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Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But,
under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several
explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic
properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology
for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal
model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators
when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data.
Moreover, we show our methodology performs much better in real data sets compared to available approaches.
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1. Introduction

Nowadays, hierarchical modeling has found vast applications in many disciplines such as biology,
ecology, medicine and engineering. An extensive progress of hierarchical modeling has been the
subject of attention over several decades. Undoubtedly Stein [1962] was the pioneer in developing
such an important field of statistics. His initial work on shrinkage estimations of several normal
means and later on their empirical Bayes interpretation founded an effective way for developing
hierarchical models, James and Stein (1961). Empirical Bayes is an approach wherein known rela-
tionships among the coordinates of the parameters allow use of the data to estimate some features
of the prior distribution. It is well known that the empirical Bayes methods can be categorized
into parametric and nonparametric, Morris(1983). The parametric empirical Bayes interpretation
of estimators as well as nonparametric ones have motivated various treatments of this problem.
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Although it seems that the parametric empirical Bayes estimatorsin comparison to the nonparamet-
ric empirical Bayes estimators are frequently used to analyze real data sets, they usually involve
some hyperparameters which originate from prior distributions. Hence in practice, our biggest chal-
lenge is eliciting these hyperparameters.
There is a large body of theoretical literature on the empirical Bayes analysis, especially regarding
asymptotic optimality of the empirical Bayes procedures; for more details see Berger (1985) and
references therein. For dealing with both homoscedastic (equal subpopulation variances) and het-
eroscedastic (unequal subpopulation variances) hierarchical models, the available empirical Bayes
procedures are powerful enough to handle them. For more detail on the subject, see Berger and
Strawderman(1996) and Brown and Greenshtein (2009).
It should be emphasized that in exploring empirical Bayes methods, incorporation of a suitable loss
function and investigation of its corresponding risk properties are of main interest. Thus, exploring
shrinkage estimators, admissible minimax estimators, proper Bayes minimax estimators and their
comparisons under different loss functions has attracted the attention of many authors.
Two popular methods of performing empirical Bayes analysis involve estimation of hyperparam-
eters by maximum likelihood (EBML) and by method of moment (EBMM); for more details on
evaluation and performance of these estimators, through a simulation study, see Brown(2008). Xie
et al. (2012) proposed a class of shrinkage estimators that can be readily applied in the heteroscedas-
tic hierarchical normal models. Their motivation in that work was to know whether it is possible
to formally compare these different shrinkage estimators and identify the ’ optimal’ one. They
called their shrinkage estimators SURE (Stein’s unbiased risk estimate). They also established the
asymptotic optimality property of the SURE estimators. But modeling the parameters via alter-
nate structural assumptions on the prior is a notable problem, too. For instance, one could let the
prior variance differ according to some model or be stochastically dependent in some fashion. This
subject may be common in general(generalized) linear model, especially whenever a hierarchical
setting is assumed. However, Ghoreishi and Meshkani (2014) tried to solve the problem consid-
ering a class of weighted shrinkage estimators, called Mean General SURE(MGS)-estimators in
the context of hierarchical models, assuming heteroscedasticity for both levels of a two-level nor-
mal hierarchical model. These estimates were obtained based on Stein’s unbiased estimate of risk.
Moreover, the asymptotic properties of MGS-estimators were investigated.
In our pervious work, Ghoreishi and Mehskani (2014), we tried to extend the assumption of con-
stant variance for the second-level hierarchial model, considered by Xie et al. (2012), to the case
where the variance of second-level model has a tendency to change through sub-populations. In that
paper, we showed that negligence in considering this fundamental assumption could lead to substan-
tial bias in the estimates of the parameters. To deal with our idea, we developed our methodology,
assuming the following weighted simple regression hierarchical model:

A) : Xt |θt ∼ N(θt ,k(zt)),

θt = β0+β1zt ,

β0 ∼ N(µ ,λ ),
β1 ∼ N(0,λ ),

wherezt is an explanatory variable andµ andλ (≥ 0) are hyperparameters and finallyk : U ⊆R→

R
+ is either completely known or will be known employing some plug-inrobust estimators. It is
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easy to drive its equivalent two-level marginal model as:

Xt |θt ∼ N(θt ,k(zt)),

θt ∼ N(µ ,λ (1+ z2
t )).

