0111111111111111

111111

 
  
 
 

y x

(iv) Transform the index of all fundamental patterns 
into two indices, one for the class they belong to, 
and another for their position in the class. 

  (69) 
1 11 2 12 3 13

4 21 5 22 6 2

, ,

, ,

  

  

x x x x x x

x x x x x x

(v) Initialize   to 0. 

 0   (70) 

(vi) Do , ,i
g j j

 x y  for each component of the 
fundamental patterns in each class, following Eq. 6: 

 

   
   
   
   
   
   

11 11
1 1 2 2

12 12
1 1 2 2

13 13
1 1 2 2

21 1 21
1 1 2 2

22 22
1 1 2 2

23 23
1 1 2 2

, ,0 0, , ,0 0

, ,0 1, , ,0 1

, ,0 0, , ,0 0

, ,0 0, , ,0 1

, ,0 0, , ,0 1

, ,0 0, , ,0 1

g g

g g

g g

g g

g g

g g

 

 

 

 

 

 

 

 

 

 

 

 

x y x y

x y x y

x y x y

x y x y

x y x y

x y x y

 (71) 

Since   = 0, for the g to give a result of 1 it is 
necessary that both vectors xj

i and yj are equal. 
Given that x2 = y, g outputs 1 for both components 
of x2, but it also outputs 1 for the second 
component of x4, x5, and x6, since the second 
components of those fundamental patterns are equal 
to that of the test pattern. 

(vii) Compute a weighted sum ci for each class, 
according to Eq. 18: 

 

 

     

 

3 2
1

1 1
1

3

1

, ,0

3

0 0 , 1 1 , 0 0

3
0 2 0 2

0.666
3 3

g j j
jc








 





    


 
  





x y

 (72) 

 

 

     

 

3 2
2

1 1
2

3

1

, ,0

3

0 1 , 0 1 , 0 1

3
1 1 1 3

1
3 3

g j j
jc








 





    


 
  





x y

 (73) 

(viii) If there is more than one maximum among the 
different ci, increment   by 1 and repeat steps vi 
and vii until there is a unique maximum, or the stop 
condition    is fulfilled. 
There is a unique maximum, so we go directly to 
step ix. 

(ix) If there is a unique maximum, assign y to the class 
corresponding to such maximum: 

  
2

2 2
1

 since 0.666,1 1y i
i

C C c c


      (74) 

(x) Otherwise, assign y  to the class of the first 
maximum. 
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This is unnecessary since the test pattern has 
already been assigned a class. 

 
Notice, however, that the result is incorrect: we 

already know that y = x2, thus the test pattern should 
receive the same class that x2, which is C1; yet, y = x2 
was classified as belonging to C2. Let us now try using 
the second version to classify . 2x x

 
(i) Code the fundamental set with the modified 

Johnson-Möbius code, obtaining a value em for each 
component. This em value is calculated as defined 
by Eq. 16. 

1 2

3 4

5 6

0000111111111111 0111111111111111
, ,

000111 111111

1111111111111111 0000000000111111
, ,

001111 111111

0000000000000111 0000000011111111
,

111111 111111

  
   
  
  
  
   
  
  
   
   
  
  

x x

x x

x x 












This is equal to what was done on version 1, thus 
em(1) = 16 and em(2) = 6. 

(ii) Compute the stop parameter (Eq. 17): 

  (75)    
2

1 1

16,6 6
n

m
j j

e j
 

   

(iii) Code x  with the modified Johnson-Möbius code, 
using the same parameters as in step i. If any jx  is 
greater than the corresponding em(j), the g operator 
will use such jx  instead of m. 
Since the test pattern is also a fundamental pattern, 
this has already been done (like in version 1): 

  (76) 2
0111111111111111

111111

 
  
 
 

x x

(iv) Transform the index of all fundamental patterns 
into two indices, one for the class they belong to, 
and another for their position in the class. 

  (77) 
1 11 2 12 3 13

4 21 5 22 6 2

, ,

, ,

  

  

x x x x x x

x x x x x x 3

,

(v) Initialize   to 0. 

 0   (78) 

(vi) If 0  , test whether x  is a fundamental pattern, 
by doing  , ,0g j j

  for  = 1,2,…,p; and then 
computing the initial weighted addition 0

ic  for each 

fundamental pattern, as indicated by Eq. 64. If there 
is a unique maximum, whose value equals n, assign 
the class associated to such maximum to the test 
pattern: 

 x x

 

   
   
   
   
   
   

1 1
1 1 1 2

2 2
1 1 2 2

3 3
1 1 2 2

4 1 4
1 1 2 2

5 5
1 1 2 2

6 6
1 1 2 2

, ,0 0, , ,0 0

, ,0 1, , ,0 1

, ,0 0, , ,0 0

, ,0 0, , ,0 1

, ,0 0, , ,0 1

, ,0 0, , ,0 1

g g

g g

g g

g g

g g

g g

 

 

 

 

 

