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Abstract 

Among the various discriminant analysis (DA) methods, researchers have investigated several directions in 

this area: statistics, econometrics, computer data mining technologies and mathematical programming. Recently, as 

a nonparametric mathematical programming approach, Data envelopment analysis has been applied in DA area and 

received great attention. In this paper, we propose a new discriminant approach based upon the relative distance 

measured by super-efficiency data envelopment analysis (DEA). This approach may generally avoid the drawbacks 

that usually occur in statistics discriminations of constructing function to determine a DMU’s category. On the 

other hand, this approach may maintain discriminant capabilities by incorporating the non-parametric feature of 

DEA into DA. At the same time, it can also inherit the advantages of avoiding the process of dealing with different 

dimensional data in DEA. Our approach can be used to classify a sample’s category by the discrimination results, 

even in the multiple-groups situation. Therefore, it can be applied to the discriminant analysis in various real-life 

cases. 
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1. Introduction 

Discriminant analysis (DA) model can be 
described as: there are k categories, . 
Given a new sample, we should determine which 
category it belongs to. It is a classification 
method that can predict group membership of a 
newly sampled observation. This problem exists 
in many situations and plays a key role in 
decision making.  

1,..., kG G

Most researches on DA have focused on the 
following problem, proposing new mathematical 
programming models and evaluating the 
classificatory performance of proposed models 
against that of the standard parametric 
classification procedures (Bal and Örkcü, 2010). 
Sueyoshi (2006) summarized previous research 
on DA and classified them into four groups as 
follows. One of the four groups is statistics, such 
as Fisher’s linear discriminant function and 
Smith’s quadratic discriminant function. 
Econometrics is another group, such as logit and 
probit models. The third group is computer data 
mining technologies, such as Neural Network 
and Decision Tree. The final group is 
mathematical programming. Recently, fuzzy 
logic is also used in this field (see, e.g., Zio et al., 
2008; Chen and Chen, 2008). 

Fisher’s linear discriminant function (Fisher, 
1936) and Smith’s quadratic discriminant 
function (Smith, 1947) are popular statistical 
approaches to solve the problem under the 
assumption of multivariate normality and 
variance-covariance homogeneity. Without the 
assumption, Chang and Kuo (2008) indicated 
that the DA performance of linear programming 
had been proven superior to the former methods 
for classification purposes in many studies. 
Computer data mining technologies also can deal 
with the DA problem, however, so for these 
methods have the similar methodological 
shortcomings of no theoretical support on 
optimality (Sueyoshi, 2006). Because of these, 
nonlinear DA was proposed and popularly 
applied in terms of its classification and 
prediction capabilities. But most of the nonlinear 
DA methods, especially in econometrics, also 
have deficiency. They need to pre-specify the 
nonlinear function form to make a separation 
hyperplane. This procedure is not impossible but 
very difficult for us to prescribe such nonlinear 
discriminant function to fit a real data set. 
Relatively, the nonparametric methods are less 

restrictive and so receive more attention for 
classification problems. 