Our focus in this paper is to generalize model (A) to the model:

B) : Xt|θt ∼ N(θt ,k(zt)),

θt = β0+β1zt ,

β0 ∼ N(µ ,λ0k0(z0t)),

β1 ∼ N(0,λ1k1(z1t)),

wherek0 and k1 are some known positive functions andz0t andz1t are some explanatory variables
which may only influence the variances of the simple regression coefficientsβ0 andβ1. Assuming
equal variances for all regression coefficients, i.e., model (A), is a special case of model (B). This
generalized form is expected to perform better than model (A), in practice, since it is more flexible
to fit to variable data sets.
By the above assumptions, the equivalent two-level marginal model (B) is

Xt |θt ∼ N(θt ,k(zt)),

θt ∼ N(µ ,λ0(k0(z0t)+
λ1

λ0
z2
t k1(z1t))).

Assuming λ = λ0(> 0), δ = λ1
λ0
(> 0), andAt = (zt ,z0t ,z1t), onecan redefine the above model as

Xt|θt ∼ N(θt ,g(At)),

θt ∼ N(µ ,λ (g0(At)+δg1(At))),

whereit is assumed thatAts are some known and possibly distinct points inD ⊆R
k, andg,gi : D ⊆

R
k → R

+; i = 0,1. The quantitiesµ , λ , andδ are considered as the hyperparameters. Moreover,
we defineg∗δ (At) = g0(At)+δg1(At). Therefore, we have

Xt |θt ∼ N(θt ,g(At)),

θt ∼ N(µ ,λg∗δ (At)).
(1.1)

As mentioned above, model (??) can be reduced to that of Xie et al. (2012) if one assumeg∗δ (At)

to be aconstant function. Moreover, it will be equal to the model considered by Ghoreishi and
Meshkani (2014) wheneverδ = 1. Thus, it applies to large domains of modeling.
From Bayes’ theorem, the posterior distribution ofθt is

θt ∼ N(
λg∗δ (At)

λg∗δ (At)+g(At)
Xt +

g(At)

λg∗δ (At)+g(At)
µ ,

λg∗δ (At)g(At)

λg∗δ (At)+g(At)
). (1.2)

It is easy to see that the marginal distribution ofXt is

Xt ∼ N(µ ,λg∗δ (At)+g(At)). (1.3)

Our main purposes in this setting are:
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i) Deriving some suitable estimates for the unknown quantitiesµ , λ , andδ and plugging-in
these estimates to obtain the corresponding shrinkage MGS-estimators.

ii) Investigating the asymptotic properties of MGS-estimators.
iii) Extending model (??) from a simple linear model framework to a multiple one withr

regressors, while assuming the shrinkage location hyperparameterµ lies in the interval
[−maxt |Xt |,maxt |Xt |]. Practically, this assumption is not a restriction since no sensible
shrinkage estimator would attempt to shrink toward a location that lies outside the sample
range of the data.

The structure of this paper is as follows. Section 2 presents some preliminary results including
some basic concepts and necessary notations. Section 3 contains the main results for establishing
the asymptotic properties for MGS(GS)-estimators. The theoretical results are illustrated on a real
data set in Section 4.

2. Preliminaries

Consider the functionsg,g0,g1 : D ⊆ R
k → R

+. Let X1,X2, · · · ,Xn be a collection of indepen-
dent normal variables with meansθ1,θ2, · · · ,θn and variancesg(A1),g(A2), · · · ,g(An), respectively.
Here, as in elsewhere, we assumeAts are some known and possibly distinct points inD ⊆R

k. That
is,

Xt |θt ∼ N(θt ,g(At)), t = 1,2, · · · ,n.