 

 

 

 

 

 

 

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

 

 

 

 

 

 

 (79) 

 

 

 

 

 

 

 

2
0 1
1

1

2
0 2
2

1

2
0 3
3

1

2
0 4
4

1

2
0 5
5

1

2
0 6
6

1

, ,0 0 0 0

, ,0 1 1 2

, ,0 0 0 0

, ,0 0 1 1

, ,0 0 1 1

, ,0 0 1 1

g j j
j

g j j
j

g j j
j

g j j
j

g j j
j

g j j
j

c

c

c

c

c

c

























   

   

   

   

   

   













x y

x y

x y

x y

x y

x y

 (80) 

In this step, the weighted additions are computed 
but considering each fundamental pattern on a class 
by itself. As we can see, only  gives a sum of 
2. Since this is the maximum value, it is unique, 
and also equals n, that class is assigned to the test 
pattern: 

2x x

 
6

2 0 0
2

1

=  since 2a
i

i

c c n


   y y y  (81) 

(vii) Do  , ,i
g j j

 x y  for each component of the 
fundamental patterns in each class, following Eq. 6. 
This is unnecessary since the test pattern has 
already been assigned a class. 

(viii) Compute a weighted sum ci for each class, 
according to Eq. 18. 
This is unnecessary since the test pattern has 
already been assigned a class. 

(ix) If there is more than one maximum among the 
different ci, increment   by 1 and repeat steps vii 
and viii until there is a unique maximum, or the 
stop condition    is fulfilled. 
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This is unnecessary since the test pattern has 
already been assigned a class. 

(x) If there is a unique maximum, assign x  to the class 
corresponding to such maximum: 
This is unnecessary since the test pattern has 
already been assigned a class. 

(xi) Otherwise, assign x  to the class of the first 
maximum. 
This is unnecessary since the test pattern has 
already been assigned a class. 

 
As can be seen, the new version of the classification 

algorithm offers an improved performance, classifying 
correctly all known patterns. 

7. Second Generation of Experiments 

Taking into account the improvements introduced with 
the second version of the Gamma classifier, as well as 
the modifications to the method of applying it to the 
current problem explained in Sec. 6, a new set of 
experiments was run. This is the 2G, which also follows 
the experimental design described in Sec. 4. 

In the following subsection, the experiments run are 
described. Then, the results obtained are presented and 
discussed, and later the performance shown is compared 
with that exhibited by other methods. 

7.1. Second generation: Experiments done 

For this new generation of experimental runs, the 
fundamental set was built using data taken from two 
stations for each one of four pollutants, for the year 
2010. On the other hand, the test set was built with data 
taken from one month of another year: one experiment 
instance with January 2011 and another with data from 
February 2011, for each station and each pollutant. The 
details of each experimental run can be seen in Table 3. 
For the classification step, the Gamma classifier version 
2 was used. 

7.2. Second generation: Results and discussion 

The results obtained on the 2G (experiments 13 to 28) 
are shown in Table 7. Again, each pollutant exhibits 
similar performance through most experiments, in 
different ranges for each pollutant. The experiments 
which show better results on each pollutant, for bias, 
are: 16 for CO (–3.0 ppm), 20 for O3 (0.289 ppm), 22 
for SO2 (0.183 ppm), and 28 for NOx (0.843 ppm). 
Regarding RMSE, the best performers are: 13 on CO 

(0.6042 ppm), 19 on O3 (0.0095 ppm), 21 on SO2 
(0.0076 ppm), and 28 on NOx (0.0343 ppm). On the 
other hand, NFit presents the best results for each 
pollutant in the following experiments: 16 for CO 
(8.9029 ppm), 18 for O3 (11.2557 ppm), 24 for SO2 
(10.6560 ppm), and 26 for NOx (27.4858 ppm). The 
former is indicated in table 7 by the results in bold. 

Table 7.  Experimental results of the second generation (ppm). 

Experiment Pollutant Bias RMSE NFit 
13 CO 19.800 0.604214 17.414193 
14 CO -26.100 0.653224 16.960662 
15 CO -15.500 0.870378 18.825927 
16 CO -3.000 0.637459 8.902862 
17 O3 1.233 0.010294 19.000468 
18 O3 0.546 0.009803 11.255713 
19 O3 0.678 0.009504 41.206207 
20 O3 0.289 0.011565 18.720893 
21 SO2 0.234 0.007617 14.356505 
22 SO2 0.183 0.008495 18.383810 
23 SO2 0.361 0.009618 73.880135 
24 SO2 0.317 0.010164 10.655986 
25 NOx 1.391 0.044623 53.588005 
26 NOx 1.588 0.045032 27.485791 
27 NOx 1.075 0.038326 164.569051 
28 NOx 0.843 0.034269 1033.516665 

 
It bears mention that there is not one instance for 

which all three measures of performance agree on the 
best performer: although experiment 16 shows the 
minimum bias and NFit among CO, it does worse than 
experiment 13 on RMSE. The case of experiment 28 is 
even more dramatic: it is the best result for NOx when 
evaluated with bias or RMSE, but it is the worst on 
NFit… and by a very long shot! These differences are 
due to what each measure indicates, as well as their 
focus and limitations, as explained in subsections 4.2 
and 5.2. 