In previous studies on nonparametric DA, 
Sueyoshi (2006) and Cooper et al. (1999) had 
proven that the piecewise linear discriminant 
function was more flexible than conventional 
linear discriminant function in terms of its 
discriminant capability. Data envelopment 
analysis (DEA) is a non-parametric 
programming technique for evaluating the 
relative efficiency of a set of homogenous 
decision making units (DMUs) with multiple 
inputs and multiple outputs. It has been applied 
in many areas, such as schools, hospitals, shops, 
bank branches and so on (Wu et al., 2010; Ozgen 
et al., 2011; Lopez et al., 2010; Doreswamy, 
2010; Xu et al., 2009 and Kaya, 2010). DEA can 
also form a piecewise linear function for 
discriminant. Retzlaff-Roberts (1996) and 
Sueyoshi (1999) identified differences and 
similarities between DEA and DA, respectively. 
Now, DEA has been applied in the discriminant 
area and received a great deal of attention 
because it can maintain discriminant capabilities 
by incorporating the non-parametric feature of 
DEA into DA. Sueyoshi (1999) applied DEA in 
DA area and proposed Data Envelopment 
Analysis-Discriminant Analysis (DEA-DA) 
approach firstly. DEA-DA approach is a type of 
non-parametric DA approach that provides a set 
of weights of a piecewise linear discriminant 
function(s), and consequently yields an 
evaluation score(s) for the determination of 
group membership (Sueyoshi, 2006). This 
approach has been well developed by Sueyoshi 
(2001, 2004, 2005, 2006), Sueyoshi and Kirihara 
(1998), and Sueyoshi and Hwang (2004). 
Different from the above DEA and DA 
combination approach, we propose a new 
discriminant approach based on DEA method 
that just applied DEA in DA to measure the 
relative distance of new sample to each category. 
The basic idea was inspired by the relative 
distance, which can be measured through DEA 
models. Firstly we built some super-efficiency 
FG models, based on super-efficiency model by 
Andersen and Petersen (1993) and FG model by 
Färe and Grosskopf (1985). The super-efficiency 
FG model based on the best practice frontier was 
used to measure relative distances of a new 
sample to the best frontier. And super-efficiency 
FG model that based on the worst frontier was 
used to measure the relative distance of a new 
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sample to the worst frontier. According to the 
range of relative distance value, we divided them 
into four groups and calculated the relative 
distance of the new sample to each category by 
the relative distances of it to the best and worst 
frontier. Finally, we determined the new sample’s 
category by its relative distances. This distance is 
different from the prior distance, such as 
Euclidean distance, Chebyshev distance, 
Mahalanobis distance, Minkowski distance and 
so on. Our distance is relative, while the others 
are absolute. The relative distance may more 
convenient than others because it can deal with 
the raw data directly without the need for 
standardization. Additionally, it also inherits the 
advantage of other kind distance for DA that 
should not form the discriminant function. 

The remainder of this paper was organized 
as follows. Section 2 discussed basic theories 
through geometrical illustration and 
transformational thoughts of classifying the new 
sample. In section 3, modified super-efficiency 
models were built and applied in the proposed 
procedure. Section 4 introduced the solving steps. 
An illustration based upon an example with 
multiple inputs and outputs was given in section 
5. Finally, conclusion and discussion were 
presented in section 6. 

 
2. Geometrical illustration 
  2.1. The best-practice and worst-practice 
frontier 

  Most of DEA models always establish an 
efficient frontier (best-practice) among the units 
based on a comparison process in which the ratio 
scales of the weighted sum of the outputs to that 
of the inputs are evaluated. The DMUs on the 
frontier are efficient, otherwise are inefficient. 
The best-practice frontier can be defined as 

( ) {( , ) | ( , ) (
( , ) ( , ) ( , ) )} .

m s
bF x y x y
x y x y x y
ϑ ϑ

ϑ ϑ

+′ ′= ∈ ∀ ∈
′ ′ ′ ′− ≤≠ − ⇒ ∉ ⊆

 

At the same time, we also should gain the 
worst-practice frontier. According to the 
definition of best-practice frontier, we can obtain 
the worst-practice frontier similarly (Liu and 
Chen, 2009; Jahanshahloo and Afzalinejad, 
2006).

( ) {( , ) | ( , ) (
( , ) ( , ) ( , ) )}

m s
wF x y x y
x y x y x y
ϑ ϑ

To illustrate the difference between the 
best-practice frontier and the worst-practice 
frontier, we use an example of two inputs and 
one output data as shown in Table 1. All outputs 
normalized to 1 for simplicity. The best-practice 
and worst-practice frontiers of the example are 
presented in Fig. 1 and Fig. 2. 

 

.ϑ ϑ

+′ ′= ∈ ∀ ∈
′ ′ ′ ′− ≤≠ − ⇒ ∉ ⊆
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Fig.1. Best-practice frontier 
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2.2. Locations of the new sample (DMU) to a 
certain category 

According to the best-practice and 
worst-practice frontier of the certain category, 
the locations can be divided into three parts. To 
illustrate them, we use an example of two inputs 
and one output data as shown in Table 1. All 
outputs normalized to 1 for simplicity. The 
locations of the new sample are presented in Fig. 
3. This will be used in section 3. 
 