Moreover, for giveng0 andg1, assumeθts are independent and normally distributed with meanµ
and varianceλg∗δ (At). That is,

θt ∼ N(µ ,λg∗δ (At)),

whereg∗δ (At) = g0(At)+δg1(At). In this setting, the quantitiesµ , λ , andδ are unknown hyperpa-
rameters and therefore, they need to be estimated. Below, three approaches are adopted for estimat-
ing these quantities.

2.1. Empirical Bayes moment method

The EBMM estimators are obtained as the solutions of the following equations:

µ =
∑t

√

qt
hδ (At)

λ+hδ (At)
Xt

∑t

√

qt
hδ (At)

λ+hδ (At)

,

λ =
1
n

[∑
t

hδ (At){qt(Xt −µ)2−1}]+,

δ =
[∑t{2(Xt −µ)2−λg0(At)−g(At)}]+

λ ∑g1(At)
.

Published by Atlantis Press 
Copyright: the authors 

207



Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models

where hδ (At) =
g(At)

g∗δ (At)
andqt =

1
g(At)

. Wheneverµ = 0, the EBMM estimator ofλ is given by

λ =
1
n

[∑
t

hδ (At){qt X
2
t −1}]+,

δ =
[∑t{2X2

t −λg0(At)−g(At)}]+

λ ∑g1(At)
.

2.2. Empirical Bayes maximum likelihood method

The EBML estimators are obtained by maximizing the marginal density ofXts with respect toµ ,
λ , andδ . They satisfy the following equations whenever the roots exist,

∑qt
hδ (At)(Xt −µ)

λ +hδ (At)
= 0,

∑{
1

λ +hδ (At)
−qt

hδ (At)(Xt −µ)2

(λ +hδ (At))2 }= 0,

∑ g1(At)hδ (At)

g(At)
{

1
λ +hδ (At)

−qt
hδ (At)(Xt −µ)2

(λ +hδ (At))2 }= 0.

Whenever µ = 0, these equations can be written in a suitable form

2.3. Stein’s unbiased risk estimate(SURE) method

An alternative approach to empirical Bayes method is something related to Stein’s unbiased risk
estimate (SURE) which is based on the weighted mean of squared error-loss, Ghoreishi and
Meshkani (2014),

lq(θt , θ̂t) =
1

∑qt
∑qt(θ̂t −θt)

2
, (2.1)

whereqt =
1

g(At)
. Assumingqt = 1 it corresponds to the case considered by Xie et al. (2012). Ghor-

eishi and Meshkani (2014) applied it to the shrinkage estimator

θ̂λ ,µ ,δ
t =

λ
λ +hδ (At)

Xt +
hδ (At)

λ +hδ (At)
µ , (2.2)

to estimateθt , whereδ = 1. However, here we assumeδ as an unknown quantity. From SURE
approach perspective, if one is interested in using the shrinkage estimator (2.2) as an estimator for
θt with fixedλ , µ , andδ , he/she can first estimateλ , µ , andδ by minimizing the unbiased estimator
of E[lq(θ , θ̂ )]. In this case, the corresponding SURE estimate forθt is given by

θ̂SURE
t =

λ̂ SURE

λ̂ SURE +hδ̂ SURE (At)
Xt +

hδ̂ SURE (At)

λ̂ SURE +hδ̂ SURE(At)
µ̂SURE

. (2.3)

It is natural to expect that adding one more parameterδ we would have smallerE[lq(θ , θ̂ )] in com-
parison to our pervious work, Ghoreishi and Meshkani (2014).
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In order to compare the performance of the estimator (2.3), one mayuse the oracle loss (OL) esti-
mator