One other aspect of interest is that none of these new 
experiments shows such good performance as 
experiments 10, 11, and 12 from the 1G, which lead us 
to suspect that the cause for such good results lies in the 
data used for said experiments. 

On the other hand, by comparing the results 
obtained during this 2G against those of the 1G, a slight 
improvement can be seen. Although the bias for all 
experiments 13 to 28 are larger than those of 
experiments 1 to 12, both the mean RMSE and mean 
NFit for CO, O3, and SO2 is better on experiments 13 to 
28 than on 1 to 12. The data on NOx is suspicious, but 
comparing the performance of experiment 9 to those of 
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experiments 25 to 28, the NFit is better on experiments 
25 and 26, while experiment 9 shows better RMSE. 

Regarding this slight improvement, let us recall that 
improvements introduced by the Gamma classifier 
version 2 and the modified method affect the result of 
some of the test pattern, not all of them. The effects 
introduced by the method of the 2G, compared against 
the result that would have been obtained if the original 
method (used on the 1G) was applied, can be seen in 
table 8. 

Table 8.  Effects of modified method of the 2G;  
Exp. means “Experiment”. 

 Test Patterns 
Affected 

Performance Difference (ppm)

Exp. Amount Percent Bias RMSE NFit 
13 6 0.81 -1.800 0.004140 0.022021 
14 3 0.45 -1.600 0.006820 0.410543 
15 6 0.81 -2.700 0.005695 0.059208 
16 2 0.30 -0.800 0.002345 0.016599 
17 48 6.44 -0.254 0.000323 0.034240 
18 28 4.16 -0.092 0.000081 0.003244 
19 41 5.50 -0.292 0.000569 -30.287696 
20 31 4.61 -0.125 0.000175 4.977420 
21 34 4.56 -0.031 0.000053 -1.986110 
22 45 6.69 -0.038 0.000228 -10.205255 
23 90 12.08 -0.054 0.000554 -65.539397 
24 124 18.42 -0.020 0.001077 289.424768 
25 18 2.42 -0.546 0.000887 1.979086 
26 22 3.27 -0.210 0.000409 53.801941 
27 7 0.94 -0.126 0.000208 0.967188 
28 12 1.78 -0.246 0.000482 0.318623 

 
As can be seen, the effect of the modified method is 

not very large, yet not negligible. Experiment 16 has the 
least amount of patterns affected, only 2 out of 673 
(0.3%), but the difference in performance when 
compared to the results given by the original method on 
the same data is not the minimum, for either bias, 
RMSE or NFit. On the other hand, the experiment with 
most patterns affected by the variations to the method is 
24, with 124 out of 673 patterns (18.42%). Again, this is 
not the experiment with the greatest difference in bias or 
RMSE, but it has the largest difference on NFit: 289.42. 

Again, the differences tend to group together in 
different ranges for different pollutants, although this 
tendency is not as clear-cut as the actual values of 
performance. 

Regarding bias, it is always larger (both in 
magnitude and sign) for the modified method, indicating 

that this method tends to underestimate less and 
overestimate more than the method used on the 1G. 
Notice also that all values of RMSE are better for the 
improved method, again in different ranges for each 
pollutant. In particular, the mean difference in RMSE 
for CO is 0.004750 ppm, while that of O3, SO2, and NOx 
are, respectively: 0.000287 ppm, 0.000478 ppm, and 
0.000496 ppm. 

The behavior of NFit is different. While it improves 
for 12 out of 16 experiments, the magnitude of most of 
those 12 results are quite small: the average NFit 
difference for those experiments where it improved is 
28.25 ppm, while the average for the experiments where 
the NFit was better with the original method is 
-27.00 ppm; their difference is barely 1.25, even when 
the NFit for experiment 24 was an improvement of 
289.4248. 

Looking at the considerable variations on the impact 
that the modified method has on performance, it is clear 
that new improvements and extension of the method are 
called for. 

7.3. Second generation: Comparison with other 
methods 

Again, a comparison against other methods is in order. 
Thus, table 9 shows the experimental results obtained 
with data taken from the same database (RAMA 
subsystem of SIMAT) for O3, while table 10 includes 
results obtained with data taken from diverse databases. 

Table 9.  Comparison of related results 
(SIMAT database, O3) in absolute mean error 
given for pollutant concentration in ppm; exp. 
means “experiment”. 