2.3. Transformational thoughts 

For the discriminant analysis of 
multi-output samples (the number of output 
variables is S. Each variable has jl  styles, of 
which ), we can classify the 
samples as groups of 1 2

1,2,...,j = s
... sl l l× × × . After 

quantitative analysis of raw output information, 
we regard them as the output value of DEA. It 
should be noted that the outputs value reflect the 
category of the sample. For example, 1 refers to 
“ill” and 0 refers to “healthy” in medicine. If a 
DMU’s output is 1, it will be classified into the 
“ill” category. We also treat the value of various 
factors which affect the sample type as the input 
value. For each type of the output, the new 
sample forms a new decision making unit 
(DMU). Therefore, a new sample will form 

1 2 ... sl l l× × ×  new DMU totally. But, we don’t 
put all DMUs together in comparing. We 
evaluate the new DMU just by putting it into raw 
samples which own the same output type. Based 
on the super-efficiency DEA method, we 
measure relative distance of the new DMU to the 
best-practice and the worst-practice frontier, and 
finally determine its category according some 
rules. 

3. Modified DEA models used in the proposed 
procedure 

3.1. A new super-efficiency DEA  
Data envelopment analysis (DEA), as a 

non-parametric programming technique, provides 
a relative efficiency measure for peer decision 
making units (DMUs) with multiple inputs and 
multiple outputs, on the basis of evaluation of the 
private sectors by the economists Farell (1957). 
DEA was first proposed by Charnes, Cooper and 
Rhodes in 1978. DEA has been extensively 
applied in performance evaluation and 
benchmarking of schools, hospitals, bank 
branches, production plants, and so on (Cooper et 
al., 2004). As an evaluation method, it is suitable 

for evaluations with multi-input multi-output 
complex systems. Since the CCR model, there 
has been an impressive growth both in 
theoretical developments and applications of 
DEA. DEA researchers have developed a 
number of updated models, such as variable 
returns to scale (VRS) model, additive model, 
multilevel models, super-efficiency models and 
so on (Cook and Seiford, 2008). In this paper, 
we build super-efficiency FG model by 
integrating super-efficiency models (Andersen 
and Petersen, 1993) and FG model (R. F re and 
Grosskopf, 1985). 

a

We assume that there are a set of n 
evaluation objects. Each object is named as 

, 1, 2,..., .jDMU j n=  Each DMU produces s 
different outputs using m different inputs. The 
inputs of jDMU  is , 
and the outputs is , 

 

1 2( , ,..., )T
j j j mjx x x x=

1 2( , ,..., )T
j j j sjy y y y=

0, 0,j jx y≥ ≥ 1, 2,...,j n= . That is to say, 
its components are non-negative and at least one 
of them is positive. 
3.1.1. Super-efficiency model 

The input-oriented super-efficiency 
measure θ ′  for an observation 

( , ), {1,2,..., }k kX Y k N∈  is obtained by 

solving the following linear program:  

*

1

1

 

s.t.    , 1, 2,...,

       , 1, 2,...,

        0, 1, 2,..., .

n

j ij ik
j
j k

n

j rj rk
j
j k

j

min

x x i n

y y r n

j n

θ θ

λ θ

λ

λ

=
≠

=
≠

′ ′=

′≤ =

≥ =

≥ =

∑

∑
   (1) 

From the model (1), we can see that when 
the super-efficiency model is applied, the 
observation “k” under evaluation is not included 
in the reference set. The super-efficiency model 
provides a means of evaluating the extent to 
which such changes could occur without 
violating that DMU’s status as an efficient unit. 
Super-efficiency has been applied in many 
situations, such as detection of influential 
observations, DEA sensitivity analysis, 
acceptance decision rules, two-person ratio 
efficiency games and so forth. However, the 
super-efficiency DEA model may not have 
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feasible solutions for efficient DMUs (see, e.g., 
Zhu, 1996; Dulá and Hickman, 1997; Seiford 
and Zhu 1998a,b,c).  

 
3.1.2. FG model 

The model, firstly proposed by Färe and 
Grosskopf in 1985, was applied as a 
non-parametric cost approach to scale efficiency. 
The model is as follows: 

0

0

0

'

'
0

1,

0
1,

1,,

s.t.   

