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Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
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Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But,
under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several
explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic
properties in spite of the fact they involve numerous hyperparameters. In this work, we propose a methodology
for estimating the hyperparameters whenever one deals with multi-level heteroscedastic hierarchical normal
model with several explanatory variables. we investigate the asymptotic properties of the shrinkage estimators
when the shrinkage location hyperparameter lies within a suitable interval based on the sample range of the data.
Moreover, we show our methodology performs much better in real data sets compared to available approaches.

Keywords: Asymptotic optimality; Heteroscedasticity; Multiple linear regression; Shrinkage estimators; Stein’s
unbiased risk estimate(SURE).
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1. Introduction

Nowaday, hierarchical modeling has found vast applications in many disciplines such as biology,
ecology, medicine and engineering. An extensive progress of hierarchical modeling has been the
subject of attention over several decades. Undoubtedly Stein [1962] was the pioneer in developing
such an important field of statistics. His initial work on shrinkage estimations of several normal
means and later on their empirical Bayes interpretation founded an effective way for developing
hierarchical models, James and Stein (1961). Empirical Bayes is an approach wherein known rela-
tionships among the coordinates of the parameters allow use of the data to estimate some features
of the prior distribution. It is well known that the empirical Bayes methods can be categorized
into parametric and nonparametric, Morris(1983). The parametric empirical Bayes interpretation
of estimators as well as nonparametric ones have motivated various treatments of this problem.
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Although it seems that the parametric empirical Bayes estimgtammparison to the nonparamet-

ric empirical Bayes estimators are frequently used to analyze real data sets, they usually involve
some hyperparameters which originate from prior distributions. Hence in practice, our biggest chal-
lenge is eliciting these hyperparameters.

There is a large body of theoretical literature on the empirical Bayes analysis, especially regarding
asymptotic optimality of the empirical Bayes procedures; for more details see Berger (1985) and
references therein. For dealing with both homoscedastic (equal subpopulation variances) and het-
eroscedastic (unequal subpopulation variances) hierarchical models, the available empirical Bayes
procedures are powerful enough to handle them. For more detail on the subject, see Berger and
Strawderman(1996) and Brown and Greenshtein (2009).

It should be emphasized that in exploring empirical Bayes methods, incorporation of a suitable loss
function and investigation of its corresponding risk properties are of main interest. Thus, exploring
shrinkage estimators, admissible minimax estimators, proper Bayes minimax estimators and their
comparisons under different loss functions has attracted the attention of many authors.

Two popular methods of performing empirical Bayes analysis involve estimation of hyperparam-
eters by maximum likelihood (EBML) and by method of moment (EBMM); for more details on
evaluation and performance of these estimators, through a simulation study, see Brown(2008). Xie
etal. (2012) proposed a class of shrinkage estimators that can be readily applied in the heteroscedas-
tic hierarchical normal models. Their motivation in that work was to know whether it is possible

to formally compare these different shrinkage estimators and identify the ’ optimal’ one. They
called their shrinkage estimators SURE (Stein’s unbiased risk estimate). They also established the
asymptotic optimality property of the SURE estimators. But modeling the parameters via alter-
nate structural assumptions on the prior is a notable problem, too. For instance, one could let the
prior variance differ according to some model or be stochastically dependent in some fashion. This
subject may be common in general(generalized) linear model, especially whenever a hierarchical
setting is assumed. However, Ghoreishi and Meshkani (2014) tried to solve the problem consid-
ering a class of weighted shrinkage estimators, called Mean General SURE(MGS)-estimators in
the context of hierarchical models, assuming heteroscedasticity for both levels of a two-level nor-
mal hierarchical model. These estimates were obtained based on Stein’s unbiased estimate of risk.
Moreover, the asymptotic properties of MGS-estimators were investigated.