Algorithm Used Performance 
(Abs. Mean Error) 

Bayesian network10 0.221000 
C4.510 0.176400 

Neural network10 0.160000 
Gamma classifier exp. 4  
(current work & Ref. 18) 

0.000918 

Gamma classifier exp. 5  
(current work & Ref. 18) 

0.000417 

Gamma classifier exp. 17 0.001682 
Gamma classifier exp. 18 0.000826 

Gamma classifier exp. 19 0.000925 
Gamma classifier exp. 20 0.000437 
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Table 10.  Comparison of related results (diverse databases) in RMSE; exp. means “experiment”. 

Algorithm Used Pollutant Considered
(measurement unit) 

Performance 
RMSE (original unit) 

Performance 
RMSE ( g/m3) 

IITLS15 NOx (g/m3) 19.99 19.99 
Neural network13 O3 (g/m3) 15 15 
Neural network12 O3 (ppb) 13.79, 9.43 27.028, 18.483 

Online SVM14 SO2 (g/m3) 12.96, 10.90 12.96, 10.90 
Neural network11 CO, NO2, SO2, and O3 (ERPI) 5.852, 1.365 N/A 

Gamma classifier exp. 3  
(current work & Ref. 18) 

CO (ppm) 0.611769 700.476 

Multivariate linear regression9 BaP (ng/m3) 0.449 0.000449 
Gamma classifier exp. 4  
(current work & Ref. 18) 

O3 (ppm) 0.012302 24.112 

Gamma classifier exp. 8  
(current work & Ref. 18) 

SO2 (ppm) 0.009218 24.151 

Gamma classifier exp. 10  NO (ppm) 0.000037 0.069560 
Gamma classifier exp. 11  NO2 (ppm) 0.000000 0.000000 
Gamma classifier exp. 12 NOx (ppm) 0.000000 0.000000 
Gamma classifier exp. 13 CO (ppm) 0.604214 691.825481 
Gamma classifier exp. 19 O3 (ppm) 0.009504 18.627704 
Gamma classifier exp. 21 SO2 (ppm) 0.007617 19.957555 
Gamma classifier exp. 28 NOx (ppm) 0.034269 64.426059 

When compared to the results exhibited by other 
methods when working with data taken from the 
SIMAT database, the performance shown by the 
Gamma classifier is better on experiments of both 1G 
and 2G. 

In relation to the results obtained on data from other 
databases, the performance of the proposed method is 
mixed. For O3, the results are competitive: experiment 
19 has an RMSE of 18.6277 g/m3, which is better than 
the worst performance (ANN from Ref. 12 with 
27.028 g/m3), but not as good as the best one (ANN 
from Ref. 12 with 18.483 g/m3). 

On SO2, the results are not so good: experiment 21 
exhibits an RMSE of 19.9576 g/m3, which trails 
behind the Online SVM of Ref. 14 with 10.90 g/m3 
and 12.96 g/m3. The situation of NOx is similar: 
experiment 28 presents an RMSE of 64.4261 g/m3, 
while the IITLS of Ref. 15 has 19.99 g/m3 of RMSE. 

CO is harder to compare, since the ANN of Ref. 11 
takes as input data regarding CO, NO2, SO2, and O3, but 
it is not possible to separate them at the output, which is 
also in a different unit: ERPI. Thus, it is not clear just 
how good the results obtained by the proposed method 
for CO are (experiment 3 from 1G with 70.4760 g/m3, 
and experiment 13 from 2G with 691.8255 g/m3). The 
former claim is especially true when considering that 
concentration values for this pollutant are usually 
several orders of magnitude greater than those for the 
other pollutants, which may make such apparently large 
values of RMSE actually quite competitive. 

These comparisons exhibit some emerging traits of 
the proposed method. First, it seems to show a better 
performance on O3 than on the other pollutants so far 
considered, when only past values for the concentration 
of the target pollutant are used. On the other hand, the 
results on other pollutants are not as good, but still 
competitive. 

On the topic of the extremely (and surprisingly) 
good results of experiments 10 to 12, the fact that other 
experiments done with the same method (versions 1 and 
2) on different data offer more conventional results, 
leads to the suspicion that the data used for those three 
experiments is abnormally good. Two interesting 
questions left for future work, which arise from the 
latter observation, are the following: on one hand, 
would other methods perform as well? And what makes 
these data so appropriate to work with the proposed 
method? 

8. Analysis and Comparison 

In order to compare the performance of the Gamma 
classifier against other methods of pollutant prediction, 
the results of seven research papers (Refs. 9–15) have 
been used. In those works, the authors have applied the 
following methods to predict the concentration of 
several contaminants: MLR,9 Bayesian networks and 
decision trees,10 ANN,10-13 SVM,14 and the pollution 
models Caline and IITLS.15 Regarding these 
comparisons, it is necessary to emphasize two 
considerations. 
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 Consideration 1. There is no universally best 
learning algorithm, which implies that there is no 
classification or prediction algorithm which is the 
best for all and every situation. Such a strong claim 
is based on a series of theorems, known as the No-
Free-Lunch Theorems, which establish that for any 
algorithm, any elevated performance over one class 
of problems is offset by performance over another 
class.33 In this sense, Duda and Hart refer to the No-
Free-Lunch Theorems for Pattern Recognition in 
the following terms: “If an algorithm seems to 
surpass another on a particular situation, this is a 
consequence of its adaptation to the particular 
pattern recognition problem, and not to a general 
superiority of that algorithm”.25 

 Consideration 2. When comparing the performance 
of two prediction or classification models, the ideal 
situation is to do such comparison under the same 
conditions and using the same measure criteria. In 
other words, we would like to have both algorithms 
trained with the same data set, as well as being 
tested on the same test pattern set, and using the 
same criteria of performance evaluation. 