        

        1

        0, 1, 2,...,

n

j j
j j j

n

j j
j j j

n

j
j j j

j

min

X X

Y Y

j n

θ

λ θ

λ

λ

λ

= ≠

= ≠

= ≠

≤

≥

≤

≥ =

∑

∑

∑

         (2) 

Comparing model (2) with BCC model 
proposed by Banker et al. (1984), we can find 
that the FG model has different constraint on 
variable λ . The reason of choosing this 
input-oriented model is that all DMUs in the 
same category have the same outputs.   

 
3.1.3. Super-efficiency FG model based on the 
best practice frontier  

The presentation is as formula (3) 

'
0 0

0

0

0

0

    

s.t.       0

            =1 
            1,2,...,
            0, 0, 0, 0, 0

I T
P

T T
j j

T

max V u Y

u Y v X

v X
j n j j
u v u v

μ

μ

μ

= −

− − ≤

= ≠
≥ ≥ ≠ ≠ ≤

，

 (3) 

Its dual model, is as formula (4) 

  

0

0

0

'

'
0

1,

0
1,

1,,

0

s.t.     

         

        1

        0, 1, 2,..., ,

n

j j
j j j

n

j j
j j j

n

j
j j j

j

min

X X

Y Y

j n j j

θ

λ θ

λ

λ

λ

= ≠

= ≠

= ≠

≤

≥

≤

≥ = ≠

∑

∑

∑

  (4) 

The value 'θ  which is calculated by the 
above model reflects the relative efficiency of 
the evaluated DMU based on the best frontier 
formatted by all the decision-making units 
except the evaluating DMU. 

Definition 1：When 0  
or , we consider 

0T Tu Y v X μ− − >
' 1θ > ( , )X Y  is at the 

negative side of the best-practice frontier. When 
0 0T Tu Y v X μ− − <  or , we consider ' 1θ <

( , )X Y  is at the positive side of the 
best-practice frontier.  

 
3.1.4. Super-efficiency FG model based on the 
worst frontier 

The presentation is as formula (5) 

'
0 0

0

0

0

0

    

s.t.       0

            =1 
            1,2,...,
           0, 0, 0, 0, 0

I T
P
T T

j j

T

min V u Y

u Y v X

v X
j n j j
u v u v

μ

μ

μ

= −

− − ≥

= ≠
≥ ≥ ≠ ≠ ≤

，

  (5) 

Its dual model is as formula (6) 

0

0

0

''

''
0

1,

0
1,

1,,

0

s.t.      

          

         1

          0, 1,2,..., ,

n

j j
j j j

n

j j
j j j

n

j
j j j

j

max

X X

Y Y

j n j j

θ

λ θ

λ

λ

λ

= ≠

= ≠

= ≠

′ ≥

′ ≤

′ ≤

′ ≥ = ≠

∑

∑

∑

 (6) 

The value 'θ  which was calculated by the 
above models reflects the relative efficiency of 
the evaluated DMU based on the worst frontier 
formatted by all DMUs except the evaluating 
DMU. 
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Definition 2 ： When 

0  or , we consider 0T Tu Y v X μ− − < '' 1θ <
( , )X Y  is at the negative side of the 
worst-practice frontier. When 

0  or , we consider 0T Tu Y v X μ− − > '' 1θ >
( , )X Y  is at the positive side of the 
worst-practice frontier.  

As the outputs of all decision-making units 
of the same type are unanimous in classification, 
model (4) and model (6) can be transformed into 
a corresponding model (7) 

0

0

'

'
0

1,

1,,

0

s.t.    

       1

         0, 1, 2,..., ,

n

j j
j j j

n

j
j j j

j

min

X X

j n j j

θ

λ θ

λ

λ

= ≠

= ≠

≤

≤

≥ = ≠

∑

∑
 (7) 

and model (8) 

0

0

''

''
0

1,

1,,

0

s.t.      