In our pervious work, Ghoreishi and Mehskani (2014), we tried to extend the assumption of con-
stant variance for the second-level hierarchial model, considered by Xie et al. (2012), to the case
where the variance of second-level model has a tendency to change through sub-populations. In that
paper, we showed that negligence in considering this fundamental assumption could lead to substan-
tial bias in the estimates of the parameters. To deal with our idea, we developed our methodology,
assuming the following weighted simple regression hierarchical model:

A) 1 X6 ~N(6 k(z)),
& = PBo+ Pz,
Bo~ N(u,A),
Br~N(0,2),

wherez is an explanatory variable andandA (> 0) are hyperparameters and finallyZ C R —
R* is either completely known or will be known employing some plugébust estimators. It is
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eay to drive its equivalent two-level marginal model as:

X |6 ~N(6.k(z)),
& ~ N(u,A(1+7)).

Our focus in this paper is to generalize moda) o the model:

B) : X[& ~ N(6&,k(z)),
& = Bo+ Pz,
Bo ~ N(H, Aoko(Zat)),
B ~ N(0,A1ky(zat)),

wherekg and k; are some known positive functions amgl andz;; are some explanatory variables
which may only influence the variances of the simple regression coeffigdgraad 3;. Assuming
equd variances for all regression coefficients, i.e., mod9l (s a special case of model (B). This
generalized form is expected to perform better than moeli§ practice, since it is more flexible
to fit to variable data sets.

By the above assumptions, the equivalent two-level marginal m&lés (

X8 ~ N(8.k(z)).
a~NwAamgﬂ+%immm»

Assumng A = Ap(>0), 0 = %(> 0), andA; = (z, Zx,z1t), onecan redefine the above model as

X6 ~ N(6,9(A)),
& ~ N(H, A (Go(A) +001(Ar))),

whereit is assumed thals are some known and possibly distinct pointirc R, andg,gj : 2 C
RK — R*; i = 0,1. The quantitiesu, A, andd are considered as the hyperparameters. Moreover,
we defineg;(A:) = go(Ar) + 091(A). Therefore, we have

X |6 ~ N(6,9(A)),
& ~ N(u,Ag5(A))-

As mentioned above, modétq) can be reduced to that of Xie et al. (2012) if one assgij{éy)

to be aconstant function. Moreover, it will be equal to the model considered by Ghoreishi and
Meshkani (2014) whenevér = 1. Thus, it applies to large domains of modeling.

From Bayes’ theorem, the posterior distributionfpfs

(1.1)

Ags(A) 9(A) Ags(A)9(A)
~ N . 1.2
AN Ty A) + g0 Agy(A) + g0 Ags(A) + gAY 2
It is easy to see that the marginal distributionXpfs
X~ N(H;Ag5(A) +9(AY))- (1.3)

Our main purposes in this setting are:
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i) Deriving some suitable estimates for the unknown quantitied , and é and plugging-in

these estimates to obtain the corresponding shrinkage MGS-estimators.

i) Investigating the asymptotic properties of MGS-estimators.

iif) Extending model #?) from a simple linear model framework to a multiple one with
regressors, while assuming the shrinkage location hyperparameéies in the interval
[— max | X;|,max |X|]. Practically, this assumption is not a restriction since no sensible
shrinkage estimator would attempt to shrink toward a location that lies outside the sample
range of the data.

The structure of this paper is as follows. Section 2 presents some preliminary results including
some basic concepts and necessary notations. Section 3 contains the main results for establishing
the asymptotic properties for MGS(GS)-estimators. The theoretical results are illustrated on a real
data set in Section 4.

2. Preliminaries

Consider the functions),go,g1 : 2 C RK — R*. Let X1,Xo,---, X, be a collection of indepen-
dent normal variables with mear$, 6,, - - - , 6, and varianceg(A1),9(A2), - - - ,d(An), respectively.
Herg as in elsewhere, we assurye are some known and possibly distinct pointszrc R¥. That
is,

K‘a ~ N(a7g(At))7 t= 1727"' 7n'

Moreover, for givergg andg;, assumeg s are independent and normally distributed with mgan
and varianceé\ g5 (A;). That is,

& ~ N(u,Ad5(A)),

whereg;(A) = go(A) + 691(Ar). In this setting, the quantitigs, A, andd are unknown hyperpa-
rameters and therefore, they need to be estimated. Below, three approaches are adopted for estimat-
ing these quantities.