 
However, in the topic of environmental data 

prediction, it is quite difficult —if not altogether 
impossible— to obtain scientific publications on 
different models where the same data sets have been 
used for training, on one hand, and the same data sets 
were used for testing, on the other hand, while also 
sharing the same measure criteria for performance. This 
is due to the lack of standardized, publicly accessible 
data sets. 

When these considerations are taken into account, it 
is possible to state that there are no founded reasons to 
claim that any one method is inherently better than the 
rest for all cases. Thus, if for some data sets the Gamma 
classifier exhibits better performance than the other 
methods, this can be explained by a better adaptation of 
that method to the specific data sets used. However, it is 
also important to notice that, for some experiments, the 
Gamma classifier shows large errors: such is the case of 
experiment 3, where the RMSE is quite high. 

Then, we may claim that it is not only the method by 
itself or the data sets by themselves, which explain a 
good performance: it is the combination of a good 
method and an appropriate data set which explains a 
better performance. 

On the other hand, we can see that the conditions 
presented in the second consideration are very difficult 

to meet, which leads us to look for publications whose 
experiments use the same measure criteria (e.g. RMSE, 
NFit, or Absolute Mean Error), even though the 
prediction is done on different pollutants for different 
places around the world; that is, even when the data sets 
used for learning and training are different from paper 
to paper. 

This is exactly what happened in the present work: 
fixed unit and measure criteria were chosen, all data was 
converted into those units of measure (where possible), 
and the results were compared using the measure 
criteria picked at the beginning. 

On a different but related train of thought, it is a 
common practice for the authors of scientific works on 
pollutants prediction to not describe in detail the 
methods they use for their predictions, referring the 
reader to other publications where those details are 
described. 

Even though the papers from Refs. 9–15 are no 
exception to that practice, below an analysis of the 
prediction mechanisms used in those papers is done, as 
far as possible. That is, the text of those seven papers is 
taken as the basis to try and explain the nature of each 
consulted method for pollution prediction, showing their 
advantages and drawbacks. This is done in order to sort 
out the reasons behind the robustness and good 
performance shown experimentally by the Gamma 
classifier, when compared to these methods. 

 
 Ref. 9: In this work the authors use MLR models to 

predict benzo(a)pyrene (BaP) air concentrations in 
two sampling places, taking PM10 and 
meteorological variables as possible predictors. It is 
worth to note that BaP is a complex chemical, 
belonging to the family of Polycyclic Aromatic 
Hydrocarbons (PAH), which is released widespread 
into the air, and that is emitted as product of fuel 
thermal processes and is released from 
anthropogenic activities involving the devolatili-
zation of coal, oil, wood, diesel, and gasoline. 
The authors explain that the meteorological 
variables recorded for each sampling place are: 
temperature (◦C), relative humidity (%), solar 
radiation (W/m2), UV radiation (W/m2), pressure 
(mbar), rainfall (mm), wind speed (m/s) and season. 
However, they do not give details about the method 
employed, declaring that they used the SPSS 
version 15.0 statistical package MLR models to run 
MLR models in order to find the best-fit model 
between the estimated and the experimental BaP 
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concentrations according to PM10 concentrations 
and meteorological variables. 
 Advantages: the model is as simple as a linear 

equation with one dependent variable and 
several independent variables. Also, in order to 
find the model which fits best a specific 
problem, it is enough to feed a commercial 
statistical package such as SPSS version 15.0 
and pick the best model. 

 Drawbacks: the main disadvantage is that the 
authors pretend to model a non-linear 
phenomenon such as pollution with linear 
dependencies, which in the simplest case 
equals to representing a straight line on a 
plane. 

 Ref. 10: In this work Bayesian networks, decision 
trees (namely C4.5) and ANN are used for ozone 
prediction in Mexico City, where the ozone level is 
used as a global indicator for the air quality in 
different parts of the city. According to the authors, 
it is important to predict the ozone level a day, or at 
least several hours in advance, to reduce the health 
hazards and industrial losses that occur when the 
ozone reaches emergency levels. 
The main contribution of this paper is an algorithm 
for structure learning in predictive expert systems 
based on a Bayesian network representation. The 
goal is to find the “simplest” structure (minimum 
number of links) with acceptable predictive 
capability. The algorithm starts by building a tree 
structure based on measuring mutual information 
between pairs of variables, and then it adds links as 
necessary to obtain a certain predictive 
performance. 
 Advantages: the proposed model is a Bayesian 

network with the “simplest” structure 
(minimum number of links) with acceptable 
predictive capability. Also, a well-known 
model is used for comparison purposes: the 
C4.5 decision tree, which may be easily run on 
the WEKA environment.34 The Bayesian 
network surpasses the C4.5 tree. 