          1

            0, 1,2,..., ,

n

j j
j j j

n

j
j j j

j

max

X X

j n j j

θ

λ θ

λ

λ

= ≠

= ≠

′ ≥

′ ≤

′ ≥ = ≠

∑

∑
 (8) 

Taking into account the possibility of the 
existence of non-feasible solution in 
super-efficiency，firstly our paper need to prove 
the existence of optimum solution of the above 
mentioned super efficient models. The 
conclusion is that they both have the optimum 
solutions. We give the proof as follows. 
Theorem 1: Super-efficiency DEA model (7) 
and model (8) both have the optimal solution. 
Proof: For the model (7), assume the vector 

0( 0, 1,..., , ; 0)j j n j jζ λ θ′ ′= = = ≠ = , so 

ζ ′  is a group of feasible solutions of model (7). 

Because  and 

, 

01,,

0 1
n

j
j j j

λ
= ≠

= ≤∑

0

'
0

1,

0, 0
n

j j
j j j

X Xλ θ
= ≠

′ = =∑

0

'
0

1,

n

j j
j j j

X Xλ θ
= ≠

′ ≤∑ . Therefore, we prove that 

model (7) has feasible solution. Additionally，

'
0{1,..., } 1, 0

min ( / )
n

j kj kk m j j

X Xθ λ
∈

= ≠

≥ ∑ , so the 

objectives θ ′  have lower bound. In summary, 
model (7) has optimal solution. Similarly, model 
(8) also has optimal solution. 

To facilitate our study, model (7) and 
model (8) can be further transformed into model 
(9) 

0

'
0{1,..., } 1, 0

1,,

0

( /

s.t.    1

           0, 1,2,..., ,

n

j kj kk m j j

n

j
j j j

j

min max X X

j n j j

θ λ

λ

λ

∈
= ≠

= ≠

=

≤

≥ = ≠

∑

∑

)

)

 (9) 

and model (10). 

0

''
0{1,..., } 1, 0

1,,

0

( /

s.t.     1

           0, 1,2,..., ,

n

j kj kk m j j

n

j
j j j

j

max min X X

j n j j

θ λ

λ

λ

∈
= ≠

= ≠

=

≤

≥ = ≠

∑

∑ (10) 

 
3.2. Model results analysis and discriminant 
rules 
3.2.1. Model results Analysis 

Because the model has an optimal solution, 

we can express '
iθ , ''

iθ  as 

,

, of which i 

represents the new DMU i, 

' *

{1,..., } 1,

( /
n

i jkk m j j i

max X Xθ λ
∈

= ≠

= ∑ )jk ik

/ )jk ik
'' *

{1,..., } 1,

(
n

i jkk m j j i

min X Xθ λ
∈

= ≠

′= ∑

*
jkλ  is the optimal 

solution of the model (9), *
jkλ′  is the optimal 

solution of model (10). In reality, the optimum 
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solution values '' ',i iθ θ  may have the following 

four cases:  and ；  and 

；  and ；  and 

. 

' 1iθ ≤ '' 1iθ ≥ ' 1iθ ≤

'' 1iθ ≤ ' 1iθ ≥ '' 1iθ ≥ ' 1iθ ≥

'' 1iθ ≤

Definition 3: iθ  is the relative distance of the 
new DMU to a certain category, which meets the 
following three properties: 

(i) When the new DMU is at the positive 
side of both the best-practice frontier and the 
worst-practice frontier, the relative distance is 0; 
    (ii) When a new DMU of the samples is at 
the positive side of one of the best-practice 
frontier or the worst-practice frontier, then the 
distance to the frontier is 0; and their relative 
distance iθ  is the distance of a new DMU to the 
another frontier. 

(iii)When the new DMU is not at negative 
side of the certain samples production frontier, 
the farther the distance from the samples frontier 
is, the greater the relative distance is. 
 
Proposition 1: When the new DMU in I district, 
then , , so ' 1iθ ≤ '' 1iθ ≥ 0iθ = . 
Proof: In this situation, the new DMU is at the 
positive side of both the best-practice frontier 
and the worst-practice frontier. By definition 3, 
the relative distance of the new DMU is 0, so it 
can be classified into this style directly.  
 