2.1. Empirical Bayes moment method

The EBMM estimators are obtained as the solutions of the following equations:

s
Sey/ o
1

A= H[Zh(s(A[){qt(xt —p)2 -1,

5 L2 {23 = 1)2 = Ado(A) —9(A) 1"
A3 oA '
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where hs(A) = g 9l AT

andqg; = (}\t). Whenevemu = 0, the EBMM estimator oft is given by

=—[Zh5 Hax? - 111",

5 - [2{2X —Ago(A) —g(A) 1"
A3 (A

2.2. Empirical Bayes maximum likelihood method

The EBML estimators are obtained by maximizing the marginal densisivith respect tqu,
A, andd. They satisfy the following equations whenever the roots exist,

he(A)O% — 1)
2% 3 hy)

1 hs (A) (X% — )2
2 A * 0 0, y=0
GAhs(A) 1 hs(A) (X — 1)?
A A A O

Wheneer u = 0, these equations can be written in a suitable form

2.3. Stein’s unbiased risk estimate(SURE) method

An alternative approach to empirical Bayes method is something related to Stein’s unbiased risk
estimate (SURE) which is based on the weighted mean of squared error-loss, Ghoreishi and
Meshkani (2014),

lq(8.8) = th (6 8)2 (2.1)

whereg; = g%\t' Assumingqg; = 1 it corresponds to the case considered by Xie et al. (2012). Ghor-
eishi and Meshkani (2014) applied it to the shrinkage estimator

A hs(A)
A ho(B) T Xt ho (AL

to estimatef, whered = 1. However, here we assuneas an unknown guantity. From SURE
approach perspective, if one is interested in using the shrinkage estimator (2.2) as an estimator for

6 with fixeAd}\, U, andd, he/she can first estimade u, andd by minimizing the unbiased estimator
of E[lq(8,8)]. In this case, the corresponding SURE estimatedfds given by

ANLLO
g e =

, 2.2
)u (2.2)

A RS‘JRE hs RE(At)
etSJRE - _ XI 4 oV i:lSURE. (23)
)\SJRE‘I'hgsJRE(At) )\SJRE+hgsJRE(A\t)

Itis natural to expect that adding one more param@&tge would have smalleE [I4(0, é)] in com-
parison to our pervious work, Ghoreishi and Meshkani (2014).
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In order to compare the performance of the estimator (2.3), oneusayhe oracle loss (OL) esti-
mator

A0 hSOL (A) i:lOL

A°- = < 2.4
et AOL+h OL(A[)Xt—I—AOL‘FhSOL(At) ’ (.4)
whereA©L, i and&° are obtained by minimizing
1 A hs(A) 12
n 2 Tt (2

with respect tqu, A, andd. The notatiorB* rather tharfiC- is used to emphasize th@f- depends
on unkiown 6 and hence is not really an estimator. However, since it has sn@dkeor risk within
the class of estimators of the form

A hs(Ar)
A oA A T hs(A

it is suitable for evaluating the performance of the SURE estimator.

Let us consider the general Bayes shrinkage estimator (2.2). Under the weighted sum of squared-
error loss (2.1), if one uses the shrinkage estimator (2.2) to estnaith fixed u, A, andd then

an unbiased estimate for its risk,

)H,

N - 1 1
R(6,6M0) =E[lq(0,0" %)= — Y ~———— — )+ A%
would be
Z{ A)X— ) Ags(A) - (H_
zq A95A>+mAD Ags(A) +9(A)
h3(A) (X —1)* A —hs(A)
X Ta SO R A A
One ca obtain the estimategiFE, ASURE(> 0) and 6VFE(> 0) as the minimizers of
MGS(A, i, d). They satisfy the following equations whenever the solutions exist,

P2 (A (% — 1)
2 %1+ ho(A)?
ohs(A) . PR(A (X — )
2 0 hs(A02 % (h s ha(A)® | O
5 aA)X -
g5(A) (A +hs(A))3 '

Here,it is important to note that one may be interested in extending m@@gfrom a simple linear
model framework to a multiple one withregressors, i.e.,

Xt|6& ~N(6,9(A))

& ~ N(1,Ag5(A)),

where g5(A) = Go(A) + &101(A) + &G2(A) + -, +aGr(A), hs(A) = ok, and & =
(01,0,---,&). In this case, we assert that all estimates EBMM, EBML and SURE,gi, and

MGS(A, 11, 8) =

}.