 Drawbacks: by looking for the “simplest” 
structure for the Bayesian network, the authors 
are not interested on improved predictive 
results, but rather to have an acceptable 
predictive capability. On the other hand, 
although the proposed model beats the ANN 
results, no description of the ANN model is 
given, instead referring to another paper. 
Independently from the latter, it is well-known 
by the scientific community that ANN have (at 

least) two disadvantages: (A) the network may 
converge to local minima, which are not the 
correct output values; and (B) the network 
topology design is artisanal, and given that 
usually the Backpropagation algorithm is used 
for training, which in turn is an iterative 
process, it becomes quite difficult, almost 
impossible, to know beforehand whether the 
network will converge. If it does not converge, 
after investing considerable amounts of time 
and effort, one needs to start over a new 
topology, which also may not converge… and 
so on. 

 Ref. 11: After acknowledging the difficulty in 
forecasting concentration trends with a reasonable 
error and claiming it is still an open problem, the 
authors applied ANN in order to forecast the 
maximum daily value of the European Regional 
Pollution Index (ERPI) as well as the number of 
consecutive hours, during the day, with at least one 
of the pollutants above a threshold concentration, 
24 to 72 hours ahead. The concentrations of four 
pollutants (NO2, SO2, CO, and O3) play a part in the 
ERPI computing process, thus making more 
difficult a comparison of other indices against 
ERPI. 
Although experimental results with data taken from 
seven monitoring stations are presented, for 
comparison purposes we have used only the results 
of the station which exhibits the best RMSE 
performance, as reported in Ref. 11. 
 Advantages: even though there is no mention 

of how the ANN was implemented, it is well-
known that there are several applications (both 
commercial and open source) for designing, 
programming, training, and testing feedforward 
MultiLayer Perceptron (MLP) ANN, which is 
the model used on this work. 

 Drawbacks: the ANN presents the same 
disadvantages of Ref. 10 regarding 
convergence and local minima. As discussed 
earlier, the main disadvantage for comparison 
purposes is that the unit used, ERPI, combines 
input data regarding CO, NO2, SO2, and O3, 
taking into account only the pollutant with the 
highest concentration for the output. Thus, it is 
not possible to convert ERPI into g/m3, since 
it is not known which pollutant gave a 
particular value, and thus which particular 
equivalence use for the conversion. Therefore, 
it is not clear just how good the results 
obtained by the proposed method for CO are 
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(experiment 3 from the 1G with 70.4760 
g/m3, and experiment 13 from the 2G with 
691.8255 g/m3). 

 Ref. 12: The authors apply the same kind of ANN 
that was used in Ref. 11 —feedforward MLP 
ANN— to the prediction of maximum tropospheric 
ozone concentrations for the next day. For this, the 
main ozone precursors and meteorological 
parameters were used. 
 Advantages: these are similar to those of Ref. 

11, there are several open source and 
commercial applications for designing, 
programming, training, and testing feedforward 
MLP ANN. The authors also omit details on 
the implementation of the neural networks. 
However, they mention during their discussion 
that this kind of training (of MLP) is relatively 
easy. 

 Drawbacks: the ANN has the same 
disadvantages of Refs. 10 and 11 regarding 
convergence and local minima. 

 Ref. 13: This work presents a model called 
NEUROZONE, which is based on the MLP. The 
Neurozone is used in a real time forecasting of 
hourly maximum ozone, for which it is fed with the 
values of 34 meteorological variables. 
 Advantages: one advantage is similar to that of 

Refs. 11 and 12, regarding the availability of 
commercial and open source applications for 
designing, programming, training, and testing 
feedforward MLP ANN; another one is that 
Neurozone is used for real time prediction. 

 Drawbacks: the ANN presents the same 
disadvantages of Refs. 10–12 on convergence 
and local minima. 

 Ref. 14: The authors of this paper claim that the 
development of an accurate model for the time 
series forecasting problems is very difficult, 
because of high non-linear and non-stable relations 
between input and output data. Given the 
importance of online prediction for air quality 
parameters forecasting, the authors propose an 
online SVM to predict air pollutant levels in an 
advancing time series based on the monitored air 
pollutant database. 
 Advantages: according to the authors, the SVM 

have a solid theoretical basis, which ensures its 
possessing more salient advantages than other 
machine learning methods like ANN in 
generalization and convergence. Also, the 
SVM model they propose operates online. 

 Drawbacks: as the authors themselves admit, 
the greatest disadvantage of this model is that 
the computational problem with the numerical 
optimization in a high-dimensional space may 
suffer from the curse of dimensionality. In 
other words, their proposal may be computing-
intensive and of high complexity, depending 
on the data used. 