Proposition 2: When the new DMU in II district, 
then , ，so . ' 1iθ ≥ '' 1iθ ≥ ' 1i iθ θ= −
Proof: In this situation, the new DMU is at the 
positive side of both the worst-practice frontier. 
By definition 3, its distance is 0. At the same 
time, it is at the negative side of both the 
best-practice frontier, so this distance should be 
taken into account. The relative distance of the 
new DMU to the best-practice frontier is 

*

{1,..., } 1,
(

n

 *

{1,..., } 1,
( )

n

/jk jk ik ikk m j j i
max X X Xθ λ
∈

= ≠

= −∑ .  

Since 

*

{1,..., } 1,

*

:1 1,

* '

:1 1,

( ) /

( / 1)

( / ) 1

n

jk jk ik ikk m j j i

n

jk jk ikk m j j i

n

jk jk ik ik m j j i

max X X X

max X X

min X X

λ

λ

λ θ

∈
= ≠

→
= ≠

→
= ≠

−

= −

1= − = −

∑

∑

∑

, 

therefore ' 1iθ θ= − . 

Proposition 3: When the new DMU in III 
district, then ' 1iθ ≤ , '' 1iθ ≤ ，so ''1 iθ θ= − . 
Proof: In this situation, the new DMU is at the 
positive side of both the best-practice frontier. 
By definition 3, its distance is 0. At the same 
time, it is at the negative side of the 
worst-practice frontier, so this distance should 
be taken into account. The relative distance of 
the new DMU to the worst-practice frontier is 

. Overall, the 

relative distance 

:1 1,
(

n

ik jk jk ikk m j j i
max X X Xλ

→ = ≠

′− ∑ ) /

θ  when DMU is classified as 
such category is 

.  
:1 1,

( )
n

ik jk jk ikk m j j i
max X X Xλ

→
= ≠

′− ∑ /

Since  

:1 1,

:1 1,

''

:1 1,

( ) /

(1 / )

1 ( / ) 1

n

ik jk jk ikk m j j i

n

jk jk ikk m j j i

n

jk jk ik ik m j j i

max X X X

max X X

min X X

λ

λ

λ θ

→ = ≠

→ = ≠

→
= ≠

′−

′= −

′= − =

∑

∑

∑ −

, 

therefore ''1 iθ θ= − . 

) /jk jk ik ikk m j j i
max X X Xλ
∈

= ≠

−∑ . Overall, 

the relative distance θ  when DMU is classified 
as such category is 

Proposition 4: When the new DMU in IV 

district, then , , so 

'

' 1iθ ≥ '' 1iθ ≤

' 'θ i iθ θ= − . 

Proof: In this situation, the new DMU is at the 
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negative side of both the worst-practice frontier, 
so this distance should be taken into account. Its 

distance is *

{1,..., } 1,
(

n

) /jk jk ik ikk m j j i
max X X Xλ
∈

= ≠

−∑ . 

At the same time, it is at the negative side of 
both the best-practice frontier, so this distance 
should also be taken into account. The relative 
distance of the new DMU to the worst-practice 

frontier is . 

Overall, the relative distance 

:1 1,
(

n

ik jk jk ikk m j j i
max X X Xλ

→
= ≠

′− ∑ ) /

θ  when DMU is 
classified as such category is 

 .  

*

{1,..., } 1,

:1 1,

( )

( )

n

jk jk ik ikk m j j i

n

ik jk jk ikk m j j i

max X X X

max X X X

λ

λ

∈
= ≠

→
= ≠

−

′+ −

∑

∑

/

/

1θ=

∑

∑

∑

Since 

*

{1,..., } 1,

*

{1,..., } 1,

* '

{1,..., } 1,

( ) /

( / 1)

( / ) 1

n

jk jk ik ikk m j j i

n

jk jk ikk m j j i

n

jk jk ik ik m j j i

max X X X

max X X

max X X

λ

λ

λ

∈ = ≠

∈
= ≠

∈
= ≠

−

= −

= − −

 

and 

 

:1 1,

:1 1,

''

:1 1,

( ) /

(1 / )

1 ( / ) 1

n

ik jk jk ikk m j j i

n

jk jk ikk m j j i

n

jk jk ik ik m j j i

max X X X

max X X

min X X

λ

λ

λ θ

→
= ≠

→
= ≠

→
= ≠

′−

′= −

′= − = −

∑

∑

∑

, 

therefore '' '
i i iθ θ θ= − . 