=0,

(2.6)
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0j; j =1,---,r are dicitable in the same way which is discussed in this section. The SURE esti-
mates are the solutions of the following equations:

hg (A) (% — 1)

24 A +hs(A))Z 0,
T R A
- _u)?
2 gg?g'?zg\(fh(;(up)\[))s =0;j=12--,r
The corresponding SURE estimate fris given by
étSIJRE _ A SURE N hSSJRE (A) i:lSURE' on

B }\SJRE—I— hssURE(At)X[ ASURE +h8$URE(A{)

3. Theoretical results

In this section, we establish the theoretical results through two following theorems which are essen-
tial for evaluating the performance of the weighted SURE estimators of the form (2.3) and (2.7)
under the weighted loss function (2.1). Their proofs are easily verifiable because they are mostly in
the same lines as the theorems in Ghoreishi and Meshkani (2014).

For establishing the asymptotic results, the following two conditions are necessary,

C1) liMSUR, . 5 311 9(A) < 0.
C2) imsup, e 2501677 < o for somen > 0.

Moreover, without loss of generality, assume the sub-populations were re-indexed such that we have
0 < hs(A1) < hs(A2) <--- <hgs(An). Also, the relationship between the harmonic and arithmetic
mears leads to the following inequality

n 1 1 1
=< -H9A)Ee = < 5> 9A (XY
sq = 0295 S 29N
The following theorems reveal the asymptotic optimality of SURE estimators. These theorems show
that the SURE estimators (2.7) are asymptotically as good as the general oracle loss (OL) estimator

(2.4).
Theorem 3.1. For model (??), under conditions (C1) and (C2) we have

sup  |MGS(A,p,8) —1q(8,8*°) |—0
>0,

[H|<max |X],
>0

in L' and in probability, asn — c.

Theorem 3.2. For model (??), under conditions (C1) and (C2) we have

sup  |MGS(A,u,8) —1q(6,8#°) |0
A>0,

K| <max [X,
0;j>0;j=1,---r

in L and in probability, asn — co.
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In these two theorems, we impose a restriction on location hypampeteru to lie in the interval
[—max |X;|,max |X|]. This assumption is only for sake of easier proof. Practically, this assumption
iS nd a restriction since no sensible shrinkage estimator would attempt to shrink toward a location
that lies outside the sample range of the data.
These two theorems show that our shrinkage estimators have asymptotic optimality properties
within the class of estimators (2.3) and (2.7). Thus, they can be widely used in generalized lin-
ear models which are applied in many disciplines. Here, we avoid diving more into technical details
and provide justification of our results via analyzing two real data sets. However, as it is evident
from the results of these examples, our SURE estimates for hyperparameters, which are based on
regressor effects, perform much better in comparison to EBMM, EBML and SURE-estimates pro-
posed by Xie et al. (2012).

4. Application

To illustrate the obtained theoretical results, we have considered two examples of simple and mul-
tiple linear regression. Our first example has been taken from our previous work, Ghoreishi and
Meshkani (2014). Here, we have revisited this example to demonstrate the usefulness of the method-
ology presented in this work.

4.1. Simpleregression model

Consider Bid at Auction data, Table 1 in Ghoreishi and Meshkani(2014). These data belong to a big
state company which wanted to survey its recent 12 auctions. It contained an explanatory variable
zBid at Auction(in million dollars) and response variat{eCost of Auction(in million dollars).