 Ref. 15: In this paper, two line source models are 
uses: the California line source version 4 (Caline) 
and the Indian Institute of Technology Line Source 
(IITLS), to assess the impact of diesel vehicles on 
NOx and PM emissions. The methods used are not 
described, only their names are mentioned and two 
references are given. As happened with Ref. 11, 
Ref. 15 reports results for six monitoring stations, 
but in this work only data from the station with the 
best RMSE was used for comparison. 
 Advantages: the paper includes no useful data 

regarding the advantages of Caline and IITLS. 
 Drawbacks: the paper includes no useful data 

regarding the disadvantages of Caline and 
IITLS. 

 
The latter point concludes the explanations on the 

nature of each consulted method for pollution 
prediction, showing their advantages and drawbacks. 
This information shall be of great help to express the 
possible reasons for the outstanding robustness and 
performance shown by the Gamma classifier on some 
experiments presented in this paper, while comparing 
such results against those of other methods. 

It is important to realize that the Gamma classifier is 
not the best performer on all experiments: in some 
cases, its performance was actually not good. For 
instance, in experiment 19 (O3) the Gamma Classifier 
has an RMSE of 18.6277 g/m3, which is not as good as 
the best one (Neural Network from Ref. 12 with 
18.4830 g/m3). On SO2, the results are even worse: 
experiment 21 exhibits an RMSE of 19.9576 g/m3, 
which trails behind the Online SVM of Ref. 14 with 
10.90 g/m3 and 12.96 g/m3. The situation of NOx is 
similar: experiment 28 presents an RMSE of 
64.4261 g/m3, while the IITLS of Ref. 15 has 
19.99 g/m3 of RMSE. These results agree with the No-
Free-Lunch Theorems. 

However, it is still true that the Gamma classifier 
performance was quite good on most of the 
experiments. Then, how can such good performance 
with respect to other methods be explained? 
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Below some potential answers to such question are 
discussed. These possible reasons for the behavior of 
the Gamma classifier are taken mainly from its inherent 
nature and properties, as well as from the information 
posed by the previous qualitative analysis. 

 
(i) The Gamma classifier algorithm models pollution 

phenomena as a non-linear process (in Ref. 14 it is 
even claimed that such phenomena are highly non-
linear), instead of forcing them to a false linearity, 
such as what happens in Ref. 9. For instance, see 
Fig. 4, which illustrates the results of experiment 
12: the values predicted by the Gamma classifier 
hide behind the originally observed values. 

(ii) In each experiment, the Gamma classifier treats 
pollution phenomena as real, actual time series. 
That is, only one independent variable (time) and 
one dependent variable (the pollutant concentration 
at that time) are considered. On the other hand, 
most methods try to do multivariate regression, 
leading to situations such as contemplating 34 
independent variables.13 

(iii) Derived from the latter item, given that the Gamma 
classifier only takes into account one independent 
variable, it has no problems regarding correlation 
among variables, or any of the problems introduced 
by the probability distribution characteristics of 
multiple independent variables. 

(iv) The Gamma classifier algorithm suffers no 
convergence or local minima problems, shown by 
the ANN models,10–13 which leads them to reduced 
performance (both in predictive accuracy and time). 

(v) The Gamma classifier algorithm lacks the 
drawbacks of Bayesian networks or decision 
trees.10 On one hand, the correlation of independent 
variables is one source of diminished performance 
for Bayesian networks, but it has no effect on the 
Gamma classifier since it considers only one 
independent variable. On the other hand, the C4.5 
decision tree exhibits a poor ability to solve the 
multi-class problems.35 There are two drawbacks of 
Quinlan’s C4.5 when dealing with multi-class 
problems: the training speed will become slow and 
the classification accuracy will decrease acutely. 
Meanwhile, the Gamma classifier was designed to 
tackle the multi-class problem from the beginning, 
presenting no such drawbacks. 

(vi) The Gamma classifier algorithm is not affected by 
the curse of dimensionality as the SVM does.14 This 
latter model exhibits the computational problem 
with the numerical optimization in a high-
dimensional space. 

(vii) Regarding Ref. 15, we have no founded elements to 
put forward an informed opinion. We have simply 
shown through experimental results that the 
Gamma classifier defeats Caline and IITLS for 
pollutants prediction, at least for some cases on 
NOx. 

 
We believe that these seven reasons show the good 

performance of our method related to the other existing 
time series prediction methods; that is, we have clearly 
specified why the Gamma classifier is better than the 
other time series prediction methods. 

However, is perhaps the Gamma classifier free of 
drawbacks or limitations? Of course not, this model also 
has disadvantages, some of which appear when it is 
compared to those methods present in Refs. 9–15, as 
shown below. 