 
3.2.2. Discriminant rules 
     When determining which category the new 

DMU belongs to, we firstly calculate '
iθ  and 

''
iθ , when the new DMU is assigned to the kth 

category, 1 21,2,..., ... sk l l= × × l× . Then we 

calculate iθ  corresponding to Proposition 1-4. 

When the situation of proposition 1 only occurs 
once when classifying it into each certain 
category, then the new DMU belongs to this 
category. If the situation of Proposition 1 
occurs several times when classifying it into 
each certain category, the new DMU should 
wait to be sentenced. Besides these, the new 

DMU shall belong to a type  which has the 

minimum 

0i

iθ , that is, 

00 1{ | { }, 1, 2,...., ... }i ki min k l lθ θ 2 sl= × × ×

. 
For verifying the rationality of our 

approach, we compare the results above with the 
geometrical results. A simple example of one 
input and one output which is shown in Figure 4 
is applied to illustrate it. 

(1) When ' 1iθ ≤  and , '' 1iθ ≥ 0iθ = . 

1′M  in Figure 4 belongs to this situation. 

Taking 1M ′  as the studied object, that is, I 

assume that it is classified into category I. The 
new DMU is at the positive side of both the 
best-practice frontier and the worst-practice 
frontier. So, it is in the inner of the category I. 
The relative distance of the new DMU is 0.  

(2) When  and ，
' 1iθ ≥ '' 1iθ ≥ 1iθ θ′= − . 

2M ′  in Figure 4 belongs to this situation. 

Taking 2M ′  as the studied object, that is, I 

assume that it is classified into category II. The 
new DMU is at the negative side of the 
best-practice frontier. At the same time, it is at 
the positive side of the worst-practice frontier, so 
this distance should be taken into account. The 
relative distance of the new DMU to the 
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best-practice frontier point A is 
'
2

' '
2

AM
O M

. The 

relative distance θ  when DMU is classified as 
such category is  

' ' ' ' '
2 2

' ' ' ' ' '
2 2 2

1 1AM O A O M O A
O M O M O M

θ θ− ′= = = − = −

. 
  
 

 
 

 

 
Fig. 4. Production frontier and analysis of various types of samples1

 
 
 

                                                        
1Dotted lines represent the worst-practice frontier; solid lines represent the best-practice frontier. 
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 (3) When  and ，
' 1iθ ≤ '' 1iθ ≤ ''1 iθ θ= − . 

3M ′  in Figure 4 belongs to this situation. 

Taking 3M ′  as the studied object, that is, I 

assume that it is classified into category III. 
The new DMU is at the positive side of the 
best-practice frontier. At the same time, it is at 
the negative side of the worst-practice frontier, 
so this distance should be taken into account. 
The relative distance of the new DMU to the 

worst-practice frontier point C is 
'
3

' '
3

CM
O M

. The 

relative distance θ  when DMU is classified 
as such category is  

' ' ' '
3 3

' ' ' '
3 3

'
''

' '
3

1 1

CM O M O C
O M O M

O C
O M

θ

θ

−
= =

= − = −
. 

(4) When  and ，
' 1iθ ≥ '' 1iθ ≤

' '
i i

'
iθ θ θ= − .  

This situation in single-input 
single-output case is almost impossible, unless 
the category is only one original sample. 
Therefore, icons can not explain it here. 

From the above analysis, we can see the 
two methods have better consistency.  

4. Solving steps  

At the same time, we verify the 
Propositions in part 2 intuitionally by the 
Figure 1. The specific steps of discrimination 
are as follows: 

   1) Since the output variables are qualitative, 
the first treatment is quantification of them. 
Assuming each style as . ; 1,2,...,iw i k=

   2) Grouping all the raw samples into k 
different groups, . ; 1,2,...,iG i k=

3) Assuming that the new sample's output 
is , we obtain the new DMU and its results 
of 

iw
'
iθ , ''

iθ  by incorporating it into  and 

evaluating it based on the input of the best and 
the worst super-efficiency DEA evaluation. 
Because this paper studies the various 
decision-making units of different input values 
to bring out the difference between the outputs, 
it is more practical and significant based on the 
input than the output. 

iG

4) Determine the category of the new 
DMU by the results gained from step 3 and the 
discriminant rules in section 2.  