θ̂OL
t =

λ̃ OL

λ̃ OL +hδ̃ OL(At)
Xt +

hδ̃ OL(At)

λ̃ OL +hδ̃ OL(At)
µ̃OL

, (2.4)

whereλ̃ OL, µ̃OL, andδ̃ OL are obtained by minimizing

1
n ∑(

λ
λ +hδ (At)

Xt +
hδ (At)

λ +hδ (At)
µ −θt)

2
, (2.5)

with respect toµ , λ , andδ . The notationθ̃OL
t rather thanθ̂OL

t is used to emphasize thatθ̃OL
t depends

on unknownθt and hence is not really an estimator. However, since it has smallerloss or risk within
the class of estimators of the form

λ
λ +hδ (At)

Xt +
hδ (At)

λ +hδ (At)
µ ,

it is suitable for evaluating the performance of the SURE estimator.
Let us consider the general Bayes shrinkage estimator (2.2). Under the weighted sum of squared-
error loss (2.1), if one uses the shrinkage estimator (2.2) to estimateθ with fixed µ , λ , andδ then
an unbiased estimate for its risk,

R(θ , θ̂λ ,µ ,δ ) = E[lq(θ , θ̂λ ,µ ,δ )] =
1

∑qt
∑ 1

(λ +hδ (At))2{qt(θt −µ)2+λ 2},

would be

MGS(λ ,µ ,δ ) =
1

∑qt
∑{

g(At)(Xt −µ)2

(λg∗δ (At)+g(At))2 +
λg∗δ (At)−g(At)

λg∗δ (At)+g(At)
}=

1

∑qt
∑{qt

h2
δ (At)(Xt −µ)2

(λ +hδ (At))2 +
λ −hδ (At)

λ +hδ (At)
}.

One can obtain the estimateŝµSURE , λ̂ SURE(≥ 0) and δ̂ SURE(≥ 0) as the minimizers of
MGS(λ ,µ ,δ ). They satisfy the following equations whenever the solutions exist,

∑qt
h2

δ (At)(Xt −µ)
(λ +hδ (At))2 = 0,

∑{
2hδ (At)

(λ +hδ (At))2 −qt
h2

δ (At)(Xt −µ)2

(λ +hδ (At))3 }= 0,

∑ g1(At)(Xt −µ)2

g∗δ (At)(λ +hδ (At))3 = 0.

Here,it is important to note that one may be interested in extending model (??) from a simple linear
model framework to a multiple one withr regressors, i.e.,

Xt|θt ∼ N(θt ,g(At)),

θt ∼ N(µ ,λg∗δ (At)),
(2.6)

where g∗δ (At) = g0(At) + δ1g1(At) + δ2g2(At) + · · · ,+δrgr(At), hδ (At) = g(At)
g∗δ (At)

, and δ =

(δ1,δ2, · · · ,δr). In this case, we assert that all estimates EBMM, EBML and SURE ofλ , µ , and
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δ j; j = 1, · · · ,r are elicitable in the same way which is discussed in this section. The SURE esti-
mates are the solutions of the following equations:

∑qt
h2

δ (At)(Xt −µ)
(λ +hδ (At))2 = 0,

∑{
2hδ (At)

(λ +hδ (At))2 −qt
h2

δ (At)(Xt −µ)2

(λ +hδ (At))3 }= 0,

∑ g j(At)(Xt −µ)2

g∗δ (At)(λ +hδ (At))3 = 0; j = 1,2, · · · ,r.

The corresponding SURE estimate forθt is given by

θ̂SURE
t =

λ̂ SURE

λ̂ SURE +h
δ̂

SURE (At)
Xt +

h
δ̂

SURE (At)

λ̂ SURE +h
δ̂

SURE (At)
µ̂SURE

. (2.7)

3. Theoretical results

In this section, we establish the theoretical results through two following theorems which are essen-
tial for evaluating the performance of the weighted SURE estimators of the form (2.3) and (2.7)
under the weighted loss function (2.1). Their proofs are easily verifiable because they are mostly in
the same lines as the theorems in Ghoreishi and Meshkani (2014).
For establishing the asymptotic results, the following two conditions are necessary,

C1) limsupn→∞
1
n ∑n

t=1 g(At)< ∞.