There, we argued that the weighted least squares provide a suitable fit, whenever the weights are
proportional toz—lz. Therefore, we considered the following weighted simple regression hierarchical
model:

51
X6 ~N(&,0 ?),
& = o+ Bz,
Bo~ N(u,7),
B1~ N(0O,A).
Now, to apply our more heteroscedastic approach, we consider the following generalized weighted
simple regression hierarchical model:

X6 ~N<a,02%>,

& = Bo+ Bz,
BO ~ N(H’Al)a
Bl ~ N(O,)\z),

or, equivalently,

X6 ~N(&,9(A)),
& ~ N(i,A(Go(A) +001(A))),
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where g(A) = "?2 do(A) =1, g1(A) = Z, and reanalyze the data. Moreover, we adopt the fol-
lowing weighted prediction errors (WPE) in termséfandX; to evaluate the performance of our
methalology.

1
WPE = =% & (X — &)* (4.1)

We consider three different models. Modié] with & = 0, ignoring the explanatory variable effect

in heteroscedastic model. Model, with 6 = 1, assuming equal variances for the intercept and
the slope. Finally, moddil; with letting the model have unequal variances for the intercegt an
the slope. In these three models, we use the weighted mean square edtivhéie— 0.792 as a
plug-in estimate ob2. Table 1 shows the results for these three settings. It is easy to see that model

Table 1. Various estimates for the three simple regression models

Model | ARE | A3RE T 5URE T WpE
M; | 10.4810| 44.936] 0 | 0.236
M, | 10.8228| 0.759 | 1 | 0.041
M; | 10.6709| 0.253 | 3.569 | 0.009

M3 produces a large WPE and an unrealistic estimaté fdn comparison, mode¥l, and model
M3 give small WPESs and sensible estimatesffoHowever, from practical point of view, we prefer
modelMs, since it provides smaller values for both WPE and proportiondgrees of the intercept
and the slope.

4.2. Multiple regression model

Consider Systolic Blood Pressure data which is availahitt/college. cengage.com/ mathemat-

ics/ brase/ understandable-statistics/ 7¢/ students/ datasets/ mir/ frames/ frame.html. It contains two
explanatory variableg,: Age in years and, Weight in pounds. The response variaKlés the sys-
tolic blood pressure of 11 patients. A multiple Classical regression analysis $hSi#/s- 42.993
which is used as a plug-in estimateaf. Therefore, we consider the following multiple regression
hierarchical model:

X |6 ~N(&,0%),
& ~ N(H, A (Qo(A) + 3101(A) + %02(A))),

wherego(A) = 1, g1(A) = 22, andg2(A) = Z,. Again to analyze these data we consider three
different models. Modeé¥l; with &; = 0 andd, = 0, ignoring the explanatory variables effects in the
heteoscedastic model. Mod#l, with & = 1 andd, = 1, assuming equal variances for the intercept
and twvo slopes. Finally, modd{l; with letting the model have unequal variances for the intercept
andthe slopes. Table 2 shows the results for these three settings. Clearly, khpgebduces a
largeWPE and an unrealistic estimate for In comparison, modelsl, andM3 give small WPEs
and sasible estimates fok. However, from practical point of view, mod®l; is preferred, since it
entals smaller WPE and also smaller proportional variances for the intercept and the slopes.
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TaHe 2. Various estimates for the three multiple regression models

Model ﬂ&JRE )\SJRE 51SJRE 5ZSJRE WPE
Mq 149.87| 125.94 0 0 0.254
Mo 145.31| 0.253 1 1 0.704x 104
M3 145.82| 0.253 | 0.152 0 0.448x 107°°

Summary

Onetopic which has received much attention during the last decades is how to elicit SURE estimates
for hyperparameters in heteroscedastic models. Neglecting to find the true values of the hyperpa-
rameters may lead to bias estimates of the model parameters. Xie et al. (2012) assumed the constant
variance for the second-level of a two-level hierarchial model. We tried to extend this assumption

to the case where the variance of the second-level model has a tendency to change across sub-
populations, Ghoreishi and Mehskani (2014). There, we investigated the usefulness of considering
an explanatory variable in eliciting the model hyperparameters. In this work, we generalized our
previous work to a multiple regression and the settings where each regressor coefficient has a differ-
ent variance and plays an appreciable role in determining the SURE estimates of hyperparameters.
We also discuss the asymptotic optimality of the shrinkage estimators of parameters.
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