 
(i) The Gamma classifier does not operate in real time, 

like the method of Ref. 13. 
(ii) The Gamma classifier does not operate online, 

something that the method of Ref. 14 does. 
(iii) Given the nature of the Gamma classifier 

algorithm, it is unable to predict pollutant 
concentration values which are absent from the 
fundamental set. This means that, when a target 
pollutant takes a concentration value unknown by 
the Gamma classifier, there will be a prediction 
error, even if the unknown value is quite similar to 
a known value. On the other hand, most of the other 
models can do this: for instance the MLR model9 is 
able to predict values which are not present in the 
learning set. 

(iv) Like any other pollutant prediction model, the 
Gamma classifier cannot predict dramatic changes 
in contaminant concentration due to unforeseen 
events, such as a volcanic eruption, an uncontrolled 
fire, or an explosion. This point is also discussed in 
subsection 5.2. 

 
Yet, an issue remains: how is it that in experiments 

11 and 12, the RMSE is zero? In order to answer this 
question let us consider the concept of robustness 
presented by Rosenhead, which is one of the most 
important experts in this topic: “A simple statement of 
the robustness criterion is that, other things being equal, 
an initial commitment should be preferred if the 
proportion of desirable future situations that can still be 
reached once that decision has been implemented is 
high”.36 The same author tells us which are the elements 
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that must be specified in a problem situation for 
robustness analysis: 

 
 a set of alternative initial commitments to be 

considered, 
 a set of ‘futures’ representative of possible 

environments of the system, and 
 a set of relevant possible configurations of the 

system which the decisions will modify. 
 
The three elements above need to be complemented 

by information of the following types: 
 

 assessments of the compatibility of each 
commitment-configuration pair, 

 evaluation of the performance of each configuration 
in each future. 

 
Following Rosenhead, we will start from the results 

on one experiment described in our paper, which are 
quite good but not as good as those of experiments 11 
and 12: experiment 10 has a very low RMSE, yet it is 
not cero. Then, why experiment 10 has so small RMSE? 
What happened is that the Gamma classifier only 
misclassifies one data point when predicting each 
concentration value. The prediction is done by finding 
in the fundamental set, the nearest pattern to the test 
pattern (made by the previous ten data points to the data 
point of May 4th at 4:00 AM), according to the Gamma 
classifier criteria, and taking the next concentration 
value as the prediction. This error consists in that the 
concentration value given by the fundamental pattern 
(e.g. the corresponding class), which is the prediction, is 
0.006 ppm, while the actual concentration for that data 
point was 0.005 ppm. On one hand, the test pattern is 
built with the following sequence of differences (see the 
pattern coding technique at subsection 4.1 from the 
present paper), with its corresponding class being: 
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Nevertheless, the fundamental pattern responsible 

for the classification of this test pattern and the 
corresponding class are: 
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Based on the previous explanation, it becomes 

clearer why the RMSE for experiments 11 and 12 is 
zero. Such miss-classification as the one presented 
above does not happen for any data point in the test data 
sets of experiments 11 and 12. 

This discussion illustrates the robustness of the 
Gamma classifier algorithm, according to the criteria 
proposed by Rosenhead. 
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9. Conclusions and Future Work 

Data related to atmospheric pollution in Mexico City 
can be worked as time series, thanks to its periodicity. 
In the present work, the air quality data measured at 
Mexico City was used to build several time series. The 
Gamma classifier —versions 1 and 2— combined with 
an emerging coding technique has been used to predict 
future values of the time series, thus forecasting the 
concentration levels of four criteria pollutants: carbon 
monoxide (CO), ozone (O3), sulfur dioxide (SO2), and 
nitrogen oxides (NOx). The experimental results show a 
competitive performance by the Gamma classifier as a 
predictor of pollutant concentrations. 

In order to apply the proposed method to different 
data, such as other pollutants or time intervals, new 
fundamental and test pattern sets should be built and 
presented to the method. 

Notice that it is not possible to make a direct 
comparison of published results, given that different 
data sets, describing different local phenomena with 
different measure units, are used. This is mainly due to 
the lack of a standardized, publicly accessible database 
regarding this particular problem. 

A new version of the Gamma classifier algorithm is 
introduced in this paper, along with its theoretical 
foundation. 

From these results, several lines of future work can 
be drawn: 
 Implement other methods found in related scientific 

literature and test them on the same data used by 
the Gamma classifier, in order to compare all 
methods under the same methodological conditions. 

 Application of the Gamma classifier and the 
proposed coding technique to the analysis and 
prediction of time series built with data taken from 
other air quality databases, and comparison of 
results with those present in scientific literature. 

 Development of variations to the coding technique 
which may yield improved performance. 

 Experimentation with other pollutants, and 
combinations of pollutants. 

 Extension of the proposed method to incorporate 
more data besides past concentration values of the 
target pollutant, such as meteorological data, 
concentration values of other pollutants, or 
concentration values at other stations, either of the 
target pollutant or other pollutants. 

 Application of the Gamma classifier and the 
proposed coding technique to other areas, such as 
water quality assessment.37 
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