C2) limsupn→∞
1
n ∑n

t=1 θ2+η
t < ∞ for someη > 0.

Moreover, without loss of generality, assume the sub-populations were re-indexed such that we have
0< hδ (A1) ≤ hδ (A2) ≤ ·· · ≤ hδ (An). Also, the relationship between the harmonic and arithmetic
means leads to the following inequality

n

∑qt
≤

1
n ∑g(At)⇔

1

∑qt
≤

1
n2 ∑g(At) (3.1)

The following theorems reveal the asymptotic optimality of SURE estimators. These theorems show
that the SURE estimators (2.7) are asymptotically as good as the general oracle loss (OL) estimator
(2.4).

Theorem 3.1. For model (??), under conditions (C1) and (C2) we have

sup
λ≥0,

|µ |≤maxt |Xt |,
δ≥0

| MGS(λ ,µ ,δ )− lq(θ , θ̂λ ,µ ,δ
t ) |→ 0

in L1 and in probability, as n → ∞.

Theorem 3.2. For model (??), under conditions (C1) and (C2) we have

sup
λ≥0,

|µ |≤maxt |Xt |,
δ j≥0; j=1,··· ,r

| MGS(λ ,µ ,δ )− lq(θ , θ̂λ ,µ ,δ
t ) |→ 0

in L1 and in probability, as n → ∞.
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In these two theorems, we impose a restriction on location hyperparameterµ to lie in the interval
[−maxt |Xt |,maxt |Xt |]. This assumption is only for sake of easier proof. Practically, this assumption
is not a restriction since no sensible shrinkage estimator would attempt to shrink toward a location
that lies outside the sample range of the data.
These two theorems show that our shrinkage estimators have asymptotic optimality properties
within the class of estimators (2.3) and (2.7). Thus, they can be widely used in generalized lin-
ear models which are applied in many disciplines. Here, we avoid diving more into technical details
and provide justification of our results via analyzing two real data sets. However, as it is evident
from the results of these examples, our SURE estimates for hyperparameters, which are based on
regressor effects, perform much better in comparison to EBMM, EBML and SURE-estimates pro-
posed by Xie et al. (2012).

4. Application

To illustrate the obtained theoretical results, we have considered two examples of simple and mul-
tiple linear regression. Our first example has been taken from our previous work, Ghoreishi and
Meshkani (2014). Here, we have revisited this example to demonstrate the usefulness of the method-
ology presented in this work.

4.1. Simple regression model

Consider Bid at Auction data, Table 1 in Ghoreishi and Meshkani(2014). These data belong to a big
state company which wanted to survey its recent 12 auctions. It contained an explanatory variable
z:Bid at Auction(in million dollars) and response variableX :Cost of Auction(in million dollars).
There, we argued that the weighted least squares provide a suitable fit, whenever the weights are
proportional to1

z2 . Therefore, we considered the following weighted simple regression hierarchical
model:

Xt |θt ∼ N(θt ,σ2 1

z2
t
),

θt = β0+β1zt ,

β0 ∼ N(µ ,λ ),
β1 ∼ N(0,λ ).

Now, to apply our more heteroscedastic approach, we consider the following generalized weighted
simple regression hierarchical model:

Xt |θt ∼ N(θt ,σ2 1

z2
t
),

θt = β0+β1zt ,

β0 ∼ N(µ ,λ1),

β1 ∼ N(0,λ2),

or, equivalently,

Xt |θt ∼ N(θt ,g(At)),

θt ∼ N(µ ,λ (g0(At)+δg1(At))),
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where g(At) =
σ2

z2
t

, g0(At) = 1, g1(At) = z2
t , and reanalyze the data. Moreover, we adopt the fol-

lowing weighted prediction errors (WPE) in terms ofθ andXt to evaluate the performance of our
methodology.