5. Illustrations 

In order to better demonstrate how the 
proposed approach works, we propose a 
example which takes thirty-five three-input 
two-output samples in Table 1 as an basic to 
distinguish the two new samples in Table 2.  

Table 1. The raw samples 

Input 

1 

Input 

2 

Input 

3 

Output 

1 

Output 

2 

39 6 20 1 1 

39 12 20 1 1 

47 6 12 1 1 

47 12 12 1 1 

32 19 75 1 1 

6 28 30 1 1 

113 18 75 1 1 

52 12 40 1 1 

52 6 40 1 1 

113 35 180 1 2 

172 14 45 1 2 

172 15 45 1 2 

32 4 75 1 2 

30 10 70 1 2 

32 12 75 1 2 

11 3 15 1 2 

30 9 25 1 2 

8 4 30 2 1 

8 1 30 2 1 

161 4 70 2 1 

161 1 70 2 1 

6 12 30 2 1 

6 3 30 2 1 

6 5 30 2 1 

6 7 18 2 1 

113 6 75 2 1 
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113 8 75 2 2 

52 6 40 2 2 

52 8 40 2 2 

97 5 180 2 2 

97 5 180 2 2 

89 10 180 2 2 

56 13 180 2 2 

172 6 45 2 2 

283 6 45 2 2 

 

Table 2. Inputs and outputs of the new samples 

Sample input1 input2 input3 

1 3 12 60 

2 100 20 50 

 
The steps to determine the category of the 

two new samples are: 
1) First, according to the outputs, we 

classify the samples into four categories. 
Category i: output1 is 1 and output2 is 1. 
Category ii: output1 is 1 and output2 is 2. 
Category iii: output1 is 2 and output2 is 1. 
Category iv: output1 is 2 and output2 is 2. 

2) For the new samples 1 and 2, if they 
are classified as four categories in step 1) 
respectively, we can obtain their relative 
distance to best-practice frontier in Table 3 
through model (3). 
Table 3. The new sample’s relative distance to the 

best-practice frontier 

Sample  i ii iii iv 

1 2.2857 3.6667 2 17.3333

2 0.3819 0.3 0.36 0.8 

 
  3) For the new samples 1 and 2, if they 

are classified as four types in step 1) 
respectively, we can obtain their relative 
distance to the worst-practice frontier in Table 
4 through model (5).  

Table 4. The new sample’s relative distance to the 

worst-practice frontier 

Sample i ii iii iv 

1 1.25 2.9167 0.8 1.0833

2 0.9732 1.3601 0.4892 0.638

 

4) On the basis of Proposition 1 to 4 in 
section 3, we obtain the new sample’s 
relative distance to the raw samples as Table 
5. 

Table 5. The new sample’s relative distance to the raw 

samples 

Sample i ii iii iv 

1 1.2857 2.6667 1.2 16.3333 

2 0.0268 0 0.5108 0.362 

 
5) According to the discrimination basic 

principles in section 2.3, we can see the new 
sample 1 should be grouped as Category iii; 
the new sample 2 should be grouped as 
Category ii. 

6. Conclusions 

In real life, we often encounter 
classification of a sample with multi-outputs. 
Many discriminant analysis methods have been 
proposed, such as statistics, econometrics, 
computer data mining technologies, 
mathematical programming and so on. The 
DEA method in DA has drawn more and more 
attention to the researchers. The modified 
super-efficiency models in this paper can 
effectively solve the classification problems 
and are especially easy to be understood and 
applied. This approach can deal with the raw 
data directly without the need for 
standardization; therefore we may avoid the 
difficulties of choosing standardized method. 
In addition, this approach may maintain 
discriminant capabilities by incorporating the 
non-parametric feature of DEA into DA. 

Moreover, as one of the solutions, the 
proposed approach is only one way to 
combine DA and DEA. Adopting the idea of 
this new approach on classifying a new DMU, 
some extensions can be studied in the future, 
such as how to determine the relative distance 
using a simpler model, how to further classify 
the sample when the new sample have zero 
distance in several categories, and how to 
apply this idea to solve discriminant problem 
in more practical areas. 
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