W PE =
1
n ∑qt(Xt − θ̂t)

2
. (4.1)

We consider three different models. ModelM1 with δ = 0, ignoring the explanatory variable effect
in heteroscedastic model. ModelM2 with δ = 1, assuming equal variances for the intercept and
the slope. Finally, modelM3 with letting the model have unequal variances for the intercept and
the slope. In these three models, we use the weighted mean square estimateW MSE = 0.792 as a
plug-in estimate ofσ2. Table 1 shows the results for these three settings. It is easy to see that model

Table 1. Various estimates for the three simple regression models

Model µ̂SURE λ̂ SURE δ̂ SURE WPE
M1 10.4810 44.936 0 0.236
M2 10.8228 0.759 1 0.041
M3 10.6709 0.253 3.569 0.009

M1 produces a large WPE and an unrealistic estimate forλ . In comparison, modelM2 and model
M3 give small WPEs and sensible estimates forλ . However, from practical point of view, we prefer
modelM3, since it provides smaller values for both WPE and proportional variances of the intercept
and the slope.

4.2. Multiple regression model

Consider Systolic Blood Pressure data which is available athttp://college. cengage.com/ mathemat-
ics/ brase/ understandable-statistics/ 7e/ students/ datasets/ mlr/ frames/ frame.html. It contains two
explanatory variablesz1: Age in years andz2 Weight in pounds. The response variableX is thesys-
tolic blood pressure of 11 patients. A multiple Classical regression analysis showsMSE = 42.993,
which is used as a plug-in estimate ofσ2. Therefore, we consider the following multiple regression
hierarchical model:

Xt |θt ∼ N(θt ,σ2),

θt ∼ N(µ ,λ (g0(At)+δ1g1(At)+δ2g2(At))),

whereg0(At) = 1, g1(At) = z2
1t , andg2(At) = z2

2t . Again to analyze these data we consider three
different models. ModelM1 with δ1 = 0 andδ2 = 0, ignoring the explanatory variables effects in the
heteroscedastic model. ModelM2 with δ1 = 1 andδ2 = 1, assuming equal variances for the intercept
and two slopes. Finally, modelM3 with letting the model have unequal variances for the intercept
and the slopes. Table 2 shows the results for these three settings. Clearly, modelM1 produces a
largeWPE and an unrealistic estimate forλ . In comparison, modelsM2 andM3 give small WPEs
and sensible estimates forλ . However, from practical point of view, modelM3 is preferred, since it
entails smaller WPE and also smaller proportional variances for the intercept and the slopes.
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Table 2. Various estimates for the three multiple regression models

Model µ̂SURE λ̂ SURE δ̂ SURE
1 δ̂ SURE

2 WPE
M1 149.87 125.94 0 0 0.254
M2 145.31 0.253 1 1 0.704×10−4

M3 145.82 0.253 0.152 0 0.448×10−5

Summary

Onetopic which has received much attention during the last decades is how to elicit SURE estimates
for hyperparameters in heteroscedastic models. Neglecting to find the true values of the hyperpa-
rameters may lead to bias estimates of the model parameters. Xie et al. (2012) assumed the constant
variance for the second-level of a two-level hierarchial model. We tried to extend this assumption
to the case where the variance of the second-level model has a tendency to change across sub-
populations, Ghoreishi and Mehskani (2014). There, we investigated the usefulness of considering
an explanatory variable in eliciting the model hyperparameters. In this work, we generalized our
previous work to a multiple regression and the settings where each regressor coefficient has a differ-
ent variance and plays an appreciable role in determining the SURE estimates of hyperparameters.
We also discuss the asymptotic optimality of the shrinkage estimators of parameters